MAXIMAL NUMERICAL RANGE AND QUADRATIC ELEMENTS IN A C^{*}-ALGEBRA

E. H. Benabdi, M. Barraa, M. K. Chraibi and A. Baghdad*

Dedicated to Professor A. Nokrane
(Communicated by I. M. Spitkovsky)

Abstract

In this paper, we give a description of the maximal numerical range of a hyponormal element and a characterization of a normaloid element in a C^{*}-algebra. We also give an explicit formula for the maximal numerical range of a quadratic operator acting on a complex Hilbert space. As a consequence, we determine the maximal numerical range of a rank-one operator.

1. Introduction

Let \mathscr{A} be a complex C^{*}-algebra with unit e and let \mathscr{A}^{\prime} be its dual space. Define the state space of \mathscr{A} by

$$
\mathscr{S}(\mathscr{A})=\left\{f \in \mathscr{A}^{\prime}: f(e)=\|f\|=1\right\} .
$$

For $a \in \mathscr{A}$, the algebraic numerical range of a is given by

$$
V(a)=\{f(a): f \in \mathscr{S}(\mathscr{A})\} .
$$

It is well-known that $V(a)(a \in \mathscr{A})$ is a convex compact set and contains the convex hull of the spectrum $\sigma(a)$ of a; that is $\operatorname{co}(\sigma(a)) \subseteq V(a)$, here $c o$ stands for the convex hull. This result follows at once from the corresponding properties of the set $\mathscr{S}(\mathscr{A})$. See, for more details, [16]. Let $w(a)$ denote the numerical radius of $a \in \mathscr{A}$; i.e., $w(a)=\sup \{|\lambda|: \lambda \in V(a)\}$. It is well-known that $w(\cdot)$ defines a norm on \mathscr{A}, which is equivalent to the C^{*}-norm $\|\cdot\|$. In fact, the following inequalities are well-known:

$$
\frac{1}{2}\|a\| \leqslant w(a) \leqslant\|a\|
$$

for all $a \in \mathscr{A}$. An element $a \in \mathscr{A}$ is said to be normaloid if $w(a)=\|a\|$. Recall that an element $a \in \mathscr{A}$ is said to be positive and we write $a \geqslant 0$ if it is self-adjoint and if its spectrum contains only non-negative real numbers. Recall also that an element $a \in \mathscr{A}$

[^0]is called normal (resp. hyponormal) if $a^{*} a=a a^{*}$ (resp. $a^{*} a-a a^{*} \geqslant 0$ or equivalently, $a^{*} a-a a^{*}=b^{*} b$ for some $b \in \mathscr{A}$). Here a^{*} is the adjoint of a. It is well-known that hyponormal, thus also normal, elements in \mathscr{A} are normaloid.

Let \mathscr{H} be a Hilbert space over the complex field \mathbb{C} with inner product $\langle x, y\rangle$ and norm $\|x\|=\langle x, x\rangle^{1 / 2}$. Denote by $\mathscr{B}(\mathscr{H})$ the C^{*}-algebra of all bounded linear operators acting on \mathscr{H}. For $A \in \mathscr{B}(\mathscr{H})$, the numerical range of A is defined as the set

$$
W(A)=\{\langle A x, x\rangle: x \in \mathscr{H},\|x\|=1\} .
$$

It is a celebrated result due to Toeplitz-Hausdorff that $W(A)$ is a convex set in the complex plane and it is well-known that $\overline{W(A)}=V(A)$, where \bar{L} is the closure of a subset L of \mathbb{C}. The numerical range of an operator in $\mathscr{B}(\mathscr{H})$ is closed if $\operatorname{dim}(\mathscr{H})<$ ∞, but it is not always closed when $\operatorname{dim}(\mathscr{H})=\infty$. For more details about the theory of numerical ranges, the reader is referred to $[4,5,8,9]$ and references therein.

The notion of the numerical range has been generalized in different directions. One such direction is the maximal numerical range. It is a relatively new concept in operator theory, having been introduced only in 1970 by Stampfli [17] and defined as follows.

Definition 1.1. For $A \in \mathscr{B}(\mathscr{H})$, the maximal numerical range $W_{0}(A)$ of A is given by

$$
W_{0}(A)=\left\{\lim _{n}\left\langle A x_{n}, x_{n}\right\rangle: x_{n} \in \mathscr{H},\left\|x_{n}\right\|=1, \lim _{n}\left\|A x_{n}\right\|=\|A\|\right\} .
$$

It was shown in [17] that $W_{0}(A)$ is nonempty, closed, convex and contained in the closure of the numerical range; $W_{0}(A) \subseteq \overline{W(A)}$. In the case of finite-dimensional spaces, the maximal numerical range is produced by maximal vectors for A (vectors $x \in$ \mathscr{H} such that $\|x\|=1$ and $\|A x\|=\|A\|$). Note that the notion of the maximal numerical range was introduced by Stampfli [17] (especially) for the purpose of calculating the norm of the inner derivation on $\mathscr{B}(\mathscr{H})$. Recall that the inner derivation δ_{A} associated with $A \in \mathscr{B}(\mathscr{H})$ is defined by

$$
\delta_{A}: \mathscr{B}(\mathscr{H}) \longrightarrow \mathscr{B}(\mathscr{H}), X \longmapsto A X-X A .
$$

Indeed, the author of [17] established the following. For any $A \in \mathscr{B}(\mathscr{H})$

$$
\left\|\delta_{A}\right\|=2\left\|A-c_{A}\right\|
$$

where c_{A} is the unique scalar c_{A} satisfying

$$
\left\|A-c_{A}\right\|=\inf _{\lambda \in \mathbb{C}}\|A-\lambda\|
$$

The scalar c_{A} is called the center of mass of A. In the same paper [17], Stampfli proved that we always have $c_{A} \in \overline{W(A)}$. Furthermore, if A is a hyponormal operator, the center of mass c_{A} is exactly the center of the smallest disk containing the spectrum $\sigma(A)$.

Recently, considerable interests have been given to the maximal numerical range, see, for instance, $[3,6,10,12,15]$. For example, in [3], the authors gave the following description of the maximal numerical range $W_{0}(A)$ whenever A is hyponormal.

Theorem 1.2. ([3]) Let $A \in \mathscr{B}(\mathscr{H})$ be hyponormal. Then

$$
W_{0}(A)=\operatorname{co}\left(\sigma_{n}(A)\right)
$$

where $\sigma_{n}(A):=\{\lambda \in \sigma(A):|\lambda|=\|A\|\}$.
In [6] the authors gave the following characterization of normaloid operator.
Theorem 1.3. ([6]) Let $A \in \mathscr{B}(\mathscr{H})$. Then A is normaloid if and only if $w(A)=$ $w_{0}(A)$, where $w_{0}(a):=\sup \left\{|\lambda|: \lambda \in W_{0}(A)\right\}$, the maximal numerical radius of A.

In [7], the author introduced the concept of the algebraic maximal numerical range of an element $a \in \mathscr{A}$ as follows.

DEFINITION 1.4. Let $a \in \mathscr{A}$. The algebraic maximal numerical range of a is the set

$$
V_{0}(a)=\left\{f(a): f \in \mathscr{S}_{\max }(a)\right\}
$$

where $\mathscr{S}_{\max }(a)$ is the set of all maximal states for a defined by

$$
\mathscr{S}_{\max }(a):=\left\{f \in \mathscr{S}(\mathscr{A}): f\left(a^{*} a\right)=\|a\|^{2}\right\} .
$$

In the same paper [7], the author established the following.
THEOREM 1.5. ([7]) Let $a \in \mathscr{A}$. Then $V_{0}(a)$ is a non-empty convex compact subset of $V(a)$. Moreover, if $\mathscr{A}=\mathscr{B}(\mathscr{H})$ then $V_{0}(a)=W_{0}(a)$.

Recall that a bounded linear operator $A \in \mathscr{B}(\mathscr{H})$ is called quadratic if it satisfies some non-trivial quadratic equation $(A-\alpha I)(A-\beta I)=0$, where I is the operator identity on \mathscr{H} and $\alpha, \beta \in \mathbb{C}$. We have the following.

THEOREM 1.6. ([1, 14, 18]) Let $A \in \mathscr{B}(\mathscr{H})$ be a quadratic operator satisfying $(A-\alpha I)(A-\beta I)=0$ for some scalars α and β. Then
(a) A is unitarily equivalent to an operator of the form

$$
\alpha I_{1} \oplus \beta I_{2} \oplus\left[\begin{array}{cc}
\alpha I_{3} & T \\
0 & \beta I_{3}
\end{array}\right] \text { on } \mathscr{H}_{1} \oplus \mathscr{H}_{2} \oplus\left(\mathscr{H}_{3} \oplus \mathscr{H}_{3}\right)
$$

where $\mathscr{H}_{1}, \mathscr{H}_{2}$ and \mathscr{H}_{3} are complex Hilbert spaces with T being positive semidefinite on \mathscr{H}_{3}.
(b)

$$
\|A\|=\left\|\left[\begin{array}{cc}
\alpha I_{3} & T \\
0 & \beta I_{3}
\end{array}\right]\right\|=\left\|\left[\begin{array}{cc}
\alpha & \|T\| \\
0 & \beta
\end{array}\right]\right\|=\frac{1}{\sqrt{2}} \sqrt{u+\sqrt{u^{2}-v}}
$$

where $u=|\alpha|^{2}+|\beta|^{2}+\|T\|^{2}$ and $v=4|\alpha|^{2}|\beta|^{2}$.

Proposition 1.7. ([1]) Let $A \in \mathscr{B}(\mathscr{H})$ be a quadratic operator satisfying $(A-$ $\alpha I)(A-\beta I)=0$ for some scalars α and β. Then, the center of mass of A is

$$
c_{A}=\frac{\alpha+\beta}{2}
$$

THEOREM 1.8. ([10]) Let $A=\left[\begin{array}{ll}\alpha & \gamma \\ 0 & \beta\end{array}\right]$, where $\alpha, \beta, \gamma \in \mathbb{C}$. Then

$$
\left\{\begin{array}{l}
W_{0}(A)=\left\{\frac{\|A\|^{2}(\alpha+\beta)-\alpha \beta(\bar{\alpha}+\bar{\beta})}{2\|A\|^{2}-|\alpha|^{2}-|\beta|^{2}-|\gamma|^{2}}\right\}, \text { if } \gamma \neq 0 \text { or }|\alpha| \neq|\beta| \\
W_{0}(A)=[\alpha, \beta], \text { otherwise } .
\end{array}\right.
$$

In Section 2, we establish some results regarding hyponormal elements and normaloid elements in a complex C^{*}-algebra that generalize Theorem 1.2 and Theorem 1.3. We point out a gap in the proof of [7, Proposition 5.2] and give a correct proof of it. In Section 3, we provide an explicit formula for the maximal numerical range of a quadratic operator using the fact that a quadratic operator is unitarily equivalent to a direct sum of operators relatively well-known. As a corollary, we determine the maximal numerical range and the center of mass of a rank-one operator.

2. The algebraic maximal numerical range of a hyponormal element in a C^{*}-algebra

We give a description of the algebraic maximal numerical range $V_{0}(a)$ when $a \in \mathscr{A}$ is hyponormal which will be a generalization of Theorem 1.2. We also give a generalization of Theorem 1.3. For this purpose, we need the following results. The first one is known as the Gelfand-Naimark theorem.

THEOREM 2.1. ([2]) Let \mathscr{A} be a C^{*}-algebra with unit e. Then, there exist a complex Hilbert space \mathscr{H} and an isometric $*$-morphism T from \mathscr{A} onto a closed self-adjoint subalgebra \mathfrak{B} of $\mathscr{B}(\mathscr{H})$.

In the sequel, we shall denote $T(a)$ by T_{a} for all $a \in \mathscr{A}$. Therefore, we have $\left\|T_{a}\right\|=\|a\|, T_{a b}=T_{a} T_{b}, T_{e}=I$ (where I is the operator identity on \mathscr{H}) and $T_{a^{*}}=$ $\left(T_{a}\right)^{*}$ for all $a, b \in \mathscr{A}$. Moreover, $a \in \mathscr{A}$ is invertible if and only if T_{a} is invertible. In that case, $\left(T_{a}\right)^{-1}=T_{a^{-1}}$. In particular, $\sigma(a)=\sigma\left(T_{a}\right)$. As a consequence of these properties, we have the following. Let $a \in \mathscr{A}$, then there is a unique scalar c_{a} (also called the center of mass of a) such that

$$
\left\|a-c_{a}\right\|=\inf _{\lambda \in \mathbb{C}}\|a-\lambda\|
$$

Moreover, $c_{a}=c_{T_{a}}$.
Lemma 2.2. Let $a \in \mathscr{A}$. Then the following hold

1. $V(a)=V\left(T_{a}\right)$;
2. $V_{0}(a)=V_{0}\left(T_{a}\right)$.

Proof. We give a proof of the second assertion, the proof of the first one is similar. Let $\lambda \in V_{0}(a)$. Then, there is $f \in \mathscr{S}_{\max }(a)$ such that $f(a)=\lambda$. Define g on \mathfrak{B} by $g\left(T_{x}\right):=f(x)$ for all $x \in \mathscr{A}$. It is clear that $g \in \mathscr{S}(\mathfrak{B})$. By the Hahn-Banach theorem, we may extend g to $\tilde{g} \in \mathscr{S}(\mathscr{B}(\mathscr{H}))$. Moreover,

$$
\tilde{g}\left(T_{a}^{*} T_{a}\right)=g\left(T_{a}^{*} T_{a}\right)=g\left(T_{a^{*} a}\right)=f\left(a^{*} a\right)=\|a\|^{2}=\left\|T_{a}\right\|^{2}
$$

Thus, $\tilde{g} \in \mathscr{S}_{\max }\left(T_{a}\right)$ and since $\tilde{g}\left(T_{a}\right)=g\left(T_{a}\right)=f(a)=\lambda$, then $\lambda \in V_{0}\left(T_{a}\right)$. Consequently, $V_{0}(a) \subseteq V_{0}\left(T_{a}\right)$. A similar argument gives the other inclusion. We then obtain the desired result.

Proposition 2.3. Let $a \in \mathscr{A}$ be hyponormal. Then

$$
V_{0}(a)=c o\left(\sigma_{n}(a)\right)
$$

where $\sigma_{n}(a):=\{\lambda \in \sigma(a):|\lambda|=\|a\|\}$.

Proof. Let $a \in \mathscr{A}$ be hyponormal. It is easy to show that the operator T_{a} is hyponormal and $\sigma_{n}\left(T_{a}\right)=\sigma_{n}(a)$. Using Lemma 2.2 and Theorem 1.2, we get

$$
V_{0}(a)=V_{0}\left(T_{a}\right)=\operatorname{co}\left(\sigma_{n}\left(T_{a}\right)\right)=\operatorname{co}\left(\sigma_{n}(a)\right)
$$

as required.

REMARK 2.4. Let $a \in \mathscr{A}$ and define the maximal numerical radius of a as follows

$$
w_{0}(a):=\sup \left\{|\lambda|: \lambda \in V_{0}(a)\right\} .
$$

From Lemma 2.2, we derive that $w(a)=w\left(T_{a}\right)$ and $w_{0}(a)=w_{0}\left(T_{a}\right)$. So, since $\|a\|=$ $\left\|T_{a}\right\|$, it follows that a is normaloid if and only if T_{a} is normaloid. According to Theorem 1.3, we have the following.

Proposition 2.5. Let $a \in \mathscr{A}$. Then a is normaloid if and only if $w(a)=w_{0}(a)$.
In the proof of [7, Proposition 5.2], Fong used the following statement. If $a \in$ \mathscr{A}, then $\mathscr{S}_{\max }(a)=\mathscr{S}_{\max }\left(a^{*}\right)$. But, this statement is not true in general. Indeed, let $\mathscr{H}=\ell_{2}$ be the complex Hilbert space of square summable sequences and let S be the right shift operator on \mathscr{H} defined by $S\left(x_{1}, x_{2}, \ldots\right)=\left(0, x_{1}, x_{2}, \ldots\right)$. We show that $\mathscr{S}_{\max }(S) \neq \mathscr{S}_{\max }\left(S^{*}\right)$. It is known that $\|S\|=1$ and $S^{*} S=I$. Then, for any $f \in$ $\mathscr{S}(\mathscr{B}(\mathscr{H}))$ we have $f\left(S^{*} S\right)=f(I)=1=\|S\|^{2}$. It results that $\mathscr{S}_{\max }(S)=\mathscr{S}(\mathscr{B}(\mathscr{H}))$. But, $\left\langle S S^{*}(1,0,0, \ldots),(1,0,0, \ldots)\right\rangle=0$, so $0 \in V\left(S S^{*}\right)$ and hence $0=g\left(S S^{*}\right)$ for some $g \in \mathscr{S}(\mathscr{B}(\mathscr{H}))$. Since $\left\|S^{*}\right\|=1, g \notin \mathscr{S}_{\max }\left(S^{*}\right)$.

Proposition 2.6. [7, Proposition 5.2] Let $a \in \mathscr{A}$. Then

$$
V_{0}\left(a^{*}\right)=V_{0}(a)^{*}
$$

where for a subset Λ of $\mathbb{C}, \Lambda^{*}:=\{\bar{\lambda}: \lambda \in \Lambda\}$.
We now give a correct proof of this proposition.
Proof. Let $a \in \mathscr{A}$. According to [11, Proposition 2], $V_{0}\left(T_{a}^{*}\right)=V_{0}\left(T_{a}\right)^{*}$ and by Lemma 2.2, $V_{0}\left(a^{*}\right)=V_{0}\left(T_{a}^{*}\right)=V_{0}\left(T_{a}\right)^{*}=V_{0}(a)^{*}$.

3. Maximal numerical range of a quadratic operator

In this section, we calculate the maximal numerical range of a quadratic operator on a complex Hilbert space. Let $A \in \mathscr{B}(\mathscr{H})$ be a quadratic operator satisfying the following quadratic equation $(A-\alpha I)(A-\beta I)=0$, where $\alpha, \beta \in \mathbb{C}$. From Theorem 1.6, there exist complex Hilbert spaces $\mathscr{H}_{1}, \mathscr{H}_{2}$ and \mathscr{H}_{3} such that A is unitarily equivalent to an operator of the form

$$
\alpha I_{1} \oplus \beta I_{2} \oplus\left[\begin{array}{cc}
\alpha I_{3} & T \\
0 & \beta I_{3}
\end{array}\right] \text { on } \mathscr{H}_{1} \oplus \mathscr{H}_{2} \oplus\left(\mathscr{H}_{3} \oplus \mathscr{H}_{3}\right)
$$

with T being positive semi-definite on \mathscr{H}_{3}. According to [11, Lemma 2], $W_{0}(A)=$ $W_{0}\left(\left[\begin{array}{cc}\alpha I_{3} & T \\ 0 & \beta I_{3}\end{array}\right]\right)$. Therefore, we can assume that $A=\left[\begin{array}{cc}\alpha I & T \\ 0 & \beta I\end{array}\right] \in \mathscr{B}(\mathscr{H} \oplus \mathscr{H})$, with T is positive. The following theorem is a generalization of Theorem 1.8.

THEOREM 3.1. Let $A=\left[\begin{array}{cc}\alpha I & T \\ 0 & \beta I\end{array}\right] \in \mathscr{B}(\mathscr{H} \oplus \mathscr{H})$. Then

$$
\left\{\begin{array}{l}
W_{0}(A)=\left\{\frac{\|A\|^{2}(\alpha+\beta)-\alpha \beta(\bar{\alpha}+\bar{\beta})}{2\|A\|^{2}-|\alpha|^{2}-|\beta|^{2}-\|T\|^{2}}\right\}, \text { if } T \neq 0 \text { or }|\alpha| \neq|\beta| \\
W_{0}(A)=[\alpha, \beta], \text { otherwise }
\end{array}\right.
$$

Proof. We show that $W_{0}(A)=W_{0}\left(\left[\begin{array}{cc}\alpha & \|T\| \\ 0 & \beta\end{array}\right]\right)$ and we then conclude by Theorem 1.8. If $T=0$, the result is clear since A is normal and so we apply Theorem 1.2. If $T \neq 0$ and $\alpha=0$ then by Theorem 1.8, $W_{0}\left(\left[\begin{array}{cc}\alpha & \|T\| \\ 0 & \beta\end{array}\right]\right)=\{\beta\}$. We also have $W_{0}(A)=\{\beta\}$. Indeed, let $\lambda \in W_{0}(A)$, then there is $x_{n}=y_{n} \oplus z_{n} \in \mathscr{H} \oplus \mathscr{H}$ with $\left\|y_{n}\right\|^{2}+\left\|z_{n}\right\|^{2}=1$ such that $\lim _{n}\left\langle A x_{n}, x_{n}\right\rangle=\lambda$ and $\lim _{n}\left\|A x_{n}\right\|^{2}=\|A\|^{2}=\|T\|^{2}+|\beta|^{2}$. Since $\left\|A x_{n}\right\|^{2}=\left\|T z_{n}\right\|^{2}+|\beta|^{2}\left\|z_{n}\right\|^{2}$, then $\lim _{n}\left\|z_{n}\right\|=1$ and $\lim _{n}\left\|y_{n}\right\|=0$. We derive
that $\lim _{n}\left\langle A x_{n}, x_{n}\right\rangle=\lim _{n}\left(\left\langle T z_{n}, y_{n}\right\rangle+\beta\left|z_{n}\right|^{2}\right)=\beta$. Therefore, we may assume that $T \neq 0$ and $\alpha \neq 0$.

We show that $W_{0}(A) \subseteq W_{0}\left(\left[\begin{array}{cc}\alpha & \|T\| \\ 0 & \beta\end{array}\right]\right)$. Let $\lambda \in W_{0}(A)$, then there exists a unit vector sequence $\left\{x_{n}\right\}$ in $\mathscr{H} \oplus \mathscr{H}$ such that $\lim _{n}\left\|A x_{n}\right\|=\|A\|$ and $\lim _{n}\left\langle A x_{n}, x_{n}\right\rangle=$ λ. We decompose x_{n} as $\alpha_{n} y_{n} \oplus \beta_{n} z_{n}$ where $\left|\alpha_{n}\right|^{2}+\left|\beta_{n}\right|^{2}=1$ and $\left\|y_{n}\right\|=\left\|z_{n}\right\|=1$. Note that we can assume that $\alpha \alpha_{n} \beta_{n} \geqslant 0$. Therefore, we have

$$
\begin{aligned}
\left\|A x_{n}\right\|^{2} & =|\alpha|^{2}\left|\alpha_{n}\right|^{2}+2 \alpha \alpha_{n} \overline{\beta_{n}} \operatorname{Re}\left(\left\langle T z_{n}, y_{n}\right\rangle\right)+\left|\beta_{n}\right|^{2}\left\|T z_{n}\right\|^{2}+|\beta|^{2}\left|\beta_{n}\right|^{2} \\
& \leqslant|\alpha|^{2}\left|\alpha_{n}\right|^{2}+2 \alpha \alpha_{n} \overline{\beta_{n}}\|T\|+\left|\beta_{n}\right|^{2}\|T\|^{2}+|\beta|^{2}\left|\beta_{n}\right|^{2} \\
& =\left\|\left[\begin{array}{cc}
\alpha & \|T\| \\
0 & \beta
\end{array}\right]\left[\begin{array}{c}
\alpha_{n} \\
\beta_{n}
\end{array}\right]\right\|^{2} \\
& \leqslant\left\|\left[\begin{array}{cc}
\alpha & \|T\| \\
0 & \beta
\end{array}\right]\right\|^{2} \\
& =\|A\|^{2} \quad(\text { by Theorem 1.6.(b) }) .
\end{aligned}
$$

Since $\lim _{n}\left\|A x_{n}\right\|=\|A\|$, we derive that

$$
\lim _{n}\left\|\left[\begin{array}{cc}
\alpha & \|T\| \\
0 & \beta
\end{array}\right]\left[\begin{array}{l}
\alpha_{n} \\
\beta_{n}
\end{array}\right]\right\|=\left\|\left[\begin{array}{cc}
\alpha & \|T\| \\
0 & \beta
\end{array}\right]\right\|
$$

A simple computation shows that

$$
\left\langle A x_{n}, x_{n}\right\rangle=\alpha\left|\alpha_{n}\right|^{2}+\beta_{n} \overline{\alpha_{n}}\left\langle T z_{n}, y_{n}\right\rangle+\beta\left|\beta_{n}\right|^{2}
$$

and

$$
\left\langle\left[\begin{array}{cc}
\alpha & \|T\| \\
0 & \beta
\end{array}\right]\left[\begin{array}{l}
\alpha_{n} \\
\beta_{n}
\end{array}\right],\left[\begin{array}{l}
\alpha_{n} \\
\beta_{n}
\end{array}\right]\right\rangle=\alpha\left|\alpha_{n}\right|^{2}+\beta_{n} \overline{\alpha_{n}}\|T\|+\beta\left|\beta_{n}\right|^{2} .
$$

Note that the sequence $\left\{\beta_{n} \overline{\alpha_{n}}\right\}$ is bounded, so that we may assume, by passing to a subsequence if necessary, it is convergent. If $\lim _{n} \beta_{n} \overline{\alpha_{n}}=0$, then $\lim _{n}\left\langle A x_{n}, x_{n}\right\rangle=$ $\lim _{n}\left\langle\left[\begin{array}{cc}\alpha & \|T\| \\ 0 & \beta\end{array}\right]\left[\begin{array}{l}\alpha_{n} \\ \beta_{n}\end{array}\right],\left[\begin{array}{l}\alpha_{n} \\ \beta_{n}\end{array}\right]\right\rangle$, so $\lambda \in W_{0}\left(\left[\begin{array}{cc}\alpha & \|T\| \\ 0 & \beta\end{array}\right]\right)$. If $\lim _{n} \beta_{n} \overline{\alpha_{n}} \neq 0$, since $\lim _{n} \alpha_{n} \overline{\beta_{n}}\left(\operatorname{Re}\left(\left\langle T z_{n}, y_{n}\right\rangle\right)-\|T\|\right)=0$, then $\lim _{n} \operatorname{Re}\left(\left\langle T z_{n}, y_{n}\right\rangle\right)=\|T\|$. This implies $\lim _{n}\left\langle T z_{n}, y_{n}\right\rangle=\|T\|$ and, as above, we again have $\lambda \in W_{0}\left(\left[\begin{array}{cc}\alpha & \|T\| \\ 0 & \beta\end{array}\right]\right)$. Consequently, $W_{0}(A) \subseteq W_{0}\left(\left[\begin{array}{cc}\alpha & \|T\| \\ 0 & \beta\end{array}\right]\right)$.

We now show that $W_{0}\left(\left[\begin{array}{cc}\alpha & \|T\| \\ 0 & \beta\end{array}\right]\right) \subseteq W_{0}(A)$. Let $\lambda \in W_{0}\left(\left[\begin{array}{cc}\alpha & \|T\| \\ 0 & \beta\end{array}\right]\right)$, then there exist $a, b \in \mathbb{C}$ such that $|a|^{2}+|b|^{2}=1$,

$$
\left\|\left[\begin{array}{cc}
\alpha & \|T\| \\
0 & \beta
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]\right\|=\left\|\left[\begin{array}{cc}
\alpha & \|T\| \\
0 & \beta
\end{array}\right]\right\|
$$

and

$$
\left\langle\left[\begin{array}{cc}
\alpha & \|T\| \\
0 & \beta
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right],\left[\begin{array}{l}
a \\
b
\end{array}\right]\right\rangle=\lambda .
$$

Let z_{n} be unit vectors in \mathscr{H} such that $\lim _{n}\left\|T z_{n}\right\|=\|T\|$. Set $y_{n}:=T z_{n} /\left\|T z_{n}\right\|$ and $x_{n}:=a y_{n} \oplus b z_{n}$. We have

$$
\left\|A x_{n}\right\|^{2}=|\alpha|^{2}|a|^{2}+2 \operatorname{Re}(\alpha a \bar{b})\left\|T z_{n}\right\|+|b|^{2}\left\|T z_{n}\right\|^{2}+|\beta|^{2}|b|^{2}
$$

and

$$
\left\|\left[\begin{array}{cc}
\alpha & \|T\| \\
0 & \beta
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]\right\|^{2}=|\alpha|^{2}|a|^{2}+2 \operatorname{Re}(\alpha a \bar{b})\|T\|+|b|^{2}\|T\|^{2}+|\beta|^{2}|b|^{2} .
$$

Hence

$$
\lim _{n}\left\|A x_{n}\right\|=\left\|\left[\begin{array}{cc}
\alpha & \|T\| \\
0 & \beta
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]\right\|=\left\|\left[\begin{array}{cc}
\alpha & \|T\| \\
0 & \beta
\end{array}\right]\right\|=\|A\| .
$$

On the other hand,

$$
\left\langle A x_{n}, x_{n}\right\rangle=\alpha|a|^{2}+b \bar{a}\left\|T z_{n}\right\|+\beta|b|^{2}
$$

and

$$
\left\langle\left[\begin{array}{cc}
\alpha & \|T\| \\
0 & \beta
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right],\left[\begin{array}{l}
a \\
b
\end{array}\right]\right\rangle=\alpha|a|^{2}+b \bar{a}\|T\|+\beta|b|^{2} .
$$

We derive that

$$
\lim _{n}\left\langle A x_{n}, x_{n}\right\rangle=\left\langle\left[\begin{array}{cc}
\alpha & \|T\| \\
0 & \beta
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right],\left[\begin{array}{l}
a \\
b
\end{array}\right]\right\rangle=\lambda .
$$

It follows that $\lambda \in W_{0}(A)$. Thus, $W_{0}\left(\left[\begin{array}{cc}\alpha & \|T\| \\ 0 & \beta\end{array}\right]\right) \subseteq W_{0}(A)$. In summary, $W_{0}(A)=$ $W_{0}\left(\left[\begin{array}{cc}\alpha & \|T\| \\ 0 & \beta\end{array}\right]\right)$. This completes the proof.

REMARK 3.2. An element $a \in \mathscr{A}$ is called quadratic if there exist two scalars α, β such that $(a-\alpha e)(a-\beta e)=0$. It is clear that $a \in \mathscr{A}$ is quadratic if and only if T_{a} is quadratic. Then, from Lemma 2.2, Proposition 1.7 and Theorem 3.1, we have the following.

Corollary 3.3. Let $a \in \mathscr{A}$ be a quadratic operator satisfying $(a-\alpha e)(a-$ $\beta e)=0$ for some scalars α and β. The algebraic maximal numerical range of a is either a point or the line segment $[\alpha, \beta]$ connecting α and β. Moreover, the center of mass of a is $c_{a}=\frac{\alpha+\beta}{2}$.

As a consequence, we give a result concerning rank-one operators. Every rankone operator is quadratic. Indeed, there exist $f \in \mathscr{H}^{\prime}$ and $u \in \mathscr{R}(T)$ (the range of T) such that $T(x)=f(x) u$ for all $x \in \mathscr{H}$. Then $T^{2}(x)-f(u) T(x)=0$ for all $x \in \mathscr{H}$. That is $T^{2}-f(u) T=0$. Hence, T is quadratic $(\alpha=0$ and $\beta=f(u))$. Moreover, by the Riesz representation theorem, there exists $v \in \mathscr{H}$ such that $f(\cdot)=\langle\cdot, v\rangle$. Then $T=u \otimes v$. According to Theorem 3.1 and Proposition 1.7, we have the following result concerning the maximal numerical range and the center of mass of a rank-one operator on a complex Hilbert space.

Proposition 3.4. Let $T \in \mathscr{B}(\mathscr{H})$ be a rank-one operator. Then $W_{0}(T)=$ $\{\langle u, v\rangle\}$ and $c_{T}=\frac{\langle u, v\rangle}{2}$, where $u, v \in \mathscr{H}$ are such that $T=u \otimes v$.

Note that we can obtain the previous result by observing that T is unitarily equivalent to $\left[\begin{array}{cc}\langle u, v\rangle & \|v\|^{2} \\ 0 & 0\end{array}\right] \oplus 0$ and using [11, Lemma 2] and Theorem 1.8.

REMARK 3.5. Note that for stating Theorem 3.1 we used [11, Lemma 2] which asserts the following result. Let $A_{1} \in \mathscr{B}\left(\mathscr{H}_{1}\right)$ and $A_{2} \in \mathscr{B}\left(\mathscr{H}_{2}\right)$ where \mathscr{H}_{1} and \mathscr{H}_{2} are complex Hilbert spaces. For A unitarily equivalent to $A_{1} \oplus A_{2}$,

$$
W_{0}(A)=c o\left(\bigcup_{\left\|A_{j}\right\|=\|A\|} W_{0}\left(A_{j}\right)\right)
$$

This result can be generalized by induction to the finite direct sum case. But, it is not true in the infinite direct sum case in general. Indeed, let $\left\{B_{k}\right\}$ for $k=1,2, \ldots$, be the operators on the complex Hilbert space $\mathscr{H}=\mathbb{C}^{2}$ represented by

$$
B_{k}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1+\frac{1}{k}
\end{array}\right], \quad k=1,2, \ldots
$$

It is known that $\overline{\bigcup_{k} \sigma\left(B_{k}\right)} \subseteq \sigma\left(\oplus_{k} B_{k}\right)$. That is, $\overline{\bigcup_{k}\left\{-1+\frac{1}{k}, 1\right\}} \subseteq \sigma\left(\oplus_{k} B_{k}\right)$. It results that $\{-1,1\} \subset \sigma\left(\oplus_{k} B_{k}\right)$ and since $\left\|\oplus_{k} B_{k}\right\|=1$, then $\{-1,1\} \subseteq \sigma_{n}\left(\oplus_{k} B_{k}\right)$. From [15, Lemma 1], $\sigma_{n}\left(\oplus_{k} B_{k}\right) \subseteq W_{0}\left(\oplus_{k} B_{k}\right)$. We derive that $\{-1,1\} \subseteq W_{0}\left(\oplus_{k} B_{k}\right)$. But, $W_{0}\left(B_{k}\right)=\{1\}$, for $k=1,2, \ldots$, then $\bigcup_{k} W_{0}\left(B_{k}\right)=\{1\}$. Consequently, co $\left(\bigcup_{k} W_{0}\left(B_{k}\right)\right) \nsubseteq$ $W_{0}\left(\oplus_{k} B_{k}\right)$. However, we have the following.

Proposition 3.6. Let $\left\{\mathscr{H}_{n}\right\}$ be a collection of complex Hilbert spaces, let $\left\{T_{n}\right\}$ be a collection of hyponormal operators with $T_{n} \in \mathscr{B}\left(\mathscr{H}_{n}\right)$. Assume that sup $\left\|T_{n}\right\|<\infty$ and consider the direct sum $T=\oplus_{n} T_{n} \in \mathscr{B}\left(\oplus_{n} \mathscr{H}_{n}\right)$. Then

$$
W_{0}(T)=c o\left(\overline{\bigcup_{k} \sigma\left(T_{k}\right)} \cap C_{T}\right),
$$

where $C_{T}:=\{\lambda:|\lambda|=\|T\|\}$.

Proof. Since $\left\{T_{n}\right\}$ is a collection of hyponormal operators, then T is hyponormal. By virtue of Theorem 1.2, $W_{0}(T)=c o\left(\sigma_{n}(T)\right)$. According to [13, Proposition 2.F], we have $\sigma(T)=\overline{\bigcup_{k} \sigma\left(T_{k}\right)}$ and the result follows.

Acknowledgement. The authors would like to express their sincere gratitude to the referees for their carefully review of this paper, valuable comments and suggestions.

REFERENCES

[1] A. Abu-Omar and P. Y. Wu, Scalar approximants of quadratic operators with applications, Oper. Matrices, 12 (1) (2018), 253-262.
[2] B. Aupetit, A primer on spectral theory, New York (NY): Springer Verlag (1991).
[3] A. BAGHDAD AND M. C. KAADOUD, On the maximal numerical range of a hyponormal operator, Oper. Matrices, 13 (4) (2019), 1163-1171.
[4] F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, London-New York: Cambridge University Press, (1971), (London mathematical society lecture note series; 2).
[5] F. F. Bonsall and J. Duncan, Numerical ranges II, New York-London: Cambridge University Press; (1973), (London mathematical society lecture notes series; 10).
[6] J. T. Chan And K. Chan, An observation about normaloid operators, Oper. Matrices, 11 (3) (2017), 885-890.
[7] C. K. Fong, On the essential maximal numerical range, Acta Sci. Math., 41 (1979), 307-315.
[8] K. E. Gustafson and D. K. M. RaO, Numerical range: the field of values of linear operators and matrices, Springer, New York, Inc: 1997.
[9] P. R. Halmos, Hilbert space problem book, New York: Van Nostrand (1967).
[10] A. N. HAmed and I. M. Spitkovsky, On the maximal numerical range of some matrices, Electron J. Linear Algebra, 34 (2018), 288-303.
[11] G. JI, N. LiU AND Z. E. Li, Essential numerical range and maximal numerical range of the Aluthge transform, Linear Multilinear Algebra, 55 (4) (2007), 315-322.
[12] D. N. Kingangi, On Norm of Elementary Operator: An Application of Stampfli's Maximal Numerical Range, Pure Appl. Math. J., 7 (1) (2018), 6-10.
[13] C. S. Kubrusly, Spectral Theory of Bounded Linear Operators, Birkhäuser (2020).
[14] J. Rooin, S. Karami and M. G. Aghideh, A new approach to numerical radius of quadratic operators, Ann. Funct. Anal., 11 (2020), 879-896.
[15] I. M. Spitkovsky, A note on the maximal numerical range, Oper. Matrices, 13(3) (2019), 601-605.
[16] J. G. Stampfli and J. P. Williams, Growth condition and the numerical range in Banach algebra, Tohoku Math. J. 20 (1968), 417-424.
[17] J. G. StampFLI, The norm of derivation, Pacific J. Math., 33 (1970), 737-747.
[18] S. H. Tso and P. Y. WU, Matricial ranges of quadratic operators, Rocky Mountain J. Math., 29 (1999), 1139-1152.
(Received November 4, 2020)
E. H. Benabdi

Department of Mathematics, FSSM
Cadi Ayyad University
Marrakesh-Morocco
e-mail: elhassan.benabdi@gmail.com
M. Barraa

Department of Mathematics, FSSM
Cadi Ayyad University
Marrakesh-Morocco
e-mail: barraa@uca.ac.ma
M. K. Chraibi

Department of Mathematics, FSSM
Cadi Ayyad University
Marrakesh-Morocco
e-mail: chraibik@uca.ac.ma
A. Baghdad

Department of Mathematics, FSSM Cadi Ayyad University

Marrakesh-Morocco
e-mail: bagabd66@gmail.com

[^0]: Mathematics subject classification (2020): Primary 46L05; Secondary 47A12, 47A63.
 Keywords and phrases: Quadratic operator, C^{*}-algebra, numerical range, maximal numerical range.

 * Corresponding author.

