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Abstract. Let K denotes the field of real or complex numbers. For a locally compact Hausdorff
space X , we denote by C0(X) the space of all K -valued continuous functions on X vanishing
at infinity. Let E be a (real or complex) Banach space, KE be a closed subset of E , and Cu(KE)
be the algebra of all real or complex valued, uniformly continuous bounded functions defined on
KE . Endowed with the supremum norm, both C0(X) and Cu(KE) are Banach spaces. In this
paper we study the structure of local isometries on subspaces of C0(X) and various subalgebras
of Cu(KE ) .

1. Introduction

Let E and F be Banach spaces. We respectively denote by B(E,F) and G (E,F) ,
the Banach space of all bounded linear operators, and the set of all surjective linear
isometries, from E to F . If E = F , then B(E,E) is denoted by B(E) , and G (E,E)
by G (E) . Let T ∈ B(E) such that for every x ∈ E , Tx coincides with the action of a
surjective linear isometry on x , that is, there exists a Tx ∈ G (E) (depending on x , that
is why the subscript x and this isometry may vary from point to point) such that T (x) =
Tx(x) . One may ask under what conditions we have T ∈ G (E) . Such a T is called a
local surjective isometry and we say that T interpolates G (E) . We observe here that
any local surjective isometry is in fact an isometry. Indeed, ||T (x)|| = ||Tx(x)|| = ||x|| .
So, the problem reduces to see whether any local surjective isometry is automatically
surjective. Assume that E is finite dimensional, then we know that any injective linear
map is automatically surjective. Thus, the above problem has a positive answer in the
case of finite dimensional Banach spaces.

Now, let E be an infinite dimensional Hilbert space, and T be any into isometry
on E . Let x,y ∈ E such that Tx = y . As ||x||= ||y|| , there exists an operator S ∈ G (E)
such that S(x) = y . Therefore, T is a local surjective isometry on E which is not
surjective.
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It is now a natural question to ask what happens in other infinite dimensional
Banach spaces. This is a very basic problem in the sense that we want to get a global
conclusion from a local hypothesis.

Besides the isometry group, the above problem can be generalized to other im-
portant classes of transformations on operator algebras like automorphism group and
derivations. Investigations of this kind were initiated by Kadison, Larson and Sourour
[5, 6, 7]. Later on, this problem attracted the attention of many researchers, see [3, 4, 8,
11, 12] and the references therein. For a comprehensive account of this theory we refer
the reader to Molnar’s Monograph [9].

We set some notations and terminologies which will be followed in the rest of
the paper. Let K denotes the field of real or complex numbers. Let X be a locally
compact Hausdorff space, and C0(X) be the Banach space of all K -valued continuous
functions on X vanishing at infinity, equipped with the supremum norm. Let E be
a (real or complex) Banach space, KE be a closed subset of E , and Cu(KE) be the
Banach algebra of all real or complex valued, uniformly continuous bounded functions
defined on KE endowed with the supremum norm.

We consider the following definitions.

DEFINITION 1.1. Let A be a subspace of C0(X) . We say that A is strongly sepa-
rating if given any pair of distinct points x1,x2 of X , then there exists f ∈ A such that
| f (x1)| �= | f (x2)| .

DEFINITION 1.2. A closed subalgebra Au(KE) of Cu(KE) is said to be weakly
normal if, given any subsets A and B of KE with a positive distance d(A,B) = inf{||a−
b|| : a ∈ A,b ∈ B} , there is an f ∈ Au(KE) such that | f (x)| � 1 for every x ∈ A , and
| f (y)| � 1

2 for every y ∈ B .

For a weakly normal closed subalgebra Au(KE) of Cu(KE) , we denote by A0
u(KE)

the subalgebra of Au(KE) whose elements vanish at 0 ∈ KE , that is,

A0
u(KE) = { f ∈ Au(KE) : f (0) = 0}.

Let S ⊂ B(E) . We define the algebraic closure of S as

S
a
= {T ∈ B(E) : Tx ∈ S x, ∀ x ∈ E},

where S x = {Sx : S ∈ S } . If T ∈ S
a
, we say that T interpolates S or T is locally

in S . Clearly, S ⊆ S
a
. The subset S is called algebraically reflexive if S = S

a
.

When S = G (E) , then G (E) is called algebraically reflexive G (E)
a
= G (E) , that is,

if every local surjective isometry is surjective. From whatever we mentioned in the first
and second paragraphs of this article, we can say that, if E is finite dimensional, then
G (E) is algebraically reflexive, and if E is an infinite dimensional Hilbert space, then
G (E) fails to be algebraically reflexive.

A natural setting for studying the algebraic reflexivity of the isometry group of a
Banach space is where a complete description is available. The study of isometries be-
tween Banach spaces is one of the most important research areas in functional analysis.
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One of the most classical results in this area is the Banach-Stone theorem describ-
ing surjective linear isometries between Banach spaces of complex-valued continuous
functions on compact Hausdorff spaces. This classical theorem has been generalized
by many authors in several directions, for example, by considering into linear isome-
tries or replacing C0(X) by its subspaces and subalgebras. In [1], Araujo and Fonf
described the structure of surjective linear isometries on strongly separating subspaces
of C0(X) , thereby extending many earlier results available in this direction. Similarly,
in [2], the authors characterized surjective linear isometries on the subalgebras Au(KE)
and A0

u(KE) of Cu(KE) .
Motivated by these results, in this paper we establish the algebraically reflexivity

of the following three important sets:

1. The set of all surjective linear isometries between strongly separating subspaces
of C0(X) ;

2. The set of all surjective linear isometries between weakly normal closed subal-
gebras of Cu(KE) ; and

3. The set of all surjective linear isometries between the subalgebra A0
u(KE) of

Au(KE) .

Our proofs follow many ideas presented in the papers [1] and [2], but the local structure
of the isometries considered made the proofs much easier.

2. Preliminaries and basic results

In this section we mention few definitions and recall some results which will be
used later. We begin with the following definition.

DEFINITION 2.1. Let A be a subspace of C0(X) . A subset U of X is said to be a
boundary for A if each function in A attains its maximum on U . The Shilov boundary
of A , denoted ∂A , is the unique minimal closed boundary for A .

REMARK 2.2. Let us define the sets σA = {x0 ∈X : for each neighbourhoodU of
x0, ∃ f ∈ A such that | f (x)| < ‖ f‖, ∀ x ∈ X −U} , and σ0A = σA∩ {x ∈ X : ∃ f ∈
A with f (x) �= 0} . It is known that if A is a subspace of C0(X) , then ∂A = σA [1,
Lemma 2.1].

REMARK 2.3. The closed subalgebras Au(KE) and A0
u(KE) can be identified re-

spectively with closed subalgebras A(E) and A0(E) of C(γE) , where γE is a compact-
ification of KE defined as the quotient space γE := βKE/R . Here, βKE is the Stone-
Cech compactification of KE , and R is the equivalence relation defined as x1Rx2

if f (x1) = f (x2) for every f ∈ Au(KE) . It is known that A(E) and A0(E) separate
strongly the points of γE . Moreover, KE ⊆ ∂A(E) and ∂A(E) = γE . Furthermore,
KE \ {0} ⊆ ∂A0(E) and ∂A0(E)\ {0}= γE \ {0} . For more details see [2].
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We also note here that A(E) is a uniform algebra, that is, a closed separating
subalgebra of C(γE) which contains the constants. This means that A(E) is nowhere
vanishing, that is, for every ξ ∈ γE , there exists f ∈ A(E) such that f (ξ ) �= 0. It
follows from Remark 2.2 that

σ0A(E) = σA(E)∩{ξ ∈ γE : ∃ f ∈ A(E) with f (ξ ) �= 0}
= ∂A(E)∩ γ(E) (since A(E) is nowhere vanishing)
= ∂A(E)
= γE.

Further, since A0(E) separates strongly the points of γE , for ξ ∈ γE such that ξ �= 0,
there exists an f ∈ A0(E) such that | f (ξ )| �= | f (0)| . Since f (0) = 0, we have | f (ξ )| �=
0 and hence f (ξ ) �= 0. Therefore, {ξ ∈ γE : ∃ f ∈ A0(E) with f (ξ ) �= 0} = γE \{0} .
This implies that σ0A0(E) = γE \ {0} .

The structure of into and onto isometries on strongly separating subspaces of
C0(X) are given in the next two theorems.

THEOREM 2.4. [1, Theorem 3.1] Let T be a linear isometry of a strongly sepa-
rating linear subspace A of C0(X) into C0(Y ) . Then there are a subset Y0 of Y , which
is a boundary for T (A) , a continuous map h from Y0 onto σ0A and a continuous map
a : Y0 → K , such that |a(y)| = 1 for all y ∈Y0 , and

T f (y) = a(y) f (h(y)) for all y ∈ Y0 and all f ∈ A.

Furthermore, if σ0A is compact, then Y0 is closed.

THEOREM 2.5. [1, Theorem 4.1] Let T be a linear isometry of a strongly sepa-
rating linear subspace A of C0(X) onto such a subspace B of C0(Y ) . Then there exist
a homeomorphism h of σ0B onto σ0A and a continuous map a : σ0B → K , such that
|a(y)| = 1 for all y ∈ σ0B, and

T f (y) = a(y) f (h(y)) for all y ∈ σ0B and all f ∈ A.

The next two theorems characterizes surjective linear isometries on the subalge-
bras Au(KE) and A0

u(KE) of Cu(KE)

THEOREM 2.6. [2, Theorem 4.3] Let X and Y be Banach spaces and let T :
Au(KX ) → Au(KY ) be a linear surjective isometry. Then there exists a uniform home-
omorphism h of KY onto KX and a function a ∈Cu(KY ) , such that |a(y)| = 1 for all
y ∈ KY , and T f (y) = a(y) f (h(y)) for all y ∈ KY and for all f ∈ Au(KX ) .

THEOREM 2.7. [2, Theorem 4.8] Let X and Y be Banach spaces and let T :
A0

u(KX ) → A0
u(KY ) be a linear surjective isometry. Then there exists a uniform home-

omorphism h of KY onto KX with h(0) = 0 . Furthermore, there is a function a ∈
C(KY \ {0}) , with |a(y)| = 1 for all y ∈ KY \ {0} , such that, for all f ∈ A0

u(KX )

T f (y) =

{
a(y) f (h(y)), y ∈ KY \ {0},
0, y = 0.
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3. Algebraic reflexivity of isometries between subspaces of continuous functions

In this section we prove the algebraic reflexivity of the set of all surjective linear
isometries between strongly separating subspaces of C0(X) . Our proof rely on the
assumption that such subspaces support an injective function. Using the local structure
of the isometry in question along with this assumption, the proof becomes much easier
compared to the proof of Theorem 2.5 in [1]. Our main result is the following.

THEOREM 3.1. Let X and Y be locally compact Hausdorff spaces, and let A and
B be strongly separating linear subspaces of C0(X) and C0(Y ) respectively. If there
exists a nonnegative real-valued injective function g ∈ A and σ0A is compact, then
G (A,B) is algebraically reflexive.

Proof. Let T ∈ G (A,B)
a
. Since T is an into isometry, Theorem 2.4 implies that

there exist a subset Y0 of Y , a continuous onto map h :Y0 → σ0A and a continuous map
τ : Y0 → K , such that |τ(y)| = 1 ∀ y ∈ Y0 , and

T f (y) = τ(y) f (h(y)), ∀ y ∈ Y0 and f ∈ A. (3.1)

To prove the surjectivity of T we will show that h is a homeomorphism and Y0 = σ0B .
First we show that h is injective. For the map g given in the hypothesis, there

exists Tg ∈ G (A,B) such that Tg = Tgg . Theorem 2.5 implies the existence of a home-
omorphism hg : σ0B→ σ0A and a continuous map τg : σ0B →K , such that |τg(y)|= 1
∀ y ∈ σ0B , and

Tg(y) = τg(y)g(hg(y)), ∀ y ∈ σ0B. (3.2)

From the proof of Theorem 2.5 we know that Y0 ⊆ σ0B . Now, Equations (3.1)
and (3.2) imply that g(h(y)) = g(hg(y)) , ∀ y ∈Y0 . Thus, h = hg on Y0 and hence h is
injective. Using [10, Theorem 26.6] we conclude that h is a homeomorphism.

It remains to prove that σ0B ⊆Y0 . Indeed, for y ∈ σ0B , we have hg(y) ∈ σ0A . As
h is onto, there exists y0 ∈ Y0 such that h(y0) = hg(y) . But h = hg on Y0 , therefore,
y = y0 . This completes the proof. �

4. Algebraic reflexivity of isometries between subalgebras of uniformly
continuous functions

In this section we prove the algebraic reflexivity of the set of all surjective linear
isometries on weakly normal subalgebras of Cu(KE) and on the subalgebra A0

u(KE) .
We again assume the these two subalgebras support an injective function.

PROPOSITION 4.1. Let E and F be Banach spaces. If there exists an injective
map g ∈ Au(KE) such that g(x) � 1 for all x ∈ KE , then G (Au(KE),Au(KF )) is alge-
braically reflexive.
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Proof. Let T ∈ G (Au(KE),Au(KF))
a
. Using Remark 2.3 and Theorem 3.1, we

conclude that T is a surjective linear isometry between closed subalgebras A(E) and
A(F) of C(γE) and C(γF) respectively. Theorem 2.5 implies the existence of a home-
omorphism h : γF → γE and a continuous map τ : γF → K , such that |τ(y)| = 1 for
all y ∈ γF , and

T f (y) = τ(y) f (h(y)), ∀ y ∈ γF and f ∈ A(E). (4.1)

In order to prove that T : Au(KE) → Au(KF) is a surjective linear isometry we need to
show that h : KF → KE is a uniform homeomorphism and μ = τ|KF ∈Cu(KF) .

For the first part, considering the map g given in the hypothesis, there exits Tg ∈
G (Au(KE),Au(KF )) such that Tg = Tgg . Now, Theorem 2.6 implies the existence of
a a uniform homeomorphism hg : KY → KX and a function τg ∈ Cu(KF ) , such that
|τg(y)| = 1 for all y ∈ KF , and

Tg(y) = τg(y)g(hg(y)), ∀ y ∈ KF . (4.2)

Comparing Equations (4.1) and (4.2) and using the injectivity of g we conclude that
h = hg on KF . Thus, h is a uniform homeomorphism.

To prove the second part, suppose on the contrary that μ is not uniformly contin-
uous on KF . Then there exist ε > 0 and two sequences (xn) and (yn) in KF such that
limn→∞ ||xn− yn|| = 0 and |μ(xn)− μ(yn)| � ε for every n ∈ N .

As Tg is uniformly continuous, limn→∞(Tg(xn)−Tg(yn)) = 0 or

lim
n→∞

(μ(xn)g(h(xn))− μ(yn)g(h(yn))) = 0. (4.3)

Similarly for the map g2 we will have

lim
n→∞

(μ(xn)g2(h(xn))− μ(yn)g2(h(yn))) = 0. (4.4)

Multiplying Equation (4.3) by g(h(xn)) we get

lim
n→∞

(μ(xn)g2(h(xn))− μ(yn)g(h(xn))g(h(yn))) = 0. (4.5)

Subtracting Equations (4.4) and (4.5) we will get

lim
n→∞

(μ(yn)g2(h(yn))− μ(yn)g(h(xn))g(h(yn))) = 0.

This implies that
lim
n→∞

(g(h(xn))−g(h(yn))) = 0. (4.6)

Lastly multiplying Equation (4.6) by μ(xn) and subtracting Equation (4.3) we get

lim
n→∞

g(h(yn))(μ(xn)− μ(yn)) = 0.

This is a contradiction. Hence, μ is uniformly continuous on KF and the proof is
complete. �
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PROPOSITION 4.2. Let E and F be Banach spaces. If there exists a nonnegative
real-valued injective function g ∈ A0

u(KE) , then G (A0
u(KE),A0

u(KF )) is algebraically
reflexive.

Proof. Let T ∈ G (A0
u(KE),A0

u(KF))
a
. Using the same arguments of Proposition

4.1, there exist a homeomorphism h : γF \ {0}→ γE \ {0} and a continuous map τ :
γF \ {0}→ K , such that |τ(y)| = 1 for all y ∈ γF \ {0} , and

T f (y) = τ(y) f (h(y)), ∀ y ∈ γF \ {0} and f ∈ A0(E). (4.7)

Since τ|KF\{0} ∈C(KF \{0}) , in order to prove that T : A0
u(KE) → A0

u(KF ) is a surjec-
tive linear isometry we just need to show that h : KF → KE is a uniform homeomor-
phism with h(0) = 0.

For the map g in the hypothesis, there exists Tg ∈ G (A0
u(KE),A0

u(KF)) such that
Tg = Tgg . Theorem 2.7 implies the existence of a uniform homeomorphism hg : KF →
KE with hg(0) = 0 and a function τg ∈ C(KF \ {0}) , with |τg(y)| = 1 for all y ∈
KF \ {0} , such that

Tg(y) =

{
τg(y)g(hg(y)), y ∈ KF \ {0},
0, y = 0.

(4.8)

From Equations (4.7) and (4.8) we get h = hg on KF \{0} implying that h is a uniform
homeomorphism of KF \ {0} onto KE \ {0} . The map h can be extended to a uniform
homeomorphism of KF onto KE by defining h(0) = 0. This completes the proof. �

We end this paper by stating the following problem. Are the group of surjective
linear isometries on subspaces and subalgebras of vector-valued functions spaces alge-
braically reflexive?
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