EXTENSION OF GENERALIZED STRONG DRAZIN INVERSE

Dijana Mosić* and Honglin Zou

(Communicated by I. M. Spitkovsky)

Abstract

As an extension of the generalized strong Drazin inverse, we present a new generalized inverse for Banach algebra elements based on a g-Drazin invertible element rather than on a quasinilpotent element in the definition of the generalized strong Drazin inverse. Because of that, our new inverse will be called an extended $g s$-Drazin inverse. Some characterizations of this inverse are given using idempotents and tripotents. We also study extensions of Cline's formula to the case of extended $g s$-Drazin inverse. Applying these results, we introduce and investigate an extended s-Drazin inverse.

1. Introduction

Let \mathscr{A} be a complex Banach algebra with unit 1, and let, for $a \in \mathscr{A}, \sigma(a)$, $r(a)$ and acc $\sigma(a)$ be the spectrum of a, the spectral radius of a and the set of all accumulation points of $\sigma(a)$, respectively. We use $\mathscr{A}^{-1}, \mathscr{A}^{\text {nil }}$ and $\mathscr{A}^{\text {qnil }}$ to denote the sets of all invertible, nilpotent and quasinilpotent elements $(\sigma(a)=\{0\})$ of \mathscr{A}, respectively. If \mathscr{B} is a subalgebra of \mathscr{A}, we denote by $\sigma_{\mathscr{B}}(a)$ the spectrum of $a \in \mathscr{B}$ with respect to \mathscr{B}, and by $a_{\mathscr{B}}^{-1}$ the inverse of a in \mathscr{B}. An element $a \in \mathscr{A}$ is tripotent if $a^{3}=a$, and a is idempotent if $a^{2}=a$.

The notion of a strongly nil-clean element was defined for an element of an associative ring in [5]. Wang [16] introduced a strong Drazin inverse as a class of new generalized inverse corresponding to the strong nil-cleanness. Several recent results related to nil-clean elements and strong Drazin inverses can be found in [1, 2, 4, 8, 9].

In [12], a generalized strong Drazin inverse was introduced in a Banach algebra: an element $a \in \mathscr{A}$ is called generalized strongly Drazin invertible (or $g s$-Drazin invertible) if there exists an element $x \in \mathscr{A}$ such that

$$
x a x=x, \quad a x=x a \quad \text { and } \quad a-a x \in \mathscr{A}^{\text {qnil }} .
$$

The $g s$-Drazin inverse x of a is unique if it exists. If $a-a x \in \mathscr{A}^{n i l}$ in the above definition, then x is the strong Drazin inverse (or s-Drazin inverse) of a. For more details concerning generalized strong Drazin inverse see [6].

[^0]In the case that $a(1-a x) \in \mathscr{A}^{\text {qnil }}$ instead of $a-a x \in \mathscr{A}^{\text {qnil }}$ in the definition of the $g s$-Drazin inverse, a is g-Drazin invertible. The g-Drazin inverse $x=a^{d}$ of a is unique, if it exists [7]. Recall that a^{d} exists if and only if $0 \notin \operatorname{acc} \sigma(a)$. By \mathscr{A}^{d} will be denoted the set of all g-Drazin invertible elements of \mathscr{A}. For $a \in \mathscr{A}^{d}, a^{\pi}=1-a a^{d}$ is the spectral idempotent of a corresponding to the set $\{0\}$. The g-Drazin inverse of a doubly commutes with a, that is, a^{d} commutes with every element of \mathscr{A} that commutes with a (that is, $a b=b a$ implies $a^{d} b=b a^{d}$) [7]. It is well-known that $\mathscr{A}^{\text {qnil }} \subseteq \mathscr{A}^{d}$, since the g-Drazin inverse of a quasinilpotent element exists and it is equal to zero. Some interesting results related to g-Drazin inverses were proved in [13, 14, 15, 18].

If $a-a x a \in \mathscr{A}^{\text {nil }}$ in the definition of the g-Drazin inverse, then $a^{d}=a^{D}$ is the Drazin inverse of a. The group inverse is a particular case of the Drazin inverse for which $a=$ axa holds instead of $a-a x a \in \mathscr{A}^{\text {nil }}$. The group inverse of a will be denoted by $a^{\#}$. The sets \mathscr{A}^{D} and $\mathscr{A}^{\#}$ consist of all Drazin invertible and group invertible elements of \mathscr{A}, respectively.

Cline [3] proved that if $a b$ is Drazin invertible, then so is $b a$ and $(b a)^{D}=b\left((a b)^{D}\right)^{2} a$. This equality is so-called Cline's formula and it was extended to various generalized inverses under various conditions. Motivated by [17], a new generalization of Cline's formula was studied in [19] under assumptions $a c d=d b d$ and $d b a=a c a$.

In [11], the notion of g-Drazin inverse was extended using a corresponding $g-$ Drazin invertible element rather than a quasinilpotent element in the definition of g_{-} Drazin inverse. An element $a \in \mathscr{A}$ is called extended g-Drazin invertible (or $e g$-Drazin invertible) if there exists an element $x \in \mathscr{A}$ such that

$$
x a x=x, \quad x a=a x \quad \text { and } \quad a-a x a \in \mathscr{A}^{d} .
$$

In this case, x is an extended g-Drazin inverse (or $e g$-Drazin inverse) of a and it is not uniquely determined. Recall that a is extended g-Drazin invertible if and only if a is g-Drazin invertible. If we replace $a-a x a \in \mathscr{A}^{d}$ with $a-a x a \in \mathscr{A}^{D}$ in the definition of $e g$-Drazin inverse, then x is an extended Drazin inverse (or e-Drazin inverse) of a. Denote by $\mathscr{A}^{e d}$ and $\mathscr{A}^{e D}$, respectively, the sets of all $e g$-Drazin invertible and e-Drazin invertible elements of \mathscr{A}.

Our goal is to continue studying generalized strong Drazin inverses and proposed a wider class of generalized strong Drazin inverses. Inspired by extension of the g-Drazin inverse to the extended g-Drazin inverse, we replace the condition $a-a x \in \mathscr{A}^{\text {qnil }}$ in the definition of generalized strong Drazin inverse with $a-a x \in \mathscr{A}^{d}$ to introduce a new generalized inverse in a Banach algebra. Since this new inverse is an extension of $g s-$ Drazin inverse, it will be called the extended $g s$-Drazin inverse. Using idempotents and tripotents, we characterize extended $g s$-Drazin invertible elements. We show that an element $a \in \mathscr{A}$ is extended $g s$-Drazin invertible if and only if a is extended g-Drazin invertible if and only if a is g-Drazin invertible. We investigated generalizations of Cline's formula for extended $g s$-Drazin inverse whenever $a c d=d b d$ and $d b a=a c a$. As a consequence of these results, we define and study an extension of strong Drazin inverse.

2. Extended g_{s}-Drazin inverse

Using the condition $a-a x \in \mathscr{A}^{d}$ instead of $a-a x \in \mathscr{A}^{\text {qnil }}$ in the definition of $g s$-Drazin inverse, we extend the concept of the $g s$-Drazin inverse and define a new generalized inverse in a Banach algebra.

Definition 1. An element $a \in \mathscr{A}$ is called extended $g s$-Drazin invertible (or egs-Drazin invertible) if there exists an element $x \in \mathscr{A}$ such that

$$
x a x=x, \quad x a=a x \quad \text { and } \quad a-a x \in \mathscr{A}^{d} .
$$

In this case, x is an extended $g s$-Drazin inverse (or $e g s$-Drazin inverse) of a.
Notice that, by $\mathscr{A}^{\text {qnil }} \subseteq \mathscr{A}^{d}$, if $a \in \mathscr{A}$ is $g s$-Drazin invertible, then a is egsDrazin invertible. If we assume that $a-a x \in \mathscr{A}^{D}$ in the above definition, we introduce an extension of the strong Drazin inverse.

Definition 2. An element $a \in \mathscr{A}$ is called extended s-Drazin invertible (or esDrazin invertible) if there exists an element $x \in \mathscr{A}$ such that

$$
x a x=x, \quad x a=a x \quad \text { and } \quad a-a x \in \mathscr{A}^{D}
$$

In this case, x is an extended s-Drazin inverse (or $e s$-Drazin inverse) of a.
We denote by $\mathscr{A}^{e s d}$ and $\mathscr{A}^{e s D}$, respectively, the sets of all $e g s$-Drazin invertible and es-Drazin invertible elements of \mathscr{A}. Clearly, $\mathscr{A}^{e s D} \subseteq \mathscr{A}^{e s d}$.

LEMMA 1. If $a \in \mathscr{A}^{\text {esd }}$, then $a \in \mathscr{A}^{e d}$. In addition, if x is an egs-Drazin inverse of a, then x is an eg-Drazin inverse of a.

Proof. Let x be an $e g s$-Drazin inverse of a. Since $1-a x$ is an idempotent, then $1-a x \in \mathscr{A}^{\#} \subseteq \mathscr{A}^{d}$. Notice that $a-a x \in \mathscr{A}^{d}$ and $(a-a x)(1-a x)=(1-a x)(a-a x)$. By [7, Theorem 5.5], $a-a x a=a(1-a x)=(a-a x)(1-a x) \in \mathscr{A}^{d}$. Thus, x is an $e g$-Drazin inverse of a.

Remark that $\mathscr{A}^{\text {esd }} \subseteq \mathscr{A}^{e d}=\mathscr{A}^{d}$, by Theorem 1 and [11, Theorem 2.2]. We now verify some characterizations of $e g s$-Drazin invertible elements and prove that $\mathscr{A}^{e s d}=$ $\mathscr{A}^{e d}=\mathscr{A}^{d}$. Also, notice that the $e g^{s}$-Drazin inverse is not uniquely determined.

THEOREM 1. Let $a \in \mathscr{A}$. The following statements are equivalent:
(i) a is egs-Drazin invertible;
(ii) a is eg-Drazin invertible;
(iii) a is g-Drazin invertible;
(iv) there exists an idempotent $p \in \mathscr{A}$ commuting with a such that ap $\in(p \mathscr{A} p)^{-1}$ and $a-p \in \mathscr{A}^{d}$;
(v) there exists an idempotent $p \in \mathscr{A}$ commuting with a such that ap $+1-p \in \mathscr{A}^{-1}$ and $a-p \in \mathscr{A}^{d}$.

In this case, we have that 0 and $(a p)_{p \mathscr{A} p}^{-1}=(a p+1-p)^{-1} p$ are egs-Drazin inverses of a.

Proof. (i) \Rightarrow (ii): By Lemma 1, this implication is clear.
(ii) \Leftrightarrow (iii): It follows by [11, Theorem 2.2].
(iii) \Rightarrow (i): In the case that $a \in \mathscr{A}^{d}$, we observe that 0 is an egs-Drazin inverse of a.
(i) \Rightarrow (iv) \wedge (v): Let x be an egs-Drazin inverse of a and $p=a x$. Then we get $p^{2}=p, p a=a p$ and $a-p=a-a x \in \mathscr{A}^{d}$. Since $a p x=a^{2} x^{2}=a x=p=x a p$, we have that $a p$ is invertible in the Banach algebra $p \mathscr{A} p$ and $x=(a p)_{p \mathscr{A} p}^{-1}$. We can also verify that $(a p)_{p \mathscr{A} p}^{-1}+1-p$ is the inverse of $a p+1-p$.
(iv) \Rightarrow (i): Assume that there exists an idempotent $p \in \mathscr{A}$ commuting with a such that $a p \in(p \mathscr{A} p)^{-1}$ and $a-p \in \mathscr{A}^{d}$. Set $x=(a p)_{p \mathscr{A} p}^{-1}$. Now, $x a=(a p)_{p \mathscr{A} p}^{-1} a=$ $(a p)_{p \mathscr{A} p}^{-1} p a=(a p)_{p \mathscr{A} p}^{-1} a p=p=a p(a p)_{p \mathscr{A} p}^{-1}=a(a p)_{p \mathscr{A} p}^{-1}=a x, x a x=p x=x$ and $a-a x=a-p \in \mathscr{A}^{d}$. So, x is an egs-Drazin inverse of a.
(v) \Rightarrow (i): From $(a p+1-p) p=a p$, we obtain $p=(a p+1-p)^{-1} a p$. Denote by $x=(a p+1-p)^{-1} p$. Hence, by $a x=x a=p, x a x=x p=x$ and $a-a x=a-p \in \mathscr{A}^{d}$, x is an egs-Drazin inverse of a.

Using tripotents, we characterize egs-Drazin invertible elements in the next way.

THEOREM 2. Let $a \in \mathscr{A}$. The following statements are equivalent:

(i) a is egs-Drazin invertible;
(ii) there exists a tripotent $p \in \mathscr{A}$ commuting with a such that ap $\in\left(p^{2} \mathscr{A} p^{2}\right)^{-1}$ and $a-p^{2} \in \mathscr{A}^{d}$;
(iii) there exists a tripotent $p \in \mathscr{A}$ commuting with a such that ap $+1-p^{2} \in \mathscr{A}^{-1}$ and $a-p^{2} \in \mathscr{A}^{d}$.

In this case, we have that $(a p)_{p^{2} \mathscr{A} p^{2}}^{-1} p=\left(a p+1-p^{2}\right)^{-1} p$ is the egs-Drazin inverse of a.

Proof. (i) \Rightarrow (iii): Using Theorem 1(v), there exists an idempotent $p \in \mathscr{A}$ commuting with a such that $a p+1-p \in \mathscr{A}^{-1}$ and $a-p \in \mathscr{A}^{d}$. Therefore, $p=p^{2}=p^{3}$, $a p+1-p^{2} \in \mathscr{A}^{-1}$ and $a-p^{2} \in \mathscr{A}^{d}$.
(i) \Rightarrow (ii): By Theorem 1(iv), we show this implication similarly as (i) \Rightarrow (iii).
(ii) \Rightarrow (i): Assume that there exists a tripotent $p \in \mathscr{A}$ commuting with a such that $a p \in\left(p^{2} \mathscr{A} p^{2}\right)^{-1}$ and $a-p^{2} \in \mathscr{A}^{d}$. Since p is a tripotent, then p^{2} is an idempotent. Let $x=(a p)_{p^{2} \mathscr{A} p^{2}}^{-1} p$. Notice that $x a=(a p)_{p^{2} \mathscr{A} p^{2}}^{-1} p a=(a p)_{p^{2} \mathscr{A} p^{2}}^{-1} a p=p^{2}$. From $x=$ $p^{2} x$, we get $a x=a p^{2} x=p a p(a p)_{p^{2} \mathscr{A} p^{2}}^{-1} p=p^{2}$ and so $a x=x a$. Also, $x a x=p^{2} x=x$ and $a-a x=a-p^{2} \in \mathscr{A}^{d}$, which imply that x is an egs-Drazin inverse of a.
(iii) \Rightarrow (i): Because $\left(a p+1-p^{2}\right) p^{2}=a p$, we have $p^{2}=\left(a p+1-p^{2}\right)^{-1} a p$. Let $x=\left(a p+1-p^{2}\right)^{-1} p$. Then $a x=x a=p^{2}, x a x=x p^{2}=\left(a p+1-p^{2}\right)^{-1} p^{3}=x$ and $a-a x=a-p^{2} \in \mathscr{A}^{d}$ give that x is an egs-Drazin inverse of a.

Remark that, by Theorem 1, the statements of Theorem 2 are characterizations of $e g$-Drazin and g-Drazin invertible elements by tripotents. In the following result, we obtain new characterizations of $e g$-Drazin invertible elements by means of tripotents.

THEOREM 3. Let $a \in \mathscr{A}$. The following statements are equivalent:
(i) a is eg-Drazin invertible;
(ii) there exists a tripotent $q \in \mathscr{A}$ commuting with a such that $a q \in\left(q^{2} \mathscr{A} q^{2}\right)^{-1}$ and $a\left(1-q^{2}\right) \in \mathscr{A}^{d}$;
(iii) there exists a tripotent $q \in \mathscr{A}$ commuting with a such that $a q \in \mathscr{A}^{\#}$ and $a(1-$ $\left.q^{2}\right) \in \mathscr{A}^{d} ;$
(iv) there exists a tripotent $q \in \mathscr{A}$ commuting with a such that aq+1-q2 $\in \mathscr{A}^{-1}$ and $a\left(1-q^{2}\right) \in \mathscr{A}^{d}$.
In this case, we have that $(a q)_{q^{2} \mathscr{A} q^{2}}^{-1} q=(a q)^{\#} q=\left(a q+1-q^{2}\right)^{-1} q$ is the eg-Drazin inverse of a.

Proof. Using [11, Theorem 2.1], we verify this result in a similar manner as in the proof of Theorem 2.

We give some properties of egs-Drazin invertible elements in the next result. By $a^{e s d}$ and $a^{e s D}$ will be denoted an egs-Drazin inverse and es-Drazin inverse of a, respectively. Let $a\{e s d\}$ (or $a\{e s D\}$) denote the set of all extended gs-Drazin (es-Drazin) inverses of a.

Lemma 2. Let $a \in \mathscr{A}^{\text {esd }}$. Then, for arbitrary $a^{e s d}$,
$a^{e s d} \in \mathscr{A}^{\#}$ and $\left(a^{e s d}\right)^{\#}=a^{2} a^{e s d}$;
(ii) $a^{e s d} \in \mathscr{A}^{\text {esd }}$ and $a^{2} a^{e s d} \in a^{e s d}\{$ esd $\}$.

Proof. (i) Firstly, we observe that $a^{\text {esd }}$ commutes with $a^{2} a^{\text {esd }}$.
Now, by $\left(a^{2} a^{\text {esd }}\right) a^{\text {esd }}\left(a^{2} a^{\text {esd }}\right)=a^{2} a^{\text {esd }}$ and $a^{\text {esd }}\left(a^{2} a^{\text {esd }}\right) a^{\text {esd }}=a^{\text {esd }}$, we deduce that $a^{\text {esd }} \in \mathscr{A}^{\#}$ and $\left(a^{\text {esd }}\right)^{\#}=a^{2} a^{\text {esd }}$.
(ii) Notice that $a^{\text {esd }}$ commutes with $a-a a^{\text {esd }}, a-a a^{e s d} \in \mathscr{A}^{d}$ and $a^{e s d} \in \mathscr{A}^{\#}$. Using [7, Theorem 5.5], we have that $a^{e s d}-a^{e s d}\left(a^{2} a^{e s d}\right)=a\left(a^{\text {esd }}\right)^{2}-a a^{\text {esd }}=-a^{\text {esd }}(a-$ $\left.a a^{e s d}\right) \in \mathscr{A}^{d}$.

For an idempotent $p \in \mathscr{A}$, it is well-known that an arbitrary element $a \in \mathscr{A}$ can be represented as

$$
a=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]_{p}
$$

where $a_{11}=p a p, a_{12}=p a(1-p), a_{21}=(1-p) a p, a_{22}=(1-p) a(1-p)$. We now present the matrix representation of an egs-Drazin inverse of $a \in \mathscr{A}^{d}$ relative to idempotent $a a^{d}$.

Lemma 3. If $a \in \mathscr{A}^{d}$, then

$$
a=\left[\begin{array}{cc}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right]_{a a^{d}} \text { and } a^{e s d}=\left[\begin{array}{cc}
x_{1} & 0 \\
0 & x_{2}
\end{array}\right]_{a a^{d}}
$$

where $a_{1} \in\left(a a^{d} \mathscr{A} a a^{d}\right)^{-1}, a_{2} \in\left(a^{\pi} \mathscr{A} a^{\pi}\right)^{q n i l}$ and $x_{i} \in a_{i}\{$ esd $\}$ for $i=1,2$.
Proof. Recall that, if $a \in \mathscr{A}^{d}$, then

$$
a=\left[\begin{array}{cc}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right]_{p}
$$

where $p=a a^{d}, a_{1} \in(p \mathscr{A} p)^{-1}$ and $a_{2} \in((1-p) \mathscr{A}(1-p))^{\text {qnil }}$. In this case, the $g-$ Drazin inverse of a is given by

$$
a^{d}=\left[\begin{array}{cc}
a_{1}^{-1} & 0 \\
0 & 0
\end{array}\right]_{p}
$$

Suppose that $x \in \mathscr{A}$ is an egs-Drazin inverse of a. Because a^{d} double commutes with a, then x commutes with p and thus

$$
x=\left[\begin{array}{cc}
x_{1} & 0 \\
0 & x_{2}
\end{array}\right]_{p} .
$$

From $a x=x a$ and $x a x=x$, for $i=1,2$, we get $a_{i} x_{i}=x_{i} a_{i}$ and $x_{i} a_{i} x_{i}=x_{i}$. Since

$$
a-a x=\left[\begin{array}{cc}
a_{1}-a_{1} x_{1} & 0 \\
0 & a_{2}-a_{2} x_{2}
\end{array}\right]_{p}
$$

is $g-$ Drazin invertible and $\sigma(a-a x)=\sigma_{p \mathscr{A} p}\left(a_{1}-a_{1} x_{1}\right) \cup \sigma_{(1-p) \mathscr{A}(1-p)}\left(a_{2}-a_{2} x_{2}\right)$, we conclude that $a_{1}-a_{1} x_{1} \in(p \mathscr{A} p)^{d}$ and $a_{2}-a_{2} x_{2} \in((1-p) \mathscr{A}(1-p))^{d}$. Hence, $x_{i} \in a_{i}\{e s d\}$, for $i=1,2$.

We give more characterizations of egs-Drazin invertible elements in the following theorem.

THEOREM 4. Let $a \in \mathscr{A}$ and $n \in \mathbb{N}$. The following statements are equivalent:
(i) a is egs-Drazin invertible;
(ii) there exists an element $y \in \mathscr{A}$ such that $y a^{n} y=y, y a=a y$ and $a-a^{n} y \in \mathscr{A}^{d}$;
(iii) a^{n} is egs-Drazin invertible;

In this case, $a^{n-1} y \in a\{e s d\}$.
Proof. (i) \Rightarrow (ii): If a is egs-Drazin invertible, we denote by $y=\left(a^{\text {esd }}\right)^{n}$, for arbitrary $a^{\text {esd }}$. We obtain $y a=\left(a^{\text {esd }}\right)^{n} a=a\left(a^{\text {esd }}\right)^{n}=a y$, $y a^{n} y=\left(a^{\text {esd }}\right)^{n} a^{n}\left(a^{\text {esd }}\right)^{n}=$ $\left(a^{\text {esd }} a a^{\text {esd }}\right)^{n}=\left(a^{\text {esd }}\right)^{n}=y$ and $a-a^{n} y=a-a a^{\text {esd }} \in \mathscr{A}^{d}$.
(ii) \Rightarrow (i): Let (ii) hold and $x=a^{n-1} y$. Then $a x=a^{n} y=a^{n-1} y a=x a, x a x=$ $a^{n-1} y a^{n} y=a^{n-1} y=x$ and $a-a x=a-a^{n} y \in \mathscr{A}^{d}$. So, $a \in \mathscr{A}^{e s d}$ and x is an egsDrazin inverse of a.
(i) \Leftrightarrow (iii): By Theorem 1 and [10, Corollary 2.2], $a \in \mathscr{A}^{\text {esd }}$ iff $a \in \mathscr{A}^{d}$ iff $a^{n} \in \mathscr{A}^{d}$ iff $a^{n} \in \mathscr{A}^{\text {esd }}$.

To study Cline's formula for the egs-Drazin inverse, we need the following auxiliary result which was proved in [19] for elements of an associative ring \mathscr{R} with the unit 1 .

Lemma 4. [19, Theorem 2.7] Let $a, b, c, d \in \mathscr{R}$ satisfy $a c d=d b d$ and $d b a=$ aca. Then $b d \in \mathscr{R}^{d} \Leftrightarrow a c \in \mathscr{R}^{d}$. In this case, $(b d)^{d}=b\left((a c)^{d}\right)^{2} d$ and $(a c)^{d}=$ $d\left((b d)^{d}\right)^{3} b a c$.

In the case that $a c d=d b d$ and $d b a=a c a$, we present a generalization of Cline's formula for egs-Drazin inverse.

THEOREM 5. Let $a, b, c, d \in \mathscr{A}$ satisfy $a c d=d b d$ and $d b a=a c a$. Then

$$
b d \in \mathscr{A}^{e s d} \Leftrightarrow a c \in \mathscr{A}^{\text {esd }} .
$$

In this case, for arbitrary $(b d)^{\text {esd }}$ and $(a c)^{\text {esd }}$, we have $b\left((a c)^{e s d}\right)^{2} d \in(b d)\{e s d\}$ and $d\left((b d)^{e s d}\right)^{3} b a c \in(a c)\{e s d\}$.

Proof. \Rightarrow : Suppose that $b d \in \mathscr{A}^{\text {esd }}$ and $x=d\left((b d)^{e s d}\right)^{3} b a c$, for arbitrary $(b d)^{e s d}$. Then

$$
\begin{aligned}
a c x & =a c d\left((b d)^{e s d}\right)^{3} b a c=d b d\left((b d)^{e s d}\right)^{3} b a c=d\left((b d)^{e s d}\right)^{3} b d b a c \\
& =d\left((b d)^{\text {esd }}\right)^{3} b a c a c=x a c
\end{aligned}
$$

and

$$
\begin{aligned}
x a c x & =d\left((b d)^{e s d}\right)^{2} b a c x=d\left((b d)^{e s d}\right)^{2} b a c d\left((b d)^{e s d}\right)^{3} b a c \\
& =d\left((b d)^{e s d}\right)^{2} b d b d\left((b d)^{e s d}\right)^{3} b a c=d\left((b d)^{e s d}\right)^{3} b a c=x
\end{aligned}
$$

To show that

$$
a c-a c x=a c-d\left((b d)^{e s d}\right)^{2} b a c=\left(1-d\left((b d)^{e s d}\right)^{2} b\right) a c \in \mathscr{A}^{d}
$$

let $u=\left(1-d\left((b d)^{e s d}\right)^{2} b\right) a$ and $v=\left(1-(b d)^{e s d}\right) b$. Notice that $v d \in \mathscr{A}^{d}$,

$$
u c d=\left(1-d\left((b d)^{e s d}\right)^{2} b\right) a c d=\left(1-d\left((b d)^{e s d}\right)^{2} b\right) d b d=d\left(1-(b d)^{e s d}\right) b d=d v d
$$

and

$$
\begin{aligned}
d v u & =d\left(1-(b d)^{e s d}\right)\left(b-(b d)^{e s d} b\right) a=\left(d-d\left((b d)^{e s d}\right)^{2} b d\right)\left(1-(b d)^{e s d}\right) b a \\
& =\left(1-d\left((b d)^{e s d}\right)^{2} b\right)\left(d b a-d b d\left((b d)^{e s d}\right)^{2} b a\right) \\
& =\left(1-d\left((b d)^{e s d}\right)^{2} b\right)\left(a c a-a c d\left((b d)^{e s d}\right)^{2} b a\right) \\
& =\left(1-d\left((b d)^{e s d}\right)^{2} b\right) a c\left(1-d\left((b d)^{e s d}\right)^{2} b\right) a \\
& =u c u .
\end{aligned}
$$

By Lemma 4, we obtain $\left(1-d\left((b d)^{e s d}\right)^{2} b\right) a c=u c \in \mathscr{A}^{d}$. Hence, $a c \in \mathscr{A}^{e s d}$ and $d\left((b d)^{e s d}\right)^{3} b a c \in(a c)\{e s d\}$.
\Leftarrow : In a similar manner as in the previous part, we prove this implication.
If $d=a$ in Theorem 5, we get an extension of Cline's formula for the egs-Drazin inverse when $a c a=a b a$.

Corollary 1. Let $a, b, c \in \mathscr{A}$ satisfy $a c a=a b a$. Then

$$
b a \in \mathscr{A}^{\text {esd }} \Leftrightarrow a c \in \mathscr{A}^{\text {esd }} .
$$

In this case, for arbitrary $(b a)^{e s d}$ and $(a c)^{e s d}, b\left((a c)^{e s d}\right)^{2} a \in(b a)\{e s d\}$ and $a\left((b a)^{e s d}\right)^{2} c$ $\in(a c)\{e s d\}$.

For $c=b$ in Corollary 1, we obtain that Cline's formula for the egs-Drazin inverse holds.

Corollary 2. Let $a, b \in \mathscr{A}$. Then $b a \in \mathscr{A}^{\text {esd }} \Leftrightarrow a b \in \mathscr{A}^{\text {esd }}$. In this case, for arbitrary $(a b)^{\text {esd }}, b\left((a b)^{e s d}\right)^{2} a \in(b a)\{e s d\}$.

3. Extended s-Drazin inverse

In this section, we give characterizations of es-Drazin invertible elements in a Banach algebra applying the results of previous section. Firstly, as a consequence of Lemma 1, we observe that $\mathscr{A}^{e s D} \subseteq \mathscr{A}^{e D}$.

LEMMA 5. If $a \in \mathscr{A}^{e s D}$, then $a \in \mathscr{A}^{e D}$. In addition, if x is an es-Drazin inverse of a, then x is an e-Drazin inverse of a.

Using Theorem 1 and Theorem 2, we now characterize $e s$-Drazin invertible elements by idempotents and tripotents.

Corollary 3. Let $a \in \mathscr{A}$. The following statements are equivalent:
(i) a is es-Drazin invertible;
(ii) a is e-Drazin invertible;
(iii) a is Drazin invertible;
(iv) there exists an idempotent $p \in \mathscr{A}$ commuting with a such that $a p \in(p \mathscr{A} p)^{-1}$ and $a-p \in \mathscr{A}^{D}$;
(v) there exists an idempotent $p \in \mathscr{A}$ commuting with a such that ap $+1-p \in \mathscr{A}^{-1}$ and $a-p \in \mathscr{A}^{D}$.

In this case, we have that 0 and $(a p)_{p \mathscr{A} p}^{-1}=(a p+1-p)^{-1} p$ are es-Drazin inverses of a.

Corollary 4. Let $a \in \mathscr{A}$. The following statements are equivalent:
(i) a is es-Drazin invertible;
(ii) there exists a tripotent $p \in \mathscr{A}$ commuting with a such that ap $\in\left(p^{2} \mathscr{A} p^{2}\right)^{-1}$ and $a-p^{2} \in \mathscr{A}^{D}$;
(iii) there exists a tripotent $p \in \mathscr{A}$ commuting with a such that ap$+1-p^{2} \in \mathscr{A}^{-1}$ and $a-p^{2} \in \mathscr{A}^{D}$.

In this case, we have that $(a p)_{p^{2} \mathscr{A} p^{2}}^{-1} p=\left(a p+1-p^{2}\right)^{-1} p$ is the es-Drazin inverse of a.

Using tripotents, some new characterizations of e-Drazin invertible elements are presented by Theorem 3.

Corollary 5. Let $a \in \mathscr{A}$. The following statements are equivalent:
(i) a is e-Drazin invertible;
(ii) there exists a tripotent $q \in \mathscr{A}$ commuting with a such that $a q \in\left(q^{2} \mathscr{A} q^{2}\right)^{-1}$ and $a\left(1-q^{2}\right) \in \mathscr{A}^{D} ;$
(iii) there exists a tripotent $q \in \mathscr{A}$ commuting with a such that aq $\in \mathscr{A}^{\#}$ and $a(1-$ $\left.q^{2}\right) \in \mathscr{A}^{D}$;
(iv) there exists a tripotent $q \in \mathscr{A}$ commuting with a such that $a q+1-q^{2} \in \mathscr{A}^{-1}$ and $a\left(1-q^{2}\right) \in \mathscr{A}^{D}$.

In this case, we have that $(a q)_{q^{2} \mathscr{A} q^{2}}^{-1} q=(a q)^{\#} q=\left(a q+1-q^{2}\right)^{-1} q$ is the e-Drazin inverse of a.

According to Lemma 2, Lemma 3 and Theorem 4, several properties of a esDrazin inverse are presented in the following results.

Lemma 6. Let $a \in \mathscr{A}^{e s D}$. Then, for arbitrary $a^{e s D}$,
(i) $a^{e s D} \in \mathscr{A}^{\#}$ and $\left(a^{e s D}\right)^{\#}=a^{2} a^{e s D}$;
(ii) $a^{e s D} \in \mathscr{A}^{e s D}$ and $a^{2} a^{e s D} \in a^{e s D}\{e s D\}$.

Lemma 7. If $a \in \mathscr{A}^{D}$, then

$$
a=\left[\begin{array}{cc}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right]_{a a^{D}} \quad \text { and } \quad a^{e s D}=\left[\begin{array}{cc}
x_{1} & 0 \\
0 & x_{2}
\end{array}\right]_{a a^{D}}
$$

where $a_{1} \in\left(a a^{D} \mathscr{A} a a^{D}\right)^{-1}, a_{2} \in\left(a^{\pi} \mathscr{A} a^{\pi}\right)^{\text {nil }}$ and $x_{i} \in a_{i}\{$ es $D\}$ for $i=1,2$.
Corollary 6. Let $a \in \mathscr{A}$ and $n \in \mathbb{N}$. The following statements are equivalent:
(i) a is es-Drazin invertible;
(ii) there exists an element $y \in \mathscr{A}$ such that $y a^{n} y=y, y a=a y$ and $a-a^{n} y \in \mathscr{A}^{D}$;
(iii) a^{n} is es-Drazin invertible;

In this case, $a^{n-1} y \in a\{e s D\}$.
We also have some extensions of Cline's formula to the case of the es-Drazin inverse as consequences of Theorem 5, Corollary 1 and Corollary 2.

Corollary 7. Let $a, b, c, d \in \mathscr{A}$ satisfy $a c d=d b d$ and $d b a=a c a$. Then

$$
b d \in \mathscr{A}^{e s D} \quad \Leftrightarrow \quad a c \in \mathscr{A}^{e s D} .
$$

In this case, for arbitrary $(b d)^{e s D}$ and $(a c)^{e s D}$, we have $b\left((a c)^{e s D}\right)^{2} d \in(b d)\{e s D\}$ and $d\left((b d)^{e s D}\right)^{3} b a c \in(a c)\{e s D\}$.

Corollary 8. Let $a, b, c \in \mathscr{A}$ satisfy $a c a=a b a$. Then

$$
b a \in \mathscr{A}^{e s D} \quad \Leftrightarrow \quad a c \in \mathscr{A}^{e s D} .
$$

In this case, for arbitrary $(b a)^{e s D}$ and $(a c)^{e s D}, b\left((a c)^{e s D}\right)^{2} a \in(b a)\{e s D\}$ and $a\left((b a)^{e s D}\right)^{2} c$ $\in(a c)\{e s D\}$.

Corollary 9. Let $a, b \in \mathscr{A}$. Then $b a \in \mathscr{A}^{e s D} \Leftrightarrow a b \in \mathscr{A}^{e s D}$. In addition, for arbitrary $(a b)^{e s D}, b\left((a b)^{e s D}\right)^{2} a \in(b a)\{e s D\}$.

REFERENCES

[1] S. Breaz, G. CǍLuGǍREANU, P. DANCHEV AND T. Micu, Nil-clean matrix rings, Linear Algebra Appl. 439 (2013), 3115-3119.
[2] H. Chen, S. S. Nabavi and M. Sheibani, Strongly Drazin inverse in rings, Operators and Matrices 13, 2 (2019), 495-505.
[3] R. E. CLINE, An application of representation for the generalized inverse of a matrix, MRC Technical Report 592, 1965.
[4] P. Danchev, Strongly nil-clean corner rings, Bull. Iranian Math. Soc. 43, 5 (2017), 1333-1339.
[5] A. J. DiesL, Nil clean rings, J. Algebra 383 (2013), 197-211.
[6] O. GÜRGÜN, Properties of generalized strongly Drazin invertible elements in general rings, Journal of Algebra and Its Applications 16, 11 (2017), 1750207 (13 pages).
[7] J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996), 367-381.
[8] T. Koşan, Z. Wang and Y. Zhou, Nil-clean and strongly nil-clean rings, Journal of Pure and Applied Algebra 220 (2016), 633-646.
[9] X. MARY, Characterizations of clean elements by means of outer inverses in rings and applications, Journal of Algebra and Its Applications 19, 07 (2020), 2050134.
[10] D. Mosić, A note on Cline's formula for the generalized Drazin inverse, Linear Multilinear Algebra 63, 6 (2015), 1106-1110.
[11] D. Mosić, Extended g-Drazin inverse in a Banach algebra, Bull. Malays. Math. Sci. Soc. 43, 1 (2020), 879-892.
[12] D. Mosić, Reverse order laws for the generalized strong Drazin inverses, Appl. Math. Comput. 284 (2016), 37-46.
[13] D. Mosić and D. S. Djordjević, Weighted generalized Drazin inverse in rings, Georgian Math. J. 23, 4 (2016), 587-594.
[14] Y. Qin, X. Liu and J. Benítez, Some results on the symmetric representation of the generalized Drazin inverse in a Banach algebra, Symmetry 11, 1 (2019), 105; doi:10.3390/sym11010105.
[15] J. Robles, M. F. Martínez-Serrano and E. Dopazo, On the generalized Drazin inverse in Banach algebras in terms of the generalized Schur complement, Appl. Math. Comput. 284 (2016), 162-168.
[16] Z. WANG, A class of Drazin inverses in rings, Filomat 31, 6 (2017), 1781-1789.
[17] K. YAN AND X. C. FANG, Common properties of the operator products in local spectral theory, Acta Math. Sin. (Engl. Ser.) 31 (2015), 1715-1724.
[18] K. Yan, Q. Zeng and Y. Zhu, Generalized Jacobson's lemma for Drazin inverses and its applications, Linear Multilinear Algebra 68, 1 (2020), 81-93.
[19] Q. ZENG, Z. WU AND Y. WEN, New extensions of Cline's formula for generalized inverses, Filomat 31, 7 (2017), 1973-1980.
(Received January 15, 2020)
Dijana Mosić
Faculty of Sciences and Mathematics University of Niš
P.O. Box 224, 18000 Niš, Serbia e-mail: dijana@pmf.ni.ac.rs

Honglin Zou
School of Mathematics and Statistics
Hubei Normal University Huangshi 435002, China
e-mail: honglinzou@163.com

[^0]: Mathematics subject classification (2020): 46H05, 46H99, 15A09.
 Keywords and phrases: Generalized strong Drazin inverse, extended g-Drazin inverse, g-Drazin inverse, Cline's formula, Banach algebra.

 The first author is supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, grant no. 174007(451-03-9/2021-14/200124). The second author is supported by China Postdoctoral Science Foundation (No. 2018M632385).

 * Corresponding author.

