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Abstract. In this paper, we give a description of the maximal numerical range of a hyponormal
element and a characterization of a normaloid element in a C∗ -algebra. We also give an explicit
formula for the maximal numerical range of a quadratic operator acting on a complex Hilbert
space. As a consequence, we determine the maximal numerical range of a rank-one operator.

1. Introduction

Let A be a complex C∗ -algebra with unit e and let A ′ be its dual space. Define
the state space of A by

S (A ) = { f ∈ A ′ : f (e) = ‖ f‖ = 1}.
For a ∈ A , the algebraic numerical range of a is given by

V(a) = { f (a) : f ∈ S (A )}.
It is well-known that V(a) (a ∈ A ) is a convex compact set and contains the convex
hull of the spectrum σ(a) of a ; that is co

(
σ(a)

)⊆ V(a) , here co stands for the convex
hull. This result follows at once from the corresponding properties of the set S (A ) .
See, for more details, [16]. Let w(a) denote the numerical radius of a ∈ A ; i.e.,
w(a) = sup{|λ | : λ ∈ V(a)} . It is well-known that w(·) defines a norm on A , which
is equivalent to the C∗ -norm ‖·‖ . In fact, the following inequalities are well-known:

1
2
‖a‖ � w(a) � ‖a‖ ,

for all a ∈ A . An element a ∈ A is said to be normaloid if w(a) = ‖a‖ . Recall that
an element a∈ A is said to be positive and we write a � 0 if it is self-adjoint and if its
spectrum contains only non-negative real numbers. Recall also that an element a ∈ A
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is called normal (resp. hyponormal) if a∗a = aa∗ (resp. a∗a−aa∗ � 0 or equivalently,
a∗a− aa∗ = b∗b for some b ∈ A ). Here a∗ is the adjoint of a . It is well-known that
hyponormal, thus also normal, elements in A are normaloid.

Let H be a Hilbert space over the complex field C with inner product 〈x,y〉
and norm ‖x‖ = 〈x,x〉1/2 . Denote by B(H ) the C∗ -algebra of all bounded linear
operators acting on H . For A∈B(H ) , the numerical range of A is defined as the set

W(A) = {〈Ax,x〉 : x ∈ H , ‖x‖ = 1}.
It is a celebrated result due to Toeplitz-Hausdorff that W(A) is a convex set in the
complex plane and it is well-known that W(A) = V (A) , where L is the closure of a
subset L of C . The numerical range of an operator in B(H ) is closed if dim(H ) <
∞ , but it is not always closed when dim(H ) = ∞ . For more details about the theory of
numerical ranges, the reader is referred to [4, 5, 8, 9] and references therein.

The notion of the numerical range has been generalized in different directions.
One such direction is the maximal numerical range. It is a relatively new concept in
operator theory, having been introduced only in 1970 by Stampfli [17] and defined as
follows.

DEFINITION 1.1. For A ∈ B(H ) , the maximal numerical range W0(A) of A is
given by

W0(A) = {lim
n
〈Axn,xn〉 : xn ∈ H , ‖xn‖ = 1, lim

n
‖Axn‖ = ‖A‖}.

It was shown in [17] that W0(A) is nonempty, closed, convex and contained in
the closure of the numerical range; W0(A) ⊆ W(A) . In the case of finite-dimensional
spaces, the maximal numerical range is produced by maximal vectors for A (vectors x∈
H such that ‖x‖= 1 and ‖Ax‖= ‖A‖ ). Note that the notion of the maximal numerical
range was introduced by Stampfli [17] (especially) for the purpose of calculating the
norm of the inner derivation on B(H ) . Recall that the inner derivation δA associated
with A ∈ B(H ) is defined by

δA : B(H ) −→ B(H ), X 
−→ AX −XA.

Indeed, the author of [17] established the following. For any A ∈ B(H )

‖δA‖ = 2‖A− cA‖ ,

where cA is the unique scalar cA satisfying

‖A− cA‖ = inf
λ∈C

‖A−λ‖.

The scalar cA is called the center of mass of A . In the same paper [17], Stampfli proved
that we always have cA ∈W(A) . Furthermore, if A is a hyponormal operator, the center
of mass cA is exactly the center of the smallest disk containing the spectrum σ(A) .

Recently, considerable interests have been given to the maximal numerical range,
see, for instance, [3, 6, 10, 12, 15]. For example, in [3], the authors gave the following
description of the maximal numerical range W0(A) whenever A is hyponormal.
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THEOREM 1.2. ([3]) Let A ∈ B(H ) be hyponormal. Then

W0(A) = co
(
σn(A)

)
,

where σn(A) := {λ ∈ σ(A) : |λ | = ‖A‖} .

In [6] the authors gave the following characterization of normaloid operator.

THEOREM 1.3. ([6]) Let A∈B(H ) . Then A is normaloid if and only if w(A) =
w0(A) , where w0(a) := sup{|λ | : λ ∈ W0(A)} , the maximal numerical radius of A.

In [7], the author introduced the concept of the algebraic maximal numerical range
of an element a ∈ A as follows.

DEFINITION 1.4. Let a ∈A . The algebraic maximal numerical range of a is the
set

V0(a) = { f (a) : f ∈ Smax(a)},
where Smax(a) is the set of all maximal states for a defined by

Smax(a) := { f ∈ S (A ) : f (a∗a) = ‖a‖2}.

In the same paper [7], the author established the following.

THEOREM 1.5. ([7]) Let a ∈ A . Then V0(a) is a non-empty convex compact
subset of V(a) . Moreover, if A = B(H ) then V0(a) = W0(a) .

Recall that a bounded linear operator A ∈ B(H ) is called quadratic if it satisfies
some non-trivial quadratic equation (A−αI)(A− β I) = 0, where I is the operator
identity on H and α,β ∈ C . We have the following.

THEOREM 1.6. ([1, 14, 18]) Let A ∈ B(H ) be a quadratic operator satisfying
(A−αI)(A−β I) = 0 for some scalars α and β . Then

(a) A is unitarily equivalent to an operator of the form

αI1⊕β I2⊕
[

αI3 T
0 β I3

]
on H1 ⊕H2⊕ (H3 ⊕H3),

where H1,H2 and H3 are complex Hilbert spaces with T being positive semi-
definite on H3 .

(b)

‖A‖ =

∥∥∥∥∥
[

αI3 T
0 β I3

]∥∥∥∥∥=

∥∥∥∥∥
[

α ‖T‖
0 β

]∥∥∥∥∥=
1√
2

√
u+
√

u2 − v,

where u = |α|2 + |β |2 +‖T‖2 and v = 4 |α|2 |β |2 .
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PROPOSITION 1.7. ([1]) Let A∈B(H ) be a quadratic operator satisfying (A−
αI)(A−β I) = 0 for some scalars α and β . Then, the center of mass of A is

cA =
α + β

2
.

THEOREM 1.8. ([10]) Let A =
[

α γ
0 β

]
, where α,β ,γ ∈ C . Then

⎧⎪⎪⎨
⎪⎪⎩

W0(A) =

{
‖A‖2(α + β )−αβ (α + β)
2‖A‖2−|α|2−|β |2−|γ|2

}
, if γ = 0 or |α| = |β |;

W0(A) = [α,β ], otherwise.

In Section 2, we establish some results regarding hyponormal elements and nor-
maloid elements in a complex C∗ -algebra that generalize Theorem 1.2 and Theorem
1.3. We point out a gap in the proof of [7, Proposition 5.2] and give a correct proof
of it. In Section 3, we provide an explicit formula for the maximal numerical range
of a quadratic operator using the fact that a quadratic operator is unitarily equivalent
to a direct sum of operators relatively well-known. As a corollary, we determine the
maximal numerical range and the center of mass of a rank-one operator.

2. The algebraic maximal numerical range of a hyponormal element in a
C∗ -algebra

We give a description of the algebraic maximal numerical range V0(a) when
a ∈ A is hyponormal which will be a generalization of Theorem 1.2. We also give
a generalization of Theorem 1.3. For this purpose, we need the following results. The
first one is known as the Gelfand-Naimark theorem.

THEOREM 2.1. ([2]) Let A be a C∗ -algebra with unit e . Then, there exist a
complex Hilbert space H and an isometric ∗ -morphism T from A onto a closed
self-adjoint subalgebra B of B(H ) .

In the sequel, we shall denote T (a) by Ta for all a ∈ A . Therefore, we have
‖Ta‖ = ‖a‖ , Tab = TaTb , Te = I (where I is the operator identity on H ) and Ta∗ =
(Ta)∗ for all a,b ∈ A . Moreover, a ∈ A is invertible if and only if Ta is invertible.
In that case, (Ta)−1 = T

a−1 . In particular, σ(a) = σ(Ta) . As a consequence of these
properties, we have the following. Let a ∈ A , then there is a unique scalar ca (also
called the center of mass of a ) such that

‖a− ca‖ = inf
λ∈C

‖a−λ‖.

Moreover, ca = cTa .

LEMMA 2.2. Let a ∈ A . Then the following hold
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1. V(a) = V (Ta);

2. V0(a) = V0(Ta) .

Proof. We give a proof of the second assertion, the proof of the first one is similar.
Let λ ∈ V0(a) . Then, there is f ∈ Smax(a) such that f (a) = λ . Define g on B by
g(Tx) := f (x) for all x ∈ A . It is clear that g ∈ S (B) . By the Hahn-Banach theorem,
we may extend g to g̃ ∈ S (B(H )) . Moreover,

g̃(T ∗
a Ta) = g(T ∗

a Ta) = g(Ta∗a) = f (a∗a) = ‖a‖2 = ‖Ta‖2 .

Thus, g̃ ∈ Smax(Ta) and since g̃(Ta) = g(Ta) = f (a) = λ , then λ ∈ V0(Ta) . Conse-
quently, V0(a) ⊆V0(Ta) . A similar argument gives the other inclusion. We then obtain
the desired result. �

PROPOSITION 2.3. Let a ∈ A be hyponormal. Then

V0(a) = co
(
σn(a)

)
,

where σn(a) := {λ ∈ σ(a) : |λ | = ‖a‖} .

Proof. Let a ∈ A be hyponormal. It is easy to show that the operator Ta is hy-
ponormal and σn(Ta) = σn(a) . Using Lemma 2.2 and Theorem 1.2, we get

V0(a) = V0(Ta) = co
(
σn(Ta)

)
= co

(
σn(a)

)
as required. �

REMARK 2.4. Let a ∈ A and define the maximal numerical radius of a as fol-
lows

w0(a) := sup{|λ | : λ ∈ V0(a)} .

From Lemma 2.2, we derive that w(a) = w(Ta) and w0(a) = w0(Ta) . So, since ‖a‖ =
‖Ta‖ , it follows that a is normaloid if and only if Ta is normaloid. According to
Theorem 1.3, we have the following.

PROPOSITION 2.5. Let a∈A . Then a is normaloid if and only if w(a) = w0(a) .

In the proof of [7, Proposition 5.2], Fong used the following statement. If a ∈
A , then Smax(a) = Smax(a∗) . But, this statement is not true in general. Indeed,
let H = �2 be the complex Hilbert space of square summable sequences and let S
be the right shift operator on H defined by S(x1,x2, . . .) = (0,x1,x2, . . .) . We show
that Smax(S) = Smax(S∗) . It is known that ‖S‖ = 1 and S∗S = I . Then, for any f ∈
S (B(H )) we have f (S∗S)= f (I) = 1 = ‖S‖2 . It results that Smax(S)= S (B(H )) .
But, 〈SS∗(1,0,0, . . .),(1,0,0, . . .)〉 = 0, so 0 ∈V (SS∗) and hence 0 = g(SS∗) for some
g ∈ S (B(H )) . Since ‖S∗‖ = 1, g /∈ Smax(S∗) .
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PROPOSITION 2.6. [7, Proposition 5.2] Let a ∈ A . Then

V0(a∗) = V0(a)∗,

where for a subset Λ of C , Λ∗ := {λ : λ ∈ Λ}.
We now give a correct proof of this proposition.

Proof. Let a ∈ A . According to [11, Proposition 2], V0(T ∗
a ) = V0(Ta)∗ and by

Lemma 2.2, V0(a∗) = V0(T ∗
a ) = V0(Ta)∗ = V0(a)∗ . �

3. Maximal numerical range of a quadratic operator

In this section, we calculate the maximal numerical range of a quadratic operator
on a complex Hilbert space. Let A ∈ B(H ) be a quadratic operator satisfying the fol-
lowing quadratic equation (A−αI)(A−β I) = 0, where α,β ∈C . From Theorem 1.6,
there exist complex Hilbert spaces H1,H2 and H3 such that A is unitarily equivalent
to an operator of the form

αI1 ⊕β I2⊕
[

αI3 T
0 β I3

]
on H1 ⊕H2⊕ (H3⊕H3),

with T being positive semi-definite on H3 . According to [11, Lemma 2], W0(A) =

W0

([
αI3 T
0 β I3

])
. Therefore, we can assume that A =

[
αI T
0 β I

]
∈ B(H ⊕H ) ,

with T is positive. The following theorem is a generalization of Theorem 1.8.

THEOREM 3.1. Let A =
[

αI T
0 β I

]
∈ B(H ⊕H ) . Then

⎧⎪⎪⎨
⎪⎪⎩

W0(A) =

{
‖A‖2(α + β )−αβ (α + β)
2‖A‖2−|α|2−|β |2−‖T‖2

}
, if T = 0 or |α| = |β |;

W0(A) = [α,β ], otherwise.

Proof. We show that W0(A) = W0

([
α ‖T‖
0 β

])
and we then conclude by The-

orem 1.8. If T = 0, the result is clear since A is normal and so we apply Theorem

1.2. If T = 0 and α = 0 then by Theorem 1.8, W0

([
α ‖T‖
0 β

])
= {β} . We also

have W0(A) = {β} . Indeed, let λ ∈W0(A) , then there is xn = yn⊕ zn ∈ H ⊕H with
‖yn‖2 +‖zn‖2 = 1 such that lim

n
〈Axn,xn〉 = λ and lim

n
‖Axn‖2 = ‖A‖2 = ‖T‖2 + |β |2 .

Since ‖Axn‖2 = ‖Tzn‖2 + |β |2‖zn‖2 , then lim
n
‖zn‖ = 1 and lim

n
‖yn‖ = 0. We derive
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that lim
n
〈Axn,xn〉= lim

n

(〈Tzn,yn〉+β |zn|2
)
= β . Therefore, we may assume that T = 0

and α = 0.

We show that W0(A) ⊆ W0

([
α ‖T‖
0 β

])
. Let λ ∈ W0(A) , then there exists a

unit vector sequence {xn} in H ⊕H such that lim
n
‖Axn‖ = ‖A‖ and lim

n
〈Axn,xn〉 =

λ . We decompose xn as αnyn ⊕βnzn where |αn|2 + |βn|2 = 1 and ‖yn‖ = ‖zn‖ = 1.
Note that we can assume that ααnβn � 0. Therefore, we have

‖Axn‖2 = |α|2|αn|2 +2ααnβnRe
(〈Tzn,yn〉

)
+ |βn|2‖Tzn‖2 + |β |2|βn|2

� |α|2|αn|2 +2ααnβn‖T‖+ |βn|2‖T‖2 + |β |2|βn|2

=

∥∥∥∥∥
[

α ‖T‖
0 β

][
αn

βn

]∥∥∥∥∥
2

�
∥∥∥∥∥
[

α ‖T‖
0 β

]∥∥∥∥∥
2

= ‖A‖2 (
by Theorem 1.6.(b)

)
.

Since lim
n
‖Axn‖ = ‖A‖ , we derive that

lim
n

∥∥∥∥∥
[

α ‖T‖
0 β

][
αn

βn

]∥∥∥∥∥=

∥∥∥∥∥
[

α ‖T‖
0 β

]∥∥∥∥∥.
A simple computation shows that

〈Axn,xn〉 = α|αn|2 + βnαn〈Tzn,yn〉+ β |βn|2

and 〈[
α ‖T‖
0 β

][
αn

βn

]
,

[
αn

βn

]〉
= α|αn|2 + βnαn‖T‖+ β |βn|2.

Note that the sequence {βnαn} is bounded, so that we may assume, by passing to
a subsequence if necessary, it is convergent. If lim

n
βnαn = 0, then lim

n
〈Axn,xn〉 =

lim
n

〈[
α ‖T‖
0 β

][
αn

βn

]
,

[
αn

βn

]〉
, so λ ∈ W0

([
α ‖T‖
0 β

])
. If lim

n
βnαn = 0, since

lim
n

αnβn

(
Re
(〈Tzn,yn〉

)− ‖T‖
)

= 0, then lim
n

Re
(〈Tzn,yn〉

)
= ‖T‖ . This implies

lim
n
〈Tzn,yn〉 = ‖T‖ and, as above, we again have λ ∈ W0

([
α ‖T‖
0 β

])
. Conse-

quently, W0(A) ⊆W0

([
α ‖T‖
0 β

])
.
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We now show that W0

([
α ‖T‖
0 β

])
⊆ W0(A) . Let λ ∈ W0

([
α ‖T‖
0 β

])
,

then there exist a,b ∈C such that |a|2 + |b|2 = 1,∥∥∥∥∥
[

α ‖T‖
0 β

][
a
b

]∥∥∥∥∥=

∥∥∥∥∥
[

α ‖T‖
0 β

]∥∥∥∥∥
and 〈[

α ‖T‖
0 β

][
a
b

]
,

[
a
b

]〉
= λ .

Let zn be unit vectors in H such that lim
n
‖Tzn‖ = ‖T‖ . Set yn := Tzn/‖Tzn‖ and

xn := ayn⊕bzn . We have

‖Axn‖2 =|α|2|a|2 +2Re
(
αab

)‖Tzn‖+ |b|2‖Tzn‖2 + |β |2|b|2

and ∥∥∥∥∥
[

α ‖T‖
0 β

][
a
b

]∥∥∥∥∥
2

=|α|2|a|2 +2Re
(
αab

)‖T‖+ |b|2‖T‖2 + |β |2|b|2.

Hence

lim
n
‖Axn‖ =

∥∥∥∥∥
[

α ‖T‖
0 β

][
a
b

]∥∥∥∥∥=

∥∥∥∥∥
[

α ‖T‖
0 β

]∥∥∥∥∥= ‖A‖.

On the other hand,
〈Axn,xn〉 = α|a|2 +ba‖Tzn‖+ β |b|2

and 〈[
α ‖T‖
0 β

][
a
b

]
,

[
a
b

]〉
= α|a|2 +ba‖T‖+ β |b|2.

We derive that

lim
n
〈Axn,xn〉 =

〈[
α ‖T‖
0 β

][
a
b

]
,

[
a
b

]〉
= λ .

It follows that λ ∈W0(A) . Thus, W0

([
α ‖T‖
0 β

])
⊆W0(A). In summary, W0(A) =

W0

([
α ‖T‖
0 β

])
. This completes the proof. �

REMARK 3.2. An element a ∈ A is called quadratic if there exist two scalars
α,β such that (a−αe)(a−βe) = 0. It is clear that a ∈ A is quadratic if and only if
Ta is quadratic. Then, from Lemma 2.2, Proposition 1.7 and Theorem 3.1, we have the
following.
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COROLLARY 3.3. Let a ∈ A be a quadratic operator satisfying (a−αe)(a−
βe) = 0 for some scalars α and β . The algebraic maximal numerical range of a is
either a point or the line segment [α,β ] connecting α and β . Moreover, the center of

mass of a is ca =
α + β

2
.

As a consequence, we give a result concerning rank-one operators. Every rank-
one operator is quadratic. Indeed, there exist f ∈ H ′ and u ∈ R(T ) (the range of T )
such that T (x) = f (x)u for all x ∈ H . Then T 2(x)− f (u)T (x) = 0 for all x ∈ H .
That is T 2 − f (u)T = 0. Hence, T is quadratic

(
α = 0 and β = f (u)

)
. Moreover,

by the Riesz representation theorem, there exists v ∈ H such that f (·) = 〈·,v〉 . Then
T = u⊗v . According to Theorem 3.1 and Proposition 1.7, we have the following result
concerning the maximal numerical range and the center of mass of a rank-one operator
on a complex Hilbert space.

PROPOSITION 3.4. Let T ∈ B(H ) be a rank-one operator. Then W0(T ) =

{〈u,v〉} and cT =
〈u,v〉

2
, where u,v ∈ H are such that T = u⊗ v.

Note that we can obtain the previous result by observing that T is unitarily equiv-

alent to

[〈u,v〉 ‖v‖2

0 0

]
⊕0 and using [11, Lemma 2] and Theorem 1.8.

REMARK 3.5. Note that for stating Theorem 3.1 we used [11, Lemma 2] which
asserts the following result. Let A1 ∈ B(H1) and A2 ∈ B(H2) where H1 and H2

are complex Hilbert spaces. For A unitarily equivalent to A1⊕A2 ,

W0(A) = co
( ⋃
‖Aj‖=‖A‖

W0(Aj)
)
.

This result can be generalized by induction to the finite direct sum case. But, it is not
true in the infinite direct sum case in general. Indeed, let {Bk} for k = 1,2, . . . , be the
operators on the complex Hilbert space H = C2 represented by

Bk =

[
1 0

0 −1+
1
k

]
, k = 1,2, . . . .

It is known that
⋃
k

σ(Bk)⊆ σ
(⊕k Bk

)
. That is,

⋃
k

{−1+
1
k
,1} ⊆ σ

(⊕k Bk
)
. It results

that {−1,1} ⊂ σ
(⊕k Bk

)
and since ‖⊕kBk‖ = 1, then {−1,1} ⊆ σn

(⊕k Bk
)
. From

[15, Lemma 1], σn
(⊕k Bk

) ⊆W0(⊕kBk) . We derive that {−1,1} ⊆ W0(⊕kBk) . But,

W0(Bk)= {1} , for k = 1,2, . . . , then
⋃
k

W0(Bk)= {1} . Consequently, co
(⋃

k

W0(Bk)
)
�

W0(⊕kBk) . However, we have the following.
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PROPOSITION 3.6. Let {Hn} be a collection of complex Hilbert spaces, let {Tn}
be a collection of hyponormal operators with Tn ∈ B(Hn) . Assume that sup

n
‖Tn‖ < ∞

and consider the direct sum T = ⊕nTn ∈ B
(⊕n Hn

)
. Then

W0(T ) = co
(⋃

k

σ(Tk)∩CT

)
,

where CT := {λ : |λ | = ‖T‖} .

Proof. Since {Tn} is a collection of hyponormal operators, then T is hyponormal.
By virtue of Theorem 1.2, W0(T ) = co

(
σn(T )

)
. According to [13, Proposition 2.F],

we have σ(T ) =
⋃
k

σ(Tk) and the result follows. �
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