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SOME GENERAL QUADRATIC NUMERICAL

RADIUS INEQUALITIES FOR THE OFF–DIAGONAL

PARTS OF 2× 2 BLOCK OPERATOR MATRICES

RONGFANG LI, DEYU WU ∗ AND ALATANCANG CHEN

(Communicated by F. Kittaneh)

Abstract. In this paper, the elementary properties for the quadratic numerical radius are intro-
duced. Furthermore, some general quadratic numerical radius inequalities for the off-diagonal
parts of 2× 2 block operator matrices are studied. These inequalities are based on the general-
ized mixed Schwarz inequality, Young inequality and Jensen inequality.

1. Introduction

Let Hi,Hj be complex Hilbert space with inner product 〈·, ·〉 , and let B(Hi,Hj)
denote the Banach space of all bounded linear operators from Hj into Hi , and abbre-
viate B(Hi,Hi) to B(Hi) . For T ∈ B(H) , we use T ∗ , N(T ) and R(T ) to denote the
conjugate, the range space and the null space of T . The resolvent set ρ(T ) of T con-
sists of the complex numbers λ such that T − λ I is a bijection on H ; the spectrum
σ(T ) of T is the complement of ρ(T ) in C . The point spectrum σp(T ) , the residual
spectrum σr(T ) and the numerical range W (T ) of T are the set

σp(T ) = {λ ∈ C : T −λ I is not injective},

σr(T ) = {λ ∈ C : T −λ I is injective, R(T −λ I) �= H},
W (T ) = {〈Tx,x〉 : x ∈ H,‖x‖ = 1}.

The real numbers
ω(T ) = sup

‖x‖=1
|〈Tx,x〉|,

‖T‖ = sup
‖x‖=1

‖Tx‖
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and
r(T ) = max

λ∈σ(T)
|λ |

are called the numerical radius, the operator norm and the spectral radius, respectively.
By the well-known Toeplitz-Hausdorff theorem, the numerical range for bounded

linear operators is always a convex subset of the complex plane, and it satisfies the
so-called spectral inclusion property (see, e.g., [10]):

σp(T )∪σr(T ) ⊂W (T ),σ(T ) ⊂W (T ).

However, the numerical range often gives a poor localization of the spectrum and it
cannot capture finer structures such as the separation of the spectrum in two parts. In
view of these shortcomings, the new concept of the quadratic numerical range was
introduced in 1998 in [17] and further studied in [16, 18, 23–24].

Let H1 and H2 be Hilbert spaces. In the Hilbert space H = H1
⊕

H2 , we consider
the linear operator A , given by the block operator matrix

A =
[

A B
C D

]
(1)

with A ∈ B(H1) , D ∈ B(H2) , B ∈ B(H2,H1) and C ∈ B(H1,H2) . Let ∑ denote the set

∑ :=
{( f

g

)
: f ∈ H1,g ∈ H2,‖ f‖ = ‖g‖ = 1

}
,

A f ,g the 2×2-matrix

A f ,g =
[ 〈A f , f 〉 〈Bg, f 〉
〈C f ,g〉 〈Dg,g〉

]
, f ∈ H1, g ∈ H2

and I2 the 2×2-identity matrix.
The set

W 2(A ) =
⋃

‖ f‖=‖g‖=1

σp(A f ,g)

is called the quadratic numerical range of the operator A (with respect to the block
operator representation (1)).

Obviously, W 2(A ) can also be written as

W 2(A ) =
{

λ ∈ C : det(A f ,g−λI2) = 0, for some ( f ,g)t ∈ ∑
}

=
{

λ ∈ C : det

[ 〈A f , f 〉−λ 〈Bg, f 〉
〈C f ,g〉 〈Dg,g〉−λ

]
= 0, for some ( f ,g)t ∈ ∑

}

=
{

λ ∈ C : λ =
1
2

[
〈A f , f 〉+ 〈Dg,g〉±

√
|Δ f ,g|e i

2 θ f ,g

]
, for some ( f ,g)t ∈ ∑

}
,

where Δ f ,g = (〈A f , f 〉 − 〈Dg,g〉)2 + 4〈Bg, f 〉〈C f ,g〉 . Here the superscript t denotes
the transpose of a vector, θ f ,g denotes the argument of the complex number Δ f ,g .
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The quadratic numerical range is always contained in the numerical range (see,
e.g., [23]):

W 2(A ) ⊂W (A ).

However, unlike the numerical range, the quadratic numerical range is no longer con-
vex;it consists of at most two components which need not be convex either. On the
other hand, the quadratic numerical range shares other properties with the numerical
range; it has the spectral inclusion property (see, e.g., [23]):

σp(A )∪σr(A ) ⊂W 2(A ), σ(A ) ⊂W 2(A ),

where A is a bounded block operator matrix.
We know that the numerical radius of a bounded linear operator is a powerful

tool to characterize the spectral distribution, and more inequalities for the numerical
radius can be found in [1–2, 4–5, 7–9, 11, 13–14, 19, 21–22]. For instance, Aghideh,

Moslehian and Rooin in [1] proved that if T =
[

0 B
C 0

]
, and f ,g are non-negative non-

decreasing continuous function on [0,∞) such that f (t)g(t) = t (t � 0) , then for all
non-negative nondecreasing convex function h on [0,∞) ,

h(ω(T )) � 1
4
‖h( f 2(|B|))+h(g2(|B|))‖+

1
4
‖h( f 2(|C|))+h(g2(|C|))‖.

The definition of the block numerical radius for bounded operator matrix was intro-
duced in 2014 (see, e.g., [20]). In this paper, we only discuss the quadratic numerical
radius. With respect to the block operator representation (1), then

ω2(A ) = sup{|λ | : λ ∈W 2(A )}

is called the quadratic numerical radius of the operator A . Obviously, ω2(A ) can also
be written as

ω2(A ) = sup
‖ f‖=‖g‖=1

r(A f ,g).

It is well-known that ω(·) defines a norm on B(H) , which is equivalent to the
usual operator norm ‖ · ‖ . Namely, for A ∈ B(H) , we have

ω(A ) � ‖A ‖ � 2ω(A ).

From the above inequalities (also see, e.g., [10]) and the relationship between the
quadratic numerical range and the spectrum, we can obtain following inequalities:

r(A ) � ω2(A ) � ω(A ) � ‖A ‖ � 2ω(A ). (2)

EXAMPLE 1. Let A =
[

0 1
0 0

]
. Then ‖A ‖= 1, ω2(A ) = 0, ω(A ) = 1

2 , σ(A )

= {0} , hence the inequalities (2) hold and the quadratical numerical radius gives more
precise information than the numerical radius in calculating the range of the spectrum.
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In this paper, the elementary properties for the quadratic numerical radius are in-
troduced. Furthermore, the main ideas of the general quadratic numerical radius in-
equalities for the off-diagonal parts of 2×2 block operator matrices are motivated by
the references [1, 4–5, 11, 21]. These inequalities are based on the generalized mixed
Schwarz inequality, Young inequality and Jensen inequality.

2. Preliminaries

In order to prove our results we need a sequence of lemmas. The first lemma is
important and it has been proved by Kittaneh [15].

LEMMA 1. ([15]) Let M ∈ B(H) and let h and k be nonnegative functions on
[0,∞) , which are continuous and satisfy the relation h(s)k(s) = s for all s ∈ [0,∞) .
Then

|〈Mx,y〉| � ‖h(|M|)x‖‖k(|M∗|)y‖ for all x,y ∈ H.

The next lemma follows from the spectral theorem for positive operators and
Jensen’s inequality (see, e.g., [15]).

LEMMA 2. ([15]) Let A be a nonnegative bounded linear operator on a Hilbert
space H , and let x ∈ H be any unit vector. Then

(i) 〈Ax,x〉r � 〈Arx,x〉 for r � 1 ;
(ii) 〈Arx,x〉 � 〈Ax,x〉r for 0 < r � 1 .

The third lemma is a consequence of Young’s inequality.

LEMMA 3. ([3]) (Young inequality)
(i) (The classical Young inequality) If p,q > 1 such that 1

p + 1
q = 1 , then for all

positive real numbers a,b, we have

ab � ap

p
+

bq

q
. (3)

(ii) (Refinement of the scalar Young inequality) If p,q > 1 such that 1
p + 1

q = 1 ,
then for all positive real numbers a,b, we have

(a
1
p b

1
q )m + rm

0 (a
m
2 −b

m
2 )2 �

( a
p

+
b
q

)m
,

where r0 = min{ 1
p , 1

q} and m = 1,2, · · · . In particular, if p = q = 2 , then

(a
1
2 b

1
2 )m +

(
1
2

)m

(a
m
2 −b

m
2 )2 � 2−m(a+b)m. (4)

The following lemma is a refinement of Schwarz’s inequality (see, e.g., [6]).
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LEMMA 4. ([6]) Let (H,〈·, ·〉) be real or complex Hilbert space over the real or
complex field K = R,C , α ∈ K with |α − 1| = 1 . Then for any e ∈ H with ‖e‖ = 1
and x,y ∈ H , we have

|〈x,y〉−α〈x,e〉〈e,y〉| � ‖x‖‖y‖.
The last lemma is a consequence of Jensen’s inequality, concerning the convex-

ity or the concavity of certain power functions. It is a special case of Schlömilch’s
inequality for weighted means of nonnegative real numbers (see, e.g., [12], p. 26).

LEMMA 5. ([12]) For a,b � 0 , 0 < α < 1, and r �= 0 , let Mr(a,b,α) = (αar +
(1−α)br)

1
r and M0(a,b,α) = aαb1−α . Then

Mr(a,b,α) � Ms(a,b,α), r � s.

The numerical radius has some basic properties, for example, ω(αT ) = |α|ω(T )
and ω(U∗TU) = ω(T ) , where α ∈ C , T ∈ B(H) , U is a unitary operator. Therefore
we will consider the properties of the quadratic numerical radius.

PROPERTY 1. Let A be a bounded block operator matrix. Then
(i) ω2(A ) = ω2(A ∗) .

(ii) ω2(A ) = ω2(U ∗A U ) , where U =
[
U1 0
0 U2

]
or U =

[
0 U1

U2 0

]
, U1 and U2

are unitary operators.
(iii) ω2(αA ) = |α|ω2(A ) , α ∈ C .
(iv) If A is selfadjoint, then ω2(A ) = ‖A ‖ .

Proof. Since W 2(A ∗) = (W 2(A ))∗ and W 2(U ∗A U ) = W 2(A ) , so the proof
of (i) and (ii) are obvious. Part (iii) follows by applying the identity W 2(αA ) =
αW 2(A ) , where α ∈ C . (iv) If A is selfadjoint, then ‖A n‖ = ‖A ‖n . Moreover, re-

calling that r(A ) = lim
n→∞

‖A n‖ 1
n , thus we have r(A ) = ω2(A ) = ω(A ) = ‖A ‖ . �

PROPOSITION 1. Let A,B,C,D ∈ B(H) . Then

(i) ω2

([
A B
0 D

])
= ω2

([
A 0
C D

])
= max{ω(A),ω(D)} .

(ii) ω2

([
0 B

eiθC 0

])
= ω2

([
0 B
C 0

])
, for all θ ∈ R .

(iii) ω2

([
0 B
C 0

])
= ω2

([
0 C
B 0

])
.

(iv) ω2

([
A B
B A

])
= max{ω(A+B),ω(A−B)} .

(v) ω2

([
A B
−B A

])
= max{ω(A+ iB),ω(A− iB)} .

(vi) ω2

([
0 B

eiθ B 0

])
= ω(B) .
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Proof. (i) If A =
[

A B
0 D

]
or A =

[
A 0
C D

]
, then W 2(A ) = W (A)∪W (D) , and

thus ω2(A ) = max{ω(A),ω(D)} .

Part (ii) follows by applying the property 1(ii) to the operator

[
0 B

eiθC 0

]
and the

unitary operator U1 =
[

I 0

0 e
iθ
2 I

]
.

Part (iii) follows by applying the property 1(ii) to the operator

[
0 B
C 0

]
and the

unitary operator U2 =
[

0 I
I 0

]
.

(iv) Since [
1√
2
I 1√

2
I

− 1√
2
I 1√

2
I

][
A B
B A

][ 1√
2
I − 1√

2
I

1√
2
I 1√

2
I

]
=
[

A+B 0
0 A−B

]
,

hence ω2

([
A B
B A

])
� ω

([
A+B 0

0 A−B

])
= max{ω(A+B),ω(A−B)} .

On the other hand,

ω2

([
A B
B A

])

= sup
‖ f‖=‖g‖=1

1
2
|[〈A f , f 〉+ 〈Ag,g〉±

√
|(〈A f , f 〉− 〈Ag,g〉)2 +4〈Bg, f 〉〈B f ,g〉|e i

2 θ f ,g ]|

� 1
2

sup
f=g,‖ f‖=1

|2〈A f , f 〉±
√

4|〈B f , f 〉〈B f , f 〉|e i
2 θ f , f |

= sup
‖ f‖=1

|〈A f , f 〉± |〈B f , f 〉|e i
2 θ f , f |

= sup
‖ f‖=1

|〈A f , f 〉± 〈B f , f 〉|

= max{ω(A+B),ω(A−B)}.

Thus we can obtain the result.
(v) By utilizing the similar proof of the (iv), we can obtain the result.
(vi) Taking A = 0 in (iv), then we can get the result. �

As we all know, if T ∈ B(H) with ω(T ) = ‖T‖ , then r(T ) = ω(T ) (see,e.g.,
[10]). So, we consider similar conclusion about the quadratic numerical radius.

PROPOSITION 2. If 2 × 2 bounded block operator matrix A satisfy ‖A ‖ =
ω2(A ) , then

r(A ) = ω(A ) = ω2(A ) = ‖A ‖.
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Proof. Since r(A ) � ω2(A ) � ω(A) � ‖A ‖ and ω2(A ) = ‖A ‖ , so

ω(A ) = ‖A ‖,
which means that,

r(A ) = ω2(A ) = ω(A ) = ‖A ‖. �

For the numerical radius, inequality ω(A ) � ‖A ‖ � 2ω(A ) holds naturally, but
for the quadratic numerical radius, it is not necessarily hold (see example 1).

PROPOSITION 3. If 2× 2 bounded block operator matrix A satisfies ω2(A ±
A ∗) � ω2(A )+ ω2(A ∗) , then ω2(A ) � ‖A ‖ � 2ω2(A ) .

Proof. The inequality ω2(A ) � ‖A ‖ is obvious and by the property 1(iv), we
have

‖A ‖ = ‖ReA + iImA ‖
� ‖ReA ‖+‖ImA ‖
= ω2(ReA )+ ω2(ImA )

=
1
2
[ω2(A +A ∗)+ ω2(A −A ∗)]

� 2ω2(A ). �

Also, the known result ω(T r) � (ω(T ))r for all r = 1,2, · · · , so we consider
similar conclusion for the quadratical numerical radius.

PROPOSITION 4. Let A =
[

0 B
C 0

]
∈ B(H ⊕H) . Then ω2(A 2r) � [ω2(A )]2r ,

for r = 1,2, · · · .

Proof. Since

A 2r =
[

0 B
C 0

]2r

=
[

(BC)r 0
0 (CB)r

]
,

by the proposition 1(i) and the the power inequality of the numerical radius, we have

[ω2(A )]2r = sup
‖ f‖=‖g‖=1

|〈Bg, f 〉|r|〈C f ,g〉|r

� max{ sup
f= Bg

‖Bg‖ ,

Bg �=0, ‖g‖=1

|〈Bg, f 〉|r |〈C f ,g〉|r, sup
g= C f

‖C f‖ ,

C f �=0,‖ f‖=1

|〈Bg, f 〉|r|〈C f ,g〉|r}

= max{[ω(CB)]r, [ω(BC)]r}
� max{ω [(CB)r],ω [(BC)r]}

= ω2

[
(BC)r 0

0 (CB)r

]
= ω2(A 2r). �
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3. Some general inequalities of the quadratic numerical radius
for off-diagonal 2×2 block operator matrices

The aim of this section is to give some general inequalities of the quadratic numer-

ical radius for the operator matrix A =
[

0 B
C 0

]
. Considering when B = 0 or C = 0,

there is ω2(A ) = 0, then its lower bound must be 0. So we assume that B �= 0 and
C �= 0.

THEOREM 1. Let A =
[

0 B
C 0

]
∈B(H⊕H) , and let h,k be nonnegative functions

on [0,∞) , which are continuous and that satisfy the relation h(s)k(s) = s for all s ∈
[0,∞) , and r � 1 . Then

[ω2(A )]r � 1
4
(‖h2r(|B|)+ k2r(|C∗|)‖+‖k2r(|B∗|)+h2r(|C|)‖)− 1

4
inf

‖ f‖=‖g‖=1
ξ ( f ,g)

and

[ω2(A )]r � 4max{[ω(BC)]r, [ω(CB)]r}
‖h2r(|B|)+ k2r(|C∗|)‖+‖k2r(|B∗|)+h2r(|C|)‖− inf

‖ f‖=‖g‖=1
ξ ( f ,g)

,

where

ξ ( f ,g) = [〈(h2r(|B|)+ k2r(|C∗|))g,g〉 1
2 −〈(k2r(|B∗|)+h2r(|C|)) f , f 〉 1

2 ]2.

Proof. Let f and g be any two unit vectors in H . Then using the elementary
inequality

(ab+ cd)2 � (a2 + c2)(b2 +d2),a,b,c,d ∈ R, (5)

we have

|〈Bg, f 〉〈C f ,g〉| r
2 = |〈Bg, f 〉| r

2 |〈C f ,g〉| r
2

� 1
2
(|〈Bg, f 〉|r + |〈C f ,g〉|r) (by the arithmetic-geomeiric inequality)

� 1
2
(‖h(|B|)g‖r‖k(|B∗|) f‖r +‖h(|C|) f‖r‖k(|C∗|)g‖r) (by lemma 1)

=
1
2
(〈h2(|B|)g,g〉 r

2 〈k2(|B∗|) f , f 〉 r
2 + 〈h2(|C|) f , f 〉 r

2 〈k2(|C∗|)g,g〉 r
2 )

� 1
2
(〈h2r(|B|)g,g〉 1

2 〈k2r(|B∗|) f , f 〉 1
2 + 〈h2r(|C|) f , f 〉 1

2 〈k2r(|C∗|)g,g〉 1
2 ) (by lemma 2)

� 1
2
(〈h2r(|B|)g,g〉+ 〈k2r(|C∗|)g,g〉) 1

2 (〈k2r(|B∗|) f , f 〉+ 〈h2r(|C|) f , f 〉) 1
2

(by the inequality (5))
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=
1
2
〈(h2r(|B|)+ k2r(|C∗|))g,g〉 1

2 〈(k2r(|B∗|)+h2r(|C|)) f , f 〉 1
2

� 1
4
[〈(h2r(|B|)+ k2r(|C∗|))g,g〉+ 〈(k2r(|B∗|)+h2r(|C|)) f , f 〉]

−1
4
[〈(h2r(|B|)+ k2r(|C∗|))g,g〉 1

2 −〈(k2r(|B∗|)+h2r(|C|)) f , f 〉 1
2 ]2

(by the inequality (4))

� 1
4
(‖h2r(|B|)+ k2r(|C∗|)‖+‖k2r(|B∗|)+h2r(|C|)‖)

−1
4
[〈(h2r(|B|)+ k2r(|C∗|))g,g〉 1

2 −〈(k2r(|B∗|)+h2r(|C|)) f , f 〉 1
2 ]2. (6)

Thus taking the supremun over f ,g ∈H with ‖ f‖= ‖g‖= 1 in inequality (6), we have

[ω2(A )]r = sup
‖ f‖=‖g‖=1

|〈Bg, f 〉〈C f ,g〉| r
2

�1
4
(‖h2r(|B|)+ k2r(|C∗|)‖+‖k2r(|B∗|)+h2r(|C|)‖)− 1

4
inf

‖ f‖=‖g‖=1
ξ ( f ,g),

where

ξ ( f ,g) = [〈(h2r(|B|)+ k2r(|C∗|))g,g〉 1
2 −〈(k2r(|B∗|)+h2r(|C|)) f , f 〉 1

2 ]2.

On the other hand, by the elementary inequality

√
ab � 2

1
a + 1

b

, a,b > 0, (7)

we have

|〈Bg, f 〉〈C f ,g〉| r
2 = |〈Bg, f 〉| r

2 |〈C f ,g〉| r
2

�2|〈Bg, f 〉|r|〈C f ,g〉|r(|〈Bg, f 〉|r + |〈C f ,g〉|r)−1 (by the inequality (7))

�4|〈Bg, f 〉|r|〈C f ,g〉|r[‖h2r(|B|)+ k2r(|C∗|)‖+‖k2r(|B∗|)+h2r(|C|)‖
−(〈(h2r(|B|)+ k2r(|C∗|))g,g〉 1

2 −〈(k2r(|B∗|)+h2r(|C|)) f , f 〉 1
2 )2]−1

(by lemma 3 and lemma 1)

�4|〈Bg, f 〉|r|〈C f ,g〉|r[‖h2r(|B|)+ k2r(|C∗|)‖+‖k2r(|B∗|)+h2r(|C|)‖
− inf

‖ f‖=‖g‖=1
ξ ( f ,g)]−1.

(8)

Taking the supremun over f ,g ∈ H with ‖ f‖ = ‖g‖ = 1 in inequality (8), we have

[ω2(A )]r = sup
‖ f‖=‖g‖=1

|〈Bg, f 〉〈C f ,g〉| r
2

�
4 sup
‖ f‖=‖g‖=1

|〈Bg, f 〉|r|〈C f ,g〉|r

‖h2r(|B|)+ k2r(|C∗|)‖+‖k2r(|B∗|)+h2r(|C|)‖− inf
‖ f‖=‖g‖=1

ξ ( f ,g)
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�

4 sup
‖ f‖=‖g‖=1,g= C f

‖C f‖

|〈Bg, f 〉|r|〈C f ,g〉|r

‖h2r(|B|)+ k2r(|C∗|)‖+‖k2r(|B∗|)+h2r(|C|)‖− inf
‖ f‖=‖g‖=1

ξ ( f ,g)

=
4[ω(BC)]r

‖h2r(|B|)+ k2r(|C∗|)‖+‖k2r(|B∗|)+h2r(|C|)‖− inf
‖ f‖=‖g‖=1

ξ ( f ,g)
.

(9)

Similarly, taking f = Bg
‖Bg‖ in (9), we have

[ω2(A )]r � 4[ω(CB)]r

‖h2r(|B|)+ k2r(|C∗|)‖+‖k2r(|B∗|)+h2r(|C|)‖− inf
‖ f‖=‖g‖=1

ξ ( f ,g)
.

This completes the proof. �

REMARK 1. If f ,g ∈ H with ‖ f‖ = ‖g‖ = 1, by using the inequality

|〈Bg, f 〉〈C f ,g〉| r
2 = |〈Bg, f 〉| r

2 |〈C∗g, f 〉| r
2

�1
2
(|〈Bg, f 〉|r + |〈C∗g, f 〉|r)

�1
2
(‖h(|B|)g‖r‖k(|B∗|) f‖r +‖h(|C∗|)g‖r‖k(|C|) f‖r)

and the same argument in the proof of the theorem 1, we get the following inequalities:

[ω2(A )]r � 1
4
(‖h2r(|B|)+h2r(|C∗|)‖+‖k2r(|B∗|)+ k2r(|C|)‖)− 1

4
inf

‖ f‖=‖g‖=1
ξ ( f ,g)

and

[ω2(A )]r � 4max{[ω(BC)]r, [ω(CB)]r}
‖h2r(|B|)+h2r(|C∗|)‖+‖k2r(|B∗|)+ k2r(|C|)‖− inf

‖ f‖=‖g‖=1
ξ ( f ,g)

,

where

ξ ( f ,g) = [〈(h2r(|B|)+h2r(|C∗|))g,g〉 1
2 −〈(k2r(|B∗|)+ k2r(|C|)) f , f 〉 1

2 ]2.

In the next theorem, we show another general inequality for the quadratic numeri-
cal radius involving 2×2 off-diagonal block operator matrix.

THEOREM 2. Let A =
[

0 B
C 0

]
∈B(H⊕H) , and let h,k be nonnegative functions

on [0,∞) , which are continuous and that satisfy the relation h(s)k(s) = s for all s ∈
[0,∞) . Then

[ω2(A )]2r � ‖ 1
p
hpr(|B|)+

1
q
kqr(|C∗|)‖‖ 1

p
hpr(|C|)+

1
q
kqr(|B∗|)‖
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and

[ω2(A )]2r � 2max{[ω(BC)]2r, [ω(CB)]2r}
‖ 1

ph2rp(|B|)+ 1
q k2rq(|C∗|)‖+‖ 1

qk
2rq(|B∗|)+ 1

ph2rp(|C|)‖ ,

for all r � 1 , p � q > 1 such that 1
p + 1

q = 1 and qr � 2 .

Proof. Let f and g be any two unit vectors in H . Then we have

|〈Bg, f 〉〈C f ,g〉|r = |〈Bg, f 〉|r|〈C f ,g〉|r
�‖h(|B|)g‖r‖k(|B∗|) f‖r‖h(|C|) f‖r‖k(|C∗|)g‖r (by lemma 1)

=〈h2(|B|)g,g〉 r
2 〈k2(|B∗|) f , f 〉 r

2 〈h2(|C|) f , f 〉 r
2 〈k2(|C∗|)g,g〉 r

2

=〈h2(|B|)g,g〉 r
2 〈k2(|C∗|)g,g〉 r

2 〈h2(|C|) f , f 〉 r
2 〈k2(|B∗|) f , f 〉 r

2

�
(1

p
〈h2(|B|)g,g〉 pr

2 +
1
q
〈k2(|C∗|)g,g〉 qr

2

)( 1
p
〈h2(|C|) f , f 〉 pr

2 +
1
q
〈k2(|B∗|) f , f 〉 qr

2

)
(by the inequality (3))

�
(1

p
〈hpr(|B|)g,g〉+ 1

q
〈kqr(|C∗|)g,g〉

)( 1
p
〈hpr(|C|) f , f 〉+ 1

q
〈kqr(|B∗|) f , f 〉

)
(by lemma 2)

=
〈( 1

p
hpr(|B|)+

1
q
kqr(|C∗|)

)
g,g
〉〈( 1

p
hpr(|C|)+

1
q
kqr(|B∗|)

)
f , f
〉

�
∥∥∥ 1

p
hpr(|B|)+

1
q
kqr(|C∗|)

∥∥∥∥∥∥ 1
p
hpr(|C|)+

1
q
kqr(|B∗|)

∥∥∥.
(10)

Taking the supremum over f ,g ∈ H with ‖ f‖ = ‖g‖= 1 in inequality (10), we get the
desired result.

On the other hand, we have

|〈Bg, f 〉〈C f ,g〉|r = |〈Bg, f 〉|r|〈C f ,g〉|r
� 2|〈Bg, f 〉|2r|〈C f ,g〉|2r(|〈Bg, f 〉|2r + |〈C f ,g〉|2r)−1 (by the inequality (7))

� 2|〈Bg, f 〉|2r|〈C f ,g〉|2r

‖h(|B|)g‖2r‖k(|B∗|) f‖2r +‖h(|C|) f‖2r‖k(|C∗|)g‖2r (by lemma 1)

=
2|〈Bg, f 〉|2r|〈C f ,g〉|2r

〈h2(|B|)g,g〉r〈k2(|B∗|) f , f 〉r + 〈h2(|C|) f , f 〉r〈k2(|C∗|)g,g〉r

� 2|〈Bg, f 〉|2r|〈C f ,g〉|2r

1
p〈h2(|B|)g,g〉rp + 1

q 〈k2(|B∗|) f , f 〉rq + 1
p〈h2(|C|) f , f 〉rp + 1

q 〈k2(|C∗|)g,g〉rq
(by the inequality (3))

� 2|〈Bg, f 〉|2r|〈C f ,g〉|2r

1
p〈h2rp(|B|)g,g〉+ 1

q 〈k2rq(|B∗|) f , f 〉+ 1
p〈h2rp(|C|) f , f 〉+ 1

q〈k2rq(|C∗|)g,g〉
(by lemma 2)
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=
2|〈Bg, f 〉|2r|〈C f ,g〉|2r

〈( 1
ph2rp(|B|)+ 1

qk2rq(|C∗|))g,g〉+ 〈( 1
qk2rq(|B∗|)+ 1

ph2rp(|C|)) f , f 〉

� 2|〈Bg, f 〉|2r|〈C f ,g〉|2r

‖ 1
ph2rp(|B|)+ 1

qk2rq(|C∗|)‖+‖ 1
qk2rq(|B∗|)+ 1

ph2rp(|C|)‖ . (11)

Taking the supremum over f ,g ∈ H with ‖ f‖ = ‖g‖ = 1 in (11) and the similar proof
in (9), we get the desired result. �

REMARK 2. If f ,g ∈ H with ‖ f‖ = ‖g‖ = 1, by using the inequality

|〈Bg, f 〉〈C f ,g〉|r = |〈Bg, f 〉|r|〈C∗g, f 〉|r
�‖h(|B|)g‖r‖k(|B∗|) f‖r‖h(|C∗|)g‖r‖k(|C|) f‖r

=〈h2(|B|)g,g〉 r
2 〈k2(|B∗|) f , f 〉 r

2 〈h2(|C∗|)g,g〉 r
2 〈k2(|C|) f , f 〉 r

2

and the same argument in the proof of the theorem 2, we get the following inequalities:

[ω2(A )]2r � ‖ 1
p
hpr(|B|)+

1
q
hqr(|C∗|)‖‖ 1

p
kpr(|B∗|)+

1
q
kqr(|C|)‖

and

[ω2(A )]2r � 2max{[ω(BC)]2r, [ω(CB)]2r}
1
p‖h2rp(|B|)+h2rp(|C∗|)‖+ 1

q‖k2rq(|B∗|)+ k2rq(|C|)‖ ,

for all r � 1, p � q > 1 such that 1
p + 1

q = 1 and qr � 2.

REMARK 3. Let h(s) = sα , k(s) = s1−α , α ∈ [0,1] and p = q = 2 in the theorem
2. Then we get the following inequalities:

[ω2(A )]2r � 1
4
‖|B|2αr + |C∗|2(1−α)r‖‖|B∗|2r(1−α) + |C|2rα‖,

and

[ω2(A )]2r � 4max{[ω(BC)]2r, [ω(CB)]2r}
‖|B|4rα + |C∗|4r(1−α)‖+‖|B∗|4r(1−α) + |C|4rα‖ .

COROLLARY 1. Let B,C ∈ B(H) . Then for all 0 � α � 1 and r � 1 , we have

[ω(BC)]r � 1
4
‖|B|2αr + |C∗|2(1−α)r‖‖|B∗|2r(1−α) + |C|2rα‖.



INEQUALITIES FOR THE BLOCK OPERATOR MATRICES 1439

Proof. By utilizing the proposition 1 and proposition 4, we have

[ω(BC)]r � max{[ω(BC)]r, [ω(CB)]r}

=
(

ω2

[
BC 0
0 CB

])r

=

(
ω2

[
0 B
C 0

]2
)r

�
(

ω2

[
0 B
C 0

])2r

� 1
4
‖|B|2αr + |C∗|2(1−α)r‖‖|B∗|2r(1−α) + |C|2rα‖. �

Following we show a different general inequality of the quadratic numerical radius
involving 2×2 off-diagonal block operator matrix.

THEOREM 3. Let A =
[

0 B
C 0

]
∈B(H⊕H) , and let h,k be nonnegative functions

on [0,∞) , which are continuous and that satisfy the relation h(s)k(s) = s for all s ∈
[0,∞) . Then

[ω2(A )]2r � 1
2
(‖ 1

p
hpr(|CB|)+

1
q
kqr(|B∗C∗|)‖+‖B‖r‖C‖r)

and

[ω2(A )]2r � 2max{[ω(BC)]2r, [ω(CB)]2r}
max{‖B‖2r,‖C‖2r}+‖ 1

ph
pr(|CB|)+ 1

q kqr(|B∗C∗|)‖ ,

for all r � 1 , p � q > 1 with 1
p + 1

q = 1 and qr � 2 .

Proof. Let f and g be any two unit vectors in H . Then we have

|〈Bg, f 〉〈C f ,g〉| = |〈Bg, f 〉〈 f ,C∗g〉|
� 1

2
(|〈CBg,g〉|+‖Bg‖‖C∗g‖) (by lemma 4)

�
(1

2
|〈CBg,g〉|r +

1
2
‖Bg‖r‖C∗g‖r

) 1
r

(by lemma 5),

hence we can obtain

|〈Bg, f 〉〈 f ,C∗g〉|r � 1
2
(|〈CBg,g〉|r +‖Bg‖r‖C∗g‖r)

� 1
2
(‖h(|CB|)g‖r‖k(|B∗C∗|)g‖r +‖B‖r‖C‖r) (by lemma 1)

=
1
2
(〈h2(|CB|)g,g〉 r

2 〈k2(|B∗C∗|)g,g〉 r
2 +‖B‖r‖C‖r)
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� 1
2
(
1
p
〈h2(|CB|)g,g〉 pr

2 +
1
q
〈k2(|B∗C∗|)g,g〉 qr

2 +‖B‖r‖C‖r) (by the inequality (3))

� 1
2
(
1
p
〈hpr(|CB|)g,g〉+ 1

q
〈kqr(|B∗C∗|)g,g〉+‖B‖r‖C‖r) (by lemma 2)

� 1
2
(‖ 1

p
hpr(|CB|)+

1
q
kqr(|B∗C∗|)‖+‖B‖r‖C‖r). (12)

Taking the supremum over f ,g ∈ H with ‖ f‖ = ‖g‖= 1 in inequality (12), we get the
desired result.

On the other hand, by the inequality (see, e.g., [7], p. 116)

|〈y,u〉|2 + |〈y,v〉|2 � ‖y‖2[max{‖u‖2,‖v‖2}+ |〈u,v〉|], for any y,u,v ∈ H, (13)

and for any ‖ f‖ = ‖g‖ = 1, we have

|〈Bg, f 〉〈C f ,g〉| = |〈 f ,Bg〉||〈 f ,C∗g〉|
� 2|〈 f ,Bg〉|2|〈 f ,C∗g〉|2(|〈 f ,Bg〉|2 + |〈 f ,C∗g〉|2)−1 (by the inequality (7))

� 2|〈 f ,Bg〉|2|〈 f ,C∗g〉|2[‖ f‖2(max{‖Bg‖2,‖C∗g‖2}+ |〈Bg,C∗g〉|)]−1

(by the inequality (13))

=
2|〈 f ,Bg〉|2|〈 f ,C∗g〉|2

max{‖Bg‖2,‖C∗g‖2}+ |〈CBg,g〉|

� 2|〈 f ,Bg〉|2|〈 f ,C∗g〉|2
max{‖B‖2,‖C‖2}+ |〈CBg,g〉|

� 2|〈 f ,Bg〉|2|〈 f ,C∗g〉|2
max{‖B‖2,‖C‖2}+‖h(|CB|)g‖‖k(|B∗C∗|)g‖ (by lemma 1)

=
|〈 f ,Bg〉|2|〈 f ,C∗g〉|2

1
2 max{‖B‖2,‖C‖2}+ 1

2〈h2(|CB|)g,g〉 1
2 〈k2(|B∗C∗|)g,g〉 1

2

� |〈 f ,Bg〉|2|〈 f ,C∗g〉|2
( 1

2 max{‖B‖2r,‖C‖2r}+ 1
2 〈h2(|CB|)g,g〉 r

2 〈k2(|B∗C∗|)g,g〉 r
2 )

1
r

(by lemma 5)

� |〈 f ,Bg〉|2|〈 f ,C∗g〉|2
( 1

2 max{‖B‖2r,‖C‖2r}+ 1
2p〈h2(|CB|)g,g〉 pr

2 + 1
2q〈k2(|B∗C∗|)g,g〉 qr

2 )
1
r

(by the inequality (3))

� |〈 f ,Bg〉|2|〈 f ,C∗g〉|2
( 1

2 max{‖B‖2r,‖C‖2r}+ 1
2p〈hpr(|CB|)g,g〉+ 1

2q 〈kqr(|B∗C∗|)g,g〉) 1
r

(by lemma 2)

=
|〈 f ,Bg〉|2|〈 f ,C∗g〉|2

( 1
2 max{‖B‖2r,‖C‖2r}+ 〈( 1

2phpr(|CB|)+ 1
2qkqr(|B∗C∗|))g,g〉) 1

r

� |〈 f ,Bg〉|2|〈 f ,C∗g〉|2
( 1

2 max{‖B‖2r,‖C‖2r}+‖ 1
2ph

pr(|CB|)+ 1
2qkqr(|B∗C∗|)‖) 1

r

,
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hence

|〈Bg, f 〉〈 f ,C∗g〉|r � 2|〈 f ,Bg〉|2r|〈 f ,C∗g〉|2r

max{‖B‖2r,‖C‖2r}+‖ 1
ph

pr(|CB|)+ 1
q kqr(|B∗C∗|)‖ . (14)

Taking the supremum over f ,g ∈ H with ‖ f‖ = ‖g‖ = 1 in inequality (14) and the
similar proof in (9), we get the desired result. �

REMARK 4. If f ,g ∈ H with ‖ f‖ = ‖g‖ = 1, by using the inequality

|〈Bg, f 〉〈C f ,g〉| = |〈B∗ f ,g〉〈g,C f 〉|
� 1

2
(|〈C∗B∗ f , f 〉|+‖B∗ f‖‖C f‖)

� (
1
2
|〈C∗B∗ f , f 〉|r +

1
2
‖B∗ f‖r‖C f‖r)

1
r ,

and the same argument in the proof of the theorem 3, we get the following inequality:

[ω2(A )]2r � 1
2

(∥∥∥ 1
p
hpr(|C∗B∗|)+

1
q
kqr(|BC|)

∥∥∥+‖B‖r‖C‖r
)
.

By using the inequality

|〈Bg, f 〉〈C f ,g〉| = |〈g,B∗ f 〉||〈g,C f 〉|

and the same argument in the proof of the theorem 3, we get the following inequality:

[ω2(A )]2r � 2max{[ω(BC)]2r, [ω(CB)]2r}
max{‖B‖2r,‖C‖2r}+‖ 1

ph
pr(|BC|)+ 1

q kqr(|C∗B∗|)‖ .

REMARK 5. Let B =C in the theorem 3 and utilizing the proposition 1. Then we
get the following inequality:

[ω(B)]2r = [ω2(A )]2r � 1
2

(∥∥∥ 1
p
hpr(|B2|)+

1
q
kqr(|(B∗)2|)

∥∥∥+‖B‖2r
)
,

for all r � 1, p � q > 1 with 1
p + 1

q = 1 and qr � 2. This inequality is given in the
proposition 2.5 in [21].

Using the similar proof of the corollary 2, we obtain the following corollary.

COROLLARY 2. Let B,C ∈ B(H) . Then for all 0 � α � 1 and r � 1 , we have

[ω(BC)]r � 1
4
‖|CB|2αr + |B∗C∗|2(1−α)r‖+

1
2
‖B‖r‖C‖r.

Finally, we will give the upper bound of the [ω2(A )]4r .
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THEOREM 4. Let A =
[

0 B
C 0

]
∈ B(H ⊕H) . Then for all r � 1 , we have

[ω2(A )]4r � 3
8
‖|B|4r + |C∗|4r‖+

1
8
‖|B|2r + |C∗|2r‖[ω(CB)]r.

Proof. Let f and g be any two unit vectors in H . Then using the inequality (see,
e.g., [9])

|〈x,e〉〈e,y〉|2 � 3
4
‖x‖2‖y‖2 +

1
4
‖x‖‖y‖|〈x,y〉|, for any x,y,e ∈ H and ‖e‖ = 1, (15)

we have

|〈Bg, f 〉〈C f ,g〉|2 = |〈Bg, f 〉〈 f ,C∗g〉|2

� 3
4
‖Bg‖2‖C∗g‖2 +

1
4
|〈CBg,g〉|‖Bg‖‖C∗g‖ (by the inequality (15))

� (
3
4
‖Bg‖2r‖C∗g‖2r +

1
4
|〈CBg,g〉|r‖Bg‖r‖C∗g‖r)

1
r , (by lemma 5)

hence

|〈Bg, f 〉〈 f ,C∗g〉|2r

�3
4
‖Bg‖2r‖C∗g‖2r +

1
4
‖Bg‖r‖C∗g‖r|〈CBg,g〉|r

=
3
4
〈B∗Bg,g〉r〈CC∗g,g〉r +

1
4
〈B∗Bg,g〉 r

2 〈CC∗g,g〉 r
2 |〈CBg,g〉|r

=
3
4
〈|B|2g,g〉r〈|C∗|2g,g〉r +

1
4
〈|B|2g,g〉 r

2 〈|C∗|2g,g〉 r
2 |〈CBg,g〉|r

�3
8
(〈|B|2g,g〉2r + 〈|C∗|2g,g〉2r)+

1
8
(〈|B|2g,g〉r + 〈|C∗|2g,g〉r)|〈CBg,g〉|r

�3
8
(〈|B|4rg,g〉+ 〈|C∗|4rg,g〉)+

1
8
(〈|B|2rg,g〉+ 〈|C∗|2rg,g〉)|〈CBg,g〉|r (by lemma 2)

�3
8
‖|B|4r + |C∗|4r‖+

1
8
‖|B|2r + |C∗|2r‖[ω(CB)]r.

(16)

Taking the supremum over f ,g ∈ H with ‖ f‖ = ‖g‖= 1 in inequality (16), we get the
desired result. �

REMARK 6. If f ,g ∈ H with ‖ f‖ = ‖g‖ = 1, then by using the inequality

|〈Bg, f 〉〈C f ,g〉|2 = |〈B∗ f ,g〉〈g,C f 〉|2

� 3
4
‖B∗ f‖2‖C f‖2 +

1
4
|〈BC f , f 〉|‖B∗ f‖‖C f‖

and the same argument in the proof of the theorem 4, we get the following inequality:

[ω2(A )]4r � 3
8
‖|B∗|4r + |C|4r‖+

1
8
‖|B∗|2r + |C|2r‖[ω(BC)]r.
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REMARK 7. Let B = C , r = 1 in the theorem 4 and utilizing the proposition 1.
Then we get the following inequality

[ω(B)]4 = [ω2(A )]4 � 3
8
‖|B|4 + |B∗|4‖+

1
8
‖|B|2 + |B∗|2‖ω(B2).

This inequality is given in the theorem 2.1 in [9].
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