# EXTENSION OF GENERALIZED STRONG DRAZIN INVERSE

DIJANA MOSIĆ\* AND HONGLIN ZOU

(Communicated by I. M. Spitkovsky)

Abstract. As an extension of the generalized strong Drazin inverse, we present a new generalized inverse for Banach algebra elements based on a g-Drazin invertible element rather than on a quasinilpotent element in the definition of the generalized strong Drazin inverse. Because of that, our new inverse will be called an extended gs-Drazin inverse. Some characterizations of this inverse are given using idempotents and tripotents. We also study extensions of Cline's formula to the case of extended gs-Drazin inverse. Applying these results, we introduce and investigate an extended s-Drazin inverse.

#### 1. Introduction

Let  $\mathscr{A}$  be a complex Banach algebra with unit 1, and let, for  $a \in \mathscr{A}$ ,  $\sigma(a)$ , r(a) and acc  $\sigma(a)$  be the spectrum of a, the spectral radius of a and the set of all accumulation points of  $\sigma(a)$ , respectively. We use  $\mathscr{A}^{-1}$ ,  $\mathscr{A}^{nil}$  and  $\mathscr{A}^{qnil}$  to denote the sets of all invertible, nilpotent and quasinilpotent elements ( $\sigma(a) = \{0\}$ ) of  $\mathscr{A}$ , respectively. If  $\mathscr{B}$  is a subalgebra of  $\mathscr{A}$ , we denote by  $\sigma_{\mathscr{B}}(a)$  the spectrum of  $a \in \mathscr{B}$  with respect to  $\mathscr{B}$ , and by  $a_{\mathscr{B}}^{-1}$  the inverse of a in  $\mathscr{B}$ . An element  $a \in \mathscr{A}$  is tripotent if  $a^3 = a$ , and a is idempotent if  $a^2 = a$ .

The notion of a strongly nil-clean element was defined for an element of an associative ring in [5]. Wang [16] introduced a strong Drazin inverse as a class of new generalized inverse corresponding to the strong nil-cleanness. Several recent results related to nil-clean elements and strong Drazin inverses can be found in [1, 2, 4, 8, 9].

In [12], a generalized strong Drazin inverse was introduced in a Banach algebra: an element  $a \in \mathscr{A}$  is called generalized strongly Drazin invertible (or *gs*–Drazin invertible) if there exists an element  $x \in \mathscr{A}$  such that

xax = x, ax = xa and  $a - ax \in \mathscr{A}^{qnil}$ .

The *gs*-Drazin inverse x of a is unique if it exists. If  $a - ax \in \mathscr{A}^{nil}$  in the above definition, then x is the strong Drazin inverse (or *s*-Drazin inverse) of a. For more details concerning generalized strong Drazin inverse see [6].

<sup>\*</sup> Corresponding author.



Mathematics subject classification (2020): 46H05, 46H99, 15A09.

*Keywords and phrases*: Generalized strong Drazin inverse, extended *g*–Drazin inverse, *g*–Drazin inverse, Cline's formula, Banach algebra.

The first author is supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, grant no. 174007(451-03-9/2021-14/200124). The second author is supported by China Postdoctoral Science Foundation (No. 2018M632385).

In the case that  $a(1-ax) \in \mathscr{A}^{qnil}$  instead of  $a - ax \in \mathscr{A}^{qnil}$  in the definition of the *gs*-Drazin inverse, *a* is *g*-Drazin invertible. The *g*-Drazin inverse  $x = a^d$  of *a* is unique, if it exists [7]. Recall that  $a^d$  exists if and only if  $0 \notin acc \sigma(a)$ . By  $\mathscr{A}^d$  will be denoted the set of all *g*-Drazin invertible elements of  $\mathscr{A}$ . For  $a \in \mathscr{A}^d$ ,  $a^{\pi} = 1 - aa^d$ is the spectral idempotent of *a* corresponding to the set  $\{0\}$ . The *g*-Drazin inverse of *a* doubly commutes with *a*, that is,  $a^d$  commutes with every element of  $\mathscr{A}$  that commutes with *a* (that is, ab = ba implies  $a^db = ba^d$ ) [7]. It is well-known that  $\mathscr{A}^{qnil} \subseteq \mathscr{A}^d$ , since the *g*-Drazin inverse of a quasinilpotent element exists and it is equal to zero. Some interesting results related to *g*-Drazin inverses were proved in [13, 14, 15, 18].

If  $a - axa \in \mathscr{A}^{nil}$  in the definition of the *g*-Drazin inverse, then  $a^d = a^D$  is the Drazin inverse of *a*. The group inverse is a particular case of the Drazin inverse for which a = axa holds instead of  $a - axa \in \mathscr{A}^{nil}$ . The group inverse of *a* will be denoted by  $a^{\#}$ . The sets  $\mathscr{A}^D$  and  $\mathscr{A}^{\#}$  consist of all Drazin invertible and group invertible elements of  $\mathscr{A}$ , respectively.

Cline [3] proved that if *ab* is Drazin invertible, then so is *ba* and  $(ba)^D = b((ab)^D)^2 a$ . This equality is so-called Cline's formula and it was extended to various generalized inverses under various conditions. Motivated by [17], a new generalization of Cline's formula was studied in [19] under assumptions acd = dbd and dba = aca.

In [11], the notion of *g*–Drazin inverse was extended using a corresponding *g*–Drazin invertible element rather than a quasinilpotent element in the definition of *g*–Drazin inverse. An element  $a \in \mathscr{A}$  is called extended *g*–Drazin invertible (or *eg*–Drazin invertible) if there exists an element  $x \in \mathscr{A}$  such that

$$xax = x$$
,  $xa = ax$  and  $a - axa \in \mathscr{A}^d$ .

In this case, x is an extended g-Drazin inverse (or eg-Drazin inverse) of a and it is not uniquely determined. Recall that a is extended g-Drazin invertible if and only if a is g-Drazin invertible. If we replace  $a - axa \in \mathscr{A}^d$  with  $a - axa \in \mathscr{A}^D$  in the definition of eg-Drazin inverse, then x is an extended Drazin inverse (or e-Drazin inverse) of a. Denote by  $\mathscr{A}^{ed}$  and  $\mathscr{A}^{eD}$ , respectively, the sets of all eg-Drazin invertible and e-Drazin invertible elements of  $\mathscr{A}$ .

Our goal is to continue studying generalized strong Drazin inverses and proposed a wider class of generalized strong Drazin inverses. Inspired by extension of the *g*-Drazin inverse to the extended *g*-Drazin inverse, we replace the condition  $a - ax \in \mathcal{A}^{qnil}$  in the definition of generalized strong Drazin inverse with  $a - ax \in \mathcal{A}^d$  to introduce a new generalized inverse in a Banach algebra. Since this new inverse is an extension of *gs*-Drazin inverse, it will be called the extended *gs*-Drazin inverse. Using idempotents and tripotents, we characterize extended *gs*-Drazin invertible elements. We show that an element  $a \in \mathcal{A}$  is extended *gs*-Drazin invertible. We investigated generalizations of Cline's formula for extended *gs*-Drazin inverse whenever acd = dbd and dba = aca. As a consequence of these results, we define and study an extension of strong Drazin inverse.

## 2. Extended gs-Drazin inverse

Using the condition  $a - ax \in \mathscr{A}^d$  instead of  $a - ax \in \mathscr{A}^{qnil}$  in the definition of *gs*-Drazin inverse, we extend the concept of the *gs*-Drazin inverse and define a new generalized inverse in a Banach algebra.

DEFINITION 1. An element  $a \in \mathscr{A}$  is called extended *gs*–Drazin invertible (or *egs*–Drazin invertible) if there exists an element  $x \in \mathscr{A}$  such that

xax = x, xa = ax and  $a - ax \in \mathscr{A}^d$ .

In this case, x is an extended gs–Drazin inverse (or egs–Drazin inverse) of a.

Notice that, by  $\mathscr{A}^{qnil} \subseteq \mathscr{A}^d$ , if  $a \in \mathscr{A}$  is gs-Drazin invertible, then *a* is egs-Drazin invertible. If we assume that  $a - ax \in \mathscr{A}^D$  in the above definition, we introduce an extension of the strong Drazin inverse.

DEFINITION 2. An element  $a \in \mathscr{A}$  is called extended *s*–Drazin invertible (or *es*–Drazin invertible) if there exists an element  $x \in \mathscr{A}$  such that

$$xax = x$$
,  $xa = ax$  and  $a - ax \in \mathscr{A}^D$ .

In this case, x is an extended s-Drazin inverse (or es-Drazin inverse) of a.

We denote by  $\mathscr{A}^{esd}$  and  $\mathscr{A}^{esD}$ , respectively, the sets of all *egs*-Drazin invertible and *es*-Drazin invertible elements of  $\mathscr{A}$ . Clearly,  $\mathscr{A}^{esD} \subseteq \mathscr{A}^{esd}$ .

LEMMA 1. If  $a \in \mathscr{A}^{esd}$ , then  $a \in \mathscr{A}^{ed}$ . In addition, if x is an egs-Drazin inverse of a, then x is an eg-Drazin inverse of a.

*Proof.* Let x be an egs-Drazin inverse of a. Since 1 - ax is an idempotent, then  $1 - ax \in \mathscr{A}^{\#} \subseteq \mathscr{A}^{d}$ . Notice that  $a - ax \in \mathscr{A}^{d}$  and (a - ax)(1 - ax) = (1 - ax)(a - ax). By [7, Theorem 5.5],  $a - axa = a(1 - ax) = (a - ax)(1 - ax) \in \mathscr{A}^{d}$ . Thus, x is an eg-Drazin inverse of a.  $\Box$ 

Remark that  $\mathscr{A}^{esd} \subseteq \mathscr{A}^{ed} = \mathscr{A}^d$ , by Theorem 1 and [11, Theorem 2.2]. We now verify some characterizations of *egs*–Drazin invertible elements and prove that  $\mathscr{A}^{esd} = \mathscr{A}^{ed} = \mathscr{A}^d$ . Also, notice that the *egs*–Drazin inverse is not uniquely determined.

THEOREM 1. Let  $a \in \mathscr{A}$ . The following statements are equivalent:

- (i) a is egs–Drazin invertible;
- (ii) a is eg–Drazin invertible;
- (iii) *a is g–Drazin invertible;*
- (iv) there exists an idempotent  $p \in \mathscr{A}$  commuting with a such that  $ap \in (p \mathscr{A} p)^{-1}$ and  $a - p \in \mathscr{A}^d$ ;

(v) there exists an idempotent  $p \in \mathcal{A}$  commuting with a such that  $ap+1-p \in \mathcal{A}^{-1}$ and  $a-p \in \mathcal{A}^d$ .

In this case, we have that 0 and  $(ap)_{p \ll p}^{-1} = (ap+1-p)^{-1}p$  are egs-Drazin inverses of a.

*Proof.* (i)  $\Rightarrow$  (ii): By Lemma 1, this implication is clear.

(ii)  $\Leftrightarrow$  (iii): It follows by [11, Theorem 2.2].

(iii)  $\Rightarrow$  (i): In the case that  $a \in \mathscr{A}^d$ , we observe that 0 is an *egs*-Drazin inverse of *a*.

(i)  $\Rightarrow$  (iv)  $\land$  (v): Let x be an *egs*-Drazin inverse of a and p = ax. Then we get  $p^2 = p$ , pa = ap and  $a - p = a - ax \in \mathscr{A}^d$ . Since  $apx = a^2x^2 = ax = p = xap$ , we have that ap is invertible in the Banach algebra  $p \mathscr{A} p$  and  $x = (ap)_{p \mathscr{A} p}^{-1}$ . We can also verify that  $(ap)_{p \mathscr{A} p}^{-1} + 1 - p$  is the inverse of ap + 1 - p.

verify that  $(ap)_{p \not = p}^{-1} + 1 - p$  is the inverse of ap + 1 - p. (iv)  $\Rightarrow$  (i): Assume that there exists an idempotent  $p \in \mathscr{A}$  commuting with a such that  $ap \in (p \mathscr{A} p)^{-1}$  and  $a - p \in \mathscr{A}^d$ . Set  $x = (ap)_{p \not= p}^{-1}$ . Now,  $xa = (ap)_{p \not= p}^{-1} a = (ap)_{p \not= p}^{-1} pa = (ap)_{p \not= p}^{-1} ap = p = ap(ap)_{p \not= p}^{-1} = a(ap)_{p \not= p}^{-1} = ax$ , xax = px = x and  $a - ax = a - p \in \mathscr{A}^d$ . So, x is an *egs*-Drazin inverse of a.

(v)  $\Rightarrow$  (i): From (ap+1-p)p = ap, we obtain  $p = (ap+1-p)^{-1}ap$ . Denote by  $x = (ap+1-p)^{-1}p$ . Hence, by ax = xa = p, xax = xp = x and  $a - ax = a - p \in \mathscr{A}^d$ , x is an *egs*-Drazin inverse of a.  $\Box$ 

Using tripotents, we characterize egs-Drazin invertible elements in the next way.

THEOREM 2. Let  $a \in \mathscr{A}$ . The following statements are equivalent:

- (i) a is egs–Drazin invertible;
- (ii) there exists a tripotent  $p \in \mathscr{A}$  commuting with a such that  $ap \in (p^2 \mathscr{A} p^2)^{-1}$  and  $a p^2 \in \mathscr{A}^d$ ;
- (iii) there exists a tripotent  $p \in \mathscr{A}$  commuting with a such that  $ap + 1 p^2 \in \mathscr{A}^{-1}$ and  $a - p^2 \in \mathscr{A}^d$ .

In this case, we have that  $(ap)_{p^2 \mathscr{A} p^2}^{-1} p = (ap+1-p^2)^{-1}p$  is the egs–Drazin inverse of a.

*Proof.* (i)  $\Rightarrow$  (iii): Using Theorem 1(v), there exists an idempotent  $p \in \mathscr{A}$  commuting with a such that  $ap + 1 - p \in \mathscr{A}^{-1}$  and  $a - p \in \mathscr{A}^d$ . Therefore,  $p = p^2 = p^3$ ,  $ap + 1 - p^2 \in \mathscr{A}^{-1}$  and  $a - p^2 \in \mathscr{A}^d$ .

(i)  $\Rightarrow$  (ii): By Theorem 1(iv), we show this implication similarly as (i)  $\Rightarrow$  (iii).

(ii)  $\Rightarrow$  (i): Assume that there exists a tripotent  $p \in \mathscr{A}$  commuting with a such that  $ap \in (p^2 \mathscr{A} p^2)^{-1}$  and  $a - p^2 \in \mathscr{A}^d$ . Since p is a tripotent, then  $p^2$  is an idempotent. Let  $x = (ap)_{p^2 \mathscr{A} p^2}^{-1} p$ . Notice that  $xa = (ap)_{p^2 \mathscr{A} p^2}^{-1} pa = (ap)_{p^2 \mathscr{A} p^2}^{-1} ap = p^2$ . From  $x = p^2 x$ , we get  $ax = ap^2 x = pap(ap)_{p^2 \mathscr{A} p^2}^{-1} p = p^2$  and so ax = xa. Also,  $xax = p^2 x = x$  and  $a - ax = a - p^2 \in \mathscr{A}^d$ , which imply that x is an *egs*-Drazin inverse of a.

(iii)  $\Rightarrow$  (i): Because  $(ap+1-p^2)p^2 = ap$ , we have  $p^2 = (ap+1-p^2)^{-1}ap$ . Let  $x = (ap+1-p^2)^{-1}p$ . Then  $ax = xa = p^2$ ,  $xax = xp^2 = (ap+1-p^2)^{-1}p^3 = x$  and  $a - ax = a - p^2 \in \mathscr{A}^d$  give that x is an egs-Drazin inverse of a.  $\Box$ 

Remark that, by Theorem 1, the statements of Theorem 2 are characterizations of eg-Drazin and g-Drazin invertible elements by tripotents. In the following result, we obtain new characterizations of eg-Drazin invertible elements by means of tripotents.

THEOREM 3. Let  $a \in \mathscr{A}$ . The following statements are equivalent:

- (i) a is eg–Drazin invertible;
- (ii) there exists a tripotent  $q \in \mathscr{A}$  commuting with a such that  $aq \in (q^2 \mathscr{A} q^2)^{-1}$  and  $a(1-q^2) \in \mathscr{A}^d$ ;
- (iii) there exists a tripotent  $q \in \mathscr{A}$  commuting with a such that  $aq \in \mathscr{A}^{\#}$  and  $a(1-q^2) \in \mathscr{A}^d$ ;
- (iv) there exists a tripotent  $q \in \mathscr{A}$  commuting with a such that  $aq + 1 q^2 \in \mathscr{A}^{-1}$ and  $a(1 - q^2) \in \mathscr{A}^d$ .

In this case, we have that  $(aq)_{q^2 \ll q^2}^{-1}q = (aq)^{\#}q = (aq+1-q^2)^{-1}q$  is the eg-Drazin inverse of a.

*Proof.* Using [11, Theorem 2.1], we verify this result in a similar manner as in the proof of Theorem 2.  $\Box$ 

We give some properties of *egs*-Drazin invertible elements in the next result. By  $a^{esd}$  and  $a^{esD}$  will be denoted an *egs*-Drazin inverse and *es*-Drazin inverse of *a*, respectively. Let  $a\{esd\}$  (or  $a\{esD\}$ ) denote the set of all extended gs-Drazin (es-Drazin) inverses of *a*.

LEMMA 2. Let  $a \in \mathscr{A}^{esd}$ . Then, for arbitrary  $a^{esd}$ ,

- (i)  $a^{esd} \in \mathscr{A}^{\#}$  and  $(a^{esd})^{\#} = a^2 a^{esd}$ ;
- (ii)  $a^{esd} \in \mathscr{A}^{esd}$  and  $a^2 a^{esd} \in a^{esd} \{esd\}$ .

*Proof.* (i) Firstly, we observe that  $a^{esd}$  commutes with  $a^2a^{esd}$ .

Now, by  $(a^2 a^{esd})a^{esd}(a^2 a^{esd}) = a^2 a^{esd}$  and  $a^{esd}(a^2 a^{esd})a^{esd} = a^{esd}$ , we deduce that  $a^{esd} \in \mathscr{A}^{\#}$  and  $(a^{esd})^{\#} = a^2 a^{esd}$ .

(ii) Notice that  $a^{esd}$  commutes with  $a - aa^{esd}$ ,  $a - aa^{esd} \in \mathscr{A}^d$  and  $a^{esd} \in \mathscr{A}^\#$ . Using [7, Theorem 5.5], we have that  $a^{esd} - a^{esd}(a^2a^{esd}) = a(a^{esd})^2 - aa^{esd} = -a^{esd}(a - aa^{esd}) \in \mathscr{A}^d$ .  $\Box$ 

For an idempotent  $p \in \mathscr{A}$ , it is well-known that an arbitrary element  $a \in \mathscr{A}$  can be represented as

$$a = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}_p,$$

where  $a_{11} = pap$ ,  $a_{12} = pa(1-p)$ ,  $a_{21} = (1-p)ap$ ,  $a_{22} = (1-p)a(1-p)$ . We now present the matrix representation of an *egs*–Drazin inverse of  $a \in \mathscr{A}^d$  relative to idempotent  $aa^d$ .

LEMMA 3. If  $a \in \mathscr{A}^d$ , then

$$a = \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix}_{aa^d} \text{ and } a^{esd} = \begin{bmatrix} x_1 & 0 \\ 0 & x_2 \end{bmatrix}_{aa^d},$$

where  $a_1 \in (aa^d \mathscr{A} aa^d)^{-1}$ ,  $a_2 \in (a^{\pi} \mathscr{A} a^{\pi})^{qnil}$  and  $x_i \in a_i \{esd\}$  for i = 1, 2.

*Proof.* Recall that, if  $a \in \mathscr{A}^d$ , then

$$a = \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix}_p,$$

where  $p = aa^d$ ,  $a_1 \in (p \mathscr{A} p)^{-1}$  and  $a_2 \in ((1-p) \mathscr{A} (1-p))^{qnil}$ . In this case, the *g*-Drazin inverse of *a* is given by

$$a^d = \begin{bmatrix} a_1^{-1} & 0\\ 0 & 0 \end{bmatrix}_p.$$

Suppose that  $x \in \mathscr{A}$  is an *egs*–Drazin inverse of *a*. Because  $a^d$  double commutes with *a*, then *x* commutes with *p* and thus

$$x = \begin{bmatrix} x_1 & 0 \\ 0 & x_2 \end{bmatrix}_p.$$

From ax = xa and xax = x, for i = 1, 2, we get  $a_ix_i = x_ia_i$  and  $x_ia_ix_i = x_i$ . Since

$$a - ax = \begin{bmatrix} a_1 - a_1 x_1 & 0\\ 0 & a_2 - a_2 x_2 \end{bmatrix}_p$$

is *g*-Drazin invertible and  $\sigma(a-ax) = \sigma_{p \mathscr{A} p}(a_1-a_1x_1) \cup \sigma_{(1-p)\mathscr{A}(1-p)}(a_2-a_2x_2)$ , we conclude that  $a_1 - a_1x_1 \in (p \mathscr{A} p)^d$  and  $a_2 - a_2x_2 \in ((1-p)\mathscr{A}(1-p))^d$ . Hence,  $x_i \in a_i \{esd\}$ , for i = 1, 2.  $\Box$ 

We give more characterizations of *egs*–Drazin invertible elements in the following theorem.

THEOREM 4. Let  $a \in \mathcal{A}$  and  $n \in \mathbb{N}$ . The following statements are equivalent:

- (i) a is egs–Drazin invertible;
- (ii) there exists an element  $y \in \mathscr{A}$  such that  $ya^n y = y$ , ya = ay and  $a a^n y \in \mathscr{A}^d$ ;
- (iii)  $a^n$  is egs–Drazin invertible;

In this case,  $a^{n-1}y \in a\{esd\}$ .

*Proof.* (i)  $\Rightarrow$  (ii): If *a* is *egs*-Drazin invertible, we denote by  $y = (a^{esd})^n$ , for arbitrary  $a^{esd}$ . We obtain  $ya = (a^{esd})^n a = a(a^{esd})^n = ay$ ,  $ya^n y = (a^{esd})^n a^n (a^{esd})^n = (a^{esd})^n = (a^{esd})^n = y$  and  $a - a^n y = a - aa^{esd} \in \mathscr{A}^d$ .

(ii)  $\Rightarrow$  (i): Let (ii) hold and  $x = a^{n-1}y$ . Then  $ax = a^n y = a^{n-1}ya = xa$ ,  $xax = a^{n-1}ya^n y = a^{n-1}y = x$  and  $a - ax = a - a^n y \in \mathscr{A}^d$ . So,  $a \in \mathscr{A}^{esd}$  and x is an egs-Drazin inverse of a.

(i)  $\Leftrightarrow$  (iii): By Theorem 1 and [10, Corollary 2.2],  $a \in \mathscr{A}^{esd}$  iff  $a \in \mathscr{A}^d$  iff  $a^n \in \mathscr{A}^{esd}$ .  $\Box$ 

To study Cline's formula for the *egs*–Drazin inverse, we need the following auxiliary result which was proved in [19] for elements of an associative ring  $\mathscr{R}$  with the unit 1.

LEMMA 4. [19, Theorem 2.7] Let  $a, b, c, d \in \mathcal{R}$  satisfy acd = dbd and dba = aca. Then  $bd \in \mathcal{R}^d \Leftrightarrow ac \in \mathcal{R}^d$ . In this case,  $(bd)^d = b((ac)^d)^2 d$  and  $(ac)^d = d((bd)^d)^3 bac$ .

In the case that acd = dbd and dba = aca, we present a generalization of Cline's formula for *egs*-Drazin inverse.

THEOREM 5. Let  $a, b, c, d \in \mathscr{A}$  satisfy acd = dbd and dba = aca. Then

 $bd \in \mathscr{A}^{esd} \quad \Leftrightarrow \quad ac \in \mathscr{A}^{esd}.$ 

In this case, for arbitrary  $(bd)^{esd}$  and  $(ac)^{esd}$ , we have  $b((ac)^{esd})^2 d \in (bd) \{esd\}$  and  $d((bd)^{esd})^3 bac \in (ac) \{esd\}$ .

*Proof.*  $\Rightarrow$ : Suppose that  $bd \in \mathscr{A}^{esd}$  and  $x = d((bd)^{esd})^3 bac$ , for arbitrary  $(bd)^{esd}$ . Then

$$acx = acd((bd)^{esd})^{3}bac = dbd((bd)^{esd})^{3}bac = d((bd)^{esd})^{3}bdbac$$
$$= d((bd)^{esd})^{3}bacac = xac$$

and

$$xacx = d((bd)^{esd})^2 bacx = d((bd)^{esd})^2 bacd((bd)^{esd})^3 bac$$
$$= d((bd)^{esd})^2 bdbd((bd)^{esd})^3 bac = d((bd)^{esd})^3 bac = x.$$

To show that

$$ac - acx = ac - d((bd)^{esd})^2 bac = (1 - d((bd)^{esd})^2 b)ac \in \mathscr{A}^d$$

let  $u = (1 - d((bd)^{esd})^2 b)a$  and  $v = (1 - (bd)^{esd})b$ . Notice that  $vd \in \mathscr{A}^d$ ,

 $ucd = (1 - d((bd)^{esd})^2b)acd = (1 - d((bd)^{esd})^2b)dbd = d(1 - (bd)^{esd})bd = dvd$ 

and

$$dvu = d(1 - (bd)^{esd})(b - (bd)^{esd}b)a = (d - d((bd)^{esd})^2bd)(1 - (bd)^{esd})ba$$
  
=  $(1 - d((bd)^{esd})^2b)(dba - dbd((bd)^{esd})^2ba)$   
=  $(1 - d((bd)^{esd})^2b)(aca - acd((bd)^{esd})^2ba)$   
=  $(1 - d((bd)^{esd})^2b)ac(1 - d((bd)^{esd})^2b)a$   
=  $ucu$ .

By Lemma 4, we obtain  $(1 - d((bd)^{esd})^2b)ac = uc \in \mathscr{A}^d$ . Hence,  $ac \in \mathscr{A}^{esd}$  and  $d((bd)^{esd})^3bac \in (ac)\{esd\}$ .

 $\Leftarrow$ : In a similar manner as in the previous part, we prove this implication.  $\Box$ 

If d = a in Theorem 5, we get an extension of Cline's formula for the *egs*–Drazin inverse when aca = aba.

COROLLARY 1. Let  $a, b, c \in \mathscr{A}$  satisfy aca = aba. Then

 $ba \in \mathscr{A}^{esd} \quad \Leftrightarrow \quad ac \in \mathscr{A}^{esd}.$ 

In this case, for arbitrary  $(ba)^{esd}$  and  $(ac)^{esd}$ ,  $b((ac)^{esd})^2 a \in (ba) \{esd\}$  and  $a((ba)^{esd})^2 c \in (ac) \{esd\}$ .

For c = b in Corollary 1, we obtain that Cline's formula for the *egs*–Drazin inverse holds.

COROLLARY 2. Let  $a, b \in \mathcal{A}$ . Then  $ba \in \mathcal{A}^{esd} \Leftrightarrow ab \in \mathcal{A}^{esd}$ . In this case, for arbitrary  $(ab)^{esd}$ ,  $b((ab)^{esd})^2a \in (ba)\{esd\}$ .

### 3. Extended *s*-Drazin inverse

In this section, we give characterizations of *es*–Drazin invertible elements in a Banach algebra applying the results of previous section. Firstly, as a consequence of Lemma 1, we observe that  $\mathcal{A}^{esD} \subseteq \mathcal{A}^{eD}$ .

LEMMA 5. If  $a \in \mathscr{A}^{esD}$ , then  $a \in \mathscr{A}^{eD}$ . In addition, if x is an es-Drazin inverse of a, then x is an e-Drazin inverse of a.

Using Theorem 1 and Theorem 2, we now characterize *es*–Drazin invertible elements by idempotents and tripotents.

COROLLARY 3. Let  $a \in \mathscr{A}$ . The following statements are equivalent:

- (i) a is es-Drazin invertible;
- (ii) a is e-Drazin invertible;
- (iii) a is Drazin invertible;

- (iv) there exists an idempotent  $p \in \mathscr{A}$  commuting with a such that  $ap \in (p\mathscr{A}p)^{-1}$ and  $a - p \in \mathscr{A}^{D}$ ;
- (v) there exists an idempotent  $p \in \mathscr{A}$  commuting with a such that  $ap+1-p \in \mathscr{A}^{-1}$ and  $a-p \in \mathscr{A}^{D}$ .

In this case, we have that 0 and  $(ap)_{p \ll p}^{-1} = (ap+1-p)^{-1}p$  are es-Drazin inverses of *a*.

COROLLARY 4. Let  $a \in \mathscr{A}$ . The following statements are equivalent:

- (i) a is es-Drazin invertible;
- (ii) there exists a tripotent  $p \in \mathscr{A}$  commuting with a such that  $ap \in (p^2 \mathscr{A} p^2)^{-1}$  and  $a p^2 \in \mathscr{A}^D$ ;
- (iii) there exists a tripotent  $p \in \mathscr{A}$  commuting with a such that  $ap + 1 p^2 \in \mathscr{A}^{-1}$ and  $a - p^2 \in \mathscr{A}^D$ .

In this case, we have that  $(ap)_{p^2 \mathscr{A} p^2}^{-1} p = (ap+1-p^2)^{-1}p$  is the es-Drazin inverse of *a*.

Using tripotents, some new characterizations of e-Drazin invertible elements are presented by Theorem 3.

COROLLARY 5. Let  $a \in \mathscr{A}$ . The following statements are equivalent:

- (i) a is e-Drazin invertible;
- (ii) there exists a tripotent  $q \in \mathscr{A}$  commuting with a such that  $aq \in (q^2 \mathscr{A} q^2)^{-1}$  and  $a(1-q^2) \in \mathscr{A}^D$ ;
- (iii) there exists a tripotent  $q \in \mathscr{A}$  commuting with a such that  $aq \in \mathscr{A}^{\#}$  and  $a(1-q^2) \in \mathscr{A}^D$ ;
- (iv) there exists a tripotent  $q \in \mathscr{A}$  commuting with a such that  $aq + 1 q^2 \in \mathscr{A}^{-1}$ and  $a(1-q^2) \in \mathscr{A}^D$ .

In this case, we have that  $(aq)_{q^2 \mathscr{A} q^2}^{-1} q = (aq)^{\#} q = (aq+1-q^2)^{-1} q$  is the e-Drazin inverse of a.

According to Lemma 2, Lemma 3 and Theorem 4, several properties of a *es*–Drazin inverse are presented in the following results.

LEMMA 6. Let  $a \in \mathscr{A}^{esD}$ . Then, for arbitrary  $a^{esD}$ ,

- (i)  $a^{esD} \in \mathscr{A}^{\#}$  and  $(a^{esD})^{\#} = a^2 a^{esD}$ ;
- (ii)  $a^{esD} \in \mathscr{A}^{esD}$  and  $a^2 a^{esD} \in a^{esD} \{esD\}$ .

LEMMA 7. If  $a \in \mathscr{A}^D$ , then

$$a = \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix}_{aa^D} \quad and \quad a^{esD} = \begin{bmatrix} x_1 & 0 \\ 0 & x_2 \end{bmatrix}_{aa^D},$$

where  $a_1 \in (aa^D \mathscr{A} aa^D)^{-1}$ ,  $a_2 \in (a^{\pi} \mathscr{A} a^{\pi})^{nil}$  and  $x_i \in a_i \{esD\}$  for i = 1, 2.

COROLLARY 6. Let  $a \in \mathcal{A}$  and  $n \in \mathbb{N}$ . The following statements are equivalent:

- (i) a is es-Drazin invertible;
- (ii) there exists an element  $y \in \mathscr{A}$  such that  $ya^n y = y$ , ya = ay and  $a a^n y \in \mathscr{A}^D$ ;
- (iii)  $a^n$  is es–Drazin invertible;

In this case,  $a^{n-1}y \in a\{esD\}$ .

We also have some extensions of Cline's formula to the case of the *es*–Drazin inverse as consequences of Theorem 5, Corollary 1 and Corollary 2.

COROLLARY 7. Let  $a, b, c, d \in \mathscr{A}$  satisfy acd = dbd and dba = aca. Then

 $bd \in \mathscr{A}^{esD} \quad \Leftrightarrow \quad ac \in \mathscr{A}^{esD}.$ 

In this case, for arbitrary  $(bd)^{esD}$  and  $(ac)^{esD}$ , we have  $b((ac)^{esD})^2 d \in (bd) \{esD\}$ and  $d((bd)^{esD})^3 bac \in (ac) \{esD\}$ .

COROLLARY 8. Let  $a, b, c \in \mathscr{A}$  satisfy aca = aba. Then

 $ba \in \mathscr{A}^{esD} \quad \Leftrightarrow \quad ac \in \mathscr{A}^{esD}.$ 

In this case, for arbitrary  $(ba)^{esD}$  and  $(ac)^{esD}$ ,  $b((ac)^{esD})^2 a \in (ba) \{esD\}$  and  $a((ba)^{esD})^2 c \in (ac) \{esD\}$ .

COROLLARY 9. Let  $a, b \in \mathscr{A}$ . Then  $ba \in \mathscr{A}^{esD} \Leftrightarrow ab \in \mathscr{A}^{esD}$ . In addition, for arbitrary  $(ab)^{esD}$ ,  $b((ab)^{esD})^2a \in (ba)\{esD\}$ .

#### REFERENCES

- S. BREAZ, G. CĂLUGĂREANU, P. DANCHEV AND T. MICU, Nil-clean matrix rings, Linear Algebra Appl. 439 (2013), 3115–3119.
- [2] H. CHEN, S. S. NABAVI AND M. SHEIBANI, Strongly Drazin inverse in rings, Operators and Matrices 13, 2 (2019), 495–505.
- [3] R. E. CLINE, An application of representation for the generalized inverse of a matrix, MRC Technical Report 592, 1965.
- [4] P. DANCHEV, Strongly nil-clean corner rings, Bull. Iranian Math. Soc. 43, 5 (2017), 1333–1339.
- [5] A. J. DIESL, Nil clean rings, J. Algebra 383 (2013), 197-211.
- [6] O. GÜRGÜN, *Properties of generalized strongly Drazin invertible elements in general rings*, Journal of Algebra and Its Applications **16**, 11 (2017), 1750207 (13 pages).
- [7] J. J. KOLIHA, A generalized Drazin inverse, Glasgow Math. J. 38 (1996), 367-381.

- [8] T. KOŞAN, Z. WANG AND Y. ZHOU, Nil-clean and strongly nil-clean rings, Journal of Pure and Applied Algebra 220 (2016), 633–646.
- [9] X. MARY, Characterizations of clean elements by means of outer inverses in rings and applications, Journal of Algebra and Its Applications 19, 07 (2020), 2050134.
- [10] D. MOSIĆ, A note on Cline's formula for the generalized Drazin inverse, Linear Multilinear Algebra 63, 6 (2015), 1106–1110.
- [11] D. MOSIĆ, Extended g-Drazin inverse in a Banach algebra, Bull. Malays. Math. Sci. Soc. 43, 1 (2020), 879–892.
- [12] D. MOSIĆ, Reverse order laws for the generalized strong Drazin inverses, Appl. Math. Comput. 284 (2016), 37–46.
- [13] D. MOSIĆ AND D. S. DJORDJEVIĆ, Weighted generalized Drazin inverse in rings, Georgian Math. J. 23, 4 (2016), 587–594.
- [14] Y. QIN, X. LIU AND J. BENÍTEZ, Some results on the symmetric representation of the generalized Drazin inverse in a Banach algebra, Symmetry 11, 1 (2019), 105; doi:10.3390/sym1101015.
- [15] J. ROBLES, M. F. MARTÍNEZ-SERRANO AND E. DOPAZO, On the generalized Drazin inverse in Banach algebras in terms of the generalized Schur complement, Appl. Math. Comput. 284 (2016), 162–168.
- [16] Z. WANG, A class of Drazin inverses in rings, Filomat 31, 6 (2017), 1781–1789.
- [17] K. YAN AND X. C. FANG, Common properties of the operator products in local spectral theory, Acta Math. Sin. (Engl. Ser.) 31 (2015), 1715–1724.
- [18] K. YAN, Q. ZENG AND Y. ZHU, Generalized Jacobson's lemma for Drazin inverses and its applications, Linear Multilinear Algebra 68, 1 (2020), 81–93.
- [19] Q. ZENG, Z. WU AND Y. WEN, New extensions of Cline's formula for generalized inverses, Filomat 31, 7 (2017), 1973–1980.

(Received January 15, 2020)

Dijana Mosić Faculty of Sciences and Mathematics University of Niš P.O. Box 224, 18000 Niš, Serbia e-mail: dijana@pmf.ni.ac.rs

Honglin Zou School of Mathematics and Statistics Hubei Normal University Huangshi 435002, China e-mail: honglinzou@163.com

Operators and Matrices www.ele-math.com oam@ele-math.com