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REFINING AND REVERSING JENSEN’S INEQUALITY

LEILA NASIRI*, AKRAM ZARDADI AND HAMID REZA MORADI

(Communicated by F. Hansen)

Abstract. This paper is focused on Jensen’s inequality and its variants. Various refinements and
reverses of Jensen’s inequality, including scalar and operator versions, are given.

1. Introduction

Let # () be the C*—algebra of all bounded linear operators on a Hilbert space
2. In the case when dim.7# = n, we identify % () with the matrix algebra .#,
of all n x n matrices with entries in the complex field C. As customary, we reserve
m, M for scalars and 1, for the identity operator on 7. A self-adjoint operator A
is said to be positive (written A > 0) if (Ax,x) > 0 holds for all x € 5. An operator
A 1is said to be strictly positive (denoted by A > 0) if A is positive and invertible.
If A and B are self-adjoint, we write B > A in case B—A > 0. The Gelfand map
f(t) — f(A) is an isometrical *—isomorphism between the C*—algebra C(sp (A)) of
continuous functions on the spectrum sp (A) of a selfadjoint operator A and the C*—
algebra generated by A and the identity operator 1. If f,g € C(sp(A)), then f (1) >
g(t) (r € sp(A)) implies that f(A) > g (A).

A linear map @ : B (H) — A (H) is positive if ®(A) > 0 whenever A > 0.
It is said to be unital if ®(1,,) =1, . A continuous function f defined on the in-
terval J is called an operator convex (resp. concave) function if f((1 —v)A+vB) <
(resp. =) (1 —v)f(A)+vf(B) forevery 0 <v < 1 and for every pair of bounded self-
adjoint operators A and B whose spectra are in J. For instance, the function f (z) =¢"
is operator convex on (0,c0) if either 1 <r <2 or —1 < r < 0. Also, the function
f(t)=1" is operator concave on (0,00) if 0 < r < 1.

The classical Jensen’s inequality for convex functions states that if f is a convex
function on an interval [m,M], then

f (i%m) < iwif(xi) (1.1)
i=1 =1
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forall x; € [m,M] and w; € [0,1] (i=1,...,n) with X' , w; = 1. There is an extensive
amount of literature devoted to Jensen’s inequality concerning different generalizations,
refinements, and converse results; see, for example [5, 10, 11, 12].

Mercer [6] established a variant of the Jensen’s inequality (1.1) as follows: If f is
a convex function on [m,M], then

f<M+m ngc,) <f(M Zw,f x;) (1.2)
i=1
forall x; € [m,M] and w; € [0,1] (i=1,...,n) with 3", w; = 1.
Let A € # () be a self-adjoint operator with spectra in [m,M], and let f (¢) be
a convex function on [m, M|, then from [8], we have for any unit vector x € JZ,

f({Ax,x)) < (f (A)x,x). (1.3)

For more information of (1.3) see [9, Lemma 1]. The well known operator Jensen’s
inequality states

f(@(A)) <P(f(A)). (1.4)
It holds for every operator convex function f :J — R, self-adjoint operator A with
spectra in J, and unital positive linear map @ [1, 2]. See [4] for a comprehensive
account on this inequality.

In [4], the authors gave a generalization of the operator Jensen’s inequality (1.4)
as follows: Let A; € 2 (.5) be self-adjoint operators with spectra in [m,M], let ®; €
Py[B (), B ()] be normalized positive linear maps and let f (¢) be operator con-
vex on [m,M]. Then

f (iw@(&)) < iwiq)i (f(A)), (1.5)
i=1 i=1

where w; € [0,1] (i=1,...,n) with X}, w; = 1.

The main aim of this paper is to give an improvement of the Jensen’s inequality
(1.1). The advantage of our method is that it can also be used to obtain a converse of
(1.1). A refinement and a reverse for the Jensen-Mercer inequality (1.2) are given as
well. We extend our method to self-adjoint operators by reversing and improving the
inequalities (1.3), (1.4) and (1.5).

2. Main results

Our refinement and reverse of the inequality (1.1) are presented in the following
theorem.
THEOREM 2.1. If f is a convex function on an interval [m,M], then for every

n
Xiy...,Xn € [m,M] and every positive real numbers wy,...,w, with Y, w; =1,

i=1

s (iwm) 2Zwlf (M) _f (iwix,) <Swif(w), @D
i=1 i=1 i=1
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and

1 WiXj+X
Zwtf -xl <wal> <2 (Zwif -xl Zwtf <11#>> .22
i=1
Both inequalities (2.1) and (2.2) hold in the reverse direction if f is concave.

Proof. We prove the left-hand side of (2.1). To do this end, we have

2% (BN (zw)
[ =1
>of (iwi (W)) —f (iwm) (by (1.1))
i=1 i=1

On the other hand,

2iwif (W) _f<iwixi>
i=1

i=1

n z’!: x|+ i n
2 f< J 1W];CJ> £ (xi) s (2%‘&') (by (L1)
i=1

(5 5o i)

S i (1)

i=1

and the right-hand side of (2.1) is proved.
The inequality

iwif<W) %( <Zw,x,>+2w,f x,)
i1

implies (2.2). U

The operator versions of inequalities (2.1) and (2.2) can be stated as follow. The
proof is similar to the above, so the details are left to the reader.
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PROPOSITION 2.1. Let A; € B () (i =1,---,n) be self-adjoint operators with
sp(A;) C [m,M] for some scalars m < M and ®; € Py[B (), B (X)) normalized

positive linear maps (i = 1,---,k). If f is operator convex on an interval [m,M], then
for every positive real numbers wy, ... ,w, with 3 w; =1,

" ” i wi®i(A)) + Di(Ai) L

f(ZWid)i(Ai)> < Zzwif< — > )—f Y widi(A;)
i=1 i=1 i=1
< D wii(f(A)), (2.3)
i=1

and

i wi®i(f (Ai)) — f (i w,-d),-(A,-)>
i=1 i=1

<2 (i wif (Pi(Ai)) — iwif (zj:leq)j(?j) +q)i(Ai)>> '
i-1

(2.4)
i=1

Both inequalities (2.3) and (2.4) hold in the reverse direction if operator f is concave.

Clearly, (2.3) is a refinement of (1.5) and (2.4) is a reverse of (1.5).

REMARK 2.1. If we choose f asin the following: f: X — R, f(x) =x” (||| isa
normon X, p > 1); f:R— (0,), f(x) =expx; f:(0,0) = R, f(x) =—Inux, etc.,
we can obtain refinements and reverses of some well-known inequalities for vectors or
real numbers as in [3], but we omit the details.

We prove a refinement and a reverse of the inequality (1.2) in the following theo-
rem.

THEOREM 2.2. If f is a convex function on [m,M], then for every xi,...,x, €
[m,M] and every positive real numbers wy,...,w, with X% w; =1,

f(M—l—m—iw,-xi)

i=1

<2iw,-f<M+m—M)—f<M+m—iw,-xi> 2.5)

i=1 2 i=1
< S (M) + [ (m) = Y wif (xi),
i=1

and

(M) + f(m)— iwif(xi)—f <M+m—iw,-xl->
i=1 i=1 (26)

<2 <f(M)+f(m)_iWif(xi)_iWif <M+m_w>> '
i=1 i=1
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Proof. Compute

i N WX+ X n
ZZW,-f (M—Fm—zj_l%) —f(M-‘rm—ZWixi)
i=1

i=1

=2f (iWi (M—i—m—%)) —f(M—Fm—iw,-x,-) (by (1.1))
i=1 :

=2f (M—l—m—iwixi) —f(M—Fm—iwix,-)

i=1 i=1

:f (M-l-m—iw,-xi) .
i=1

On the other hand,

n z’?: wix; +Xx; n
ZZwif<M+m—7" 1 éj l)—f MA+m—=Y wix;
i=1

i=1

" M+m—=3"_wixj+M+m—x; "
:2Zwif< =17 l)—f(M—Fm—Zwixi)

=1 2 i=1

-

<

w; (f <M+m— iwm) +f (M—l—m—xi)) —f <M+m— iw,x,-) (by (1.1))

i=1 i=1 i=1

f (M—l—m—iwixi) —|—iw,~f(M+m—x,-)—f(M—f—m—iw,-xi)

i=1 i=1 i=1

iwif(M—i-m—x,-)
i=1

<f(M)+f(m)— iwif (xi) (by [6, Lemma 1.3]).

This proves (2.5). The inequality (2.6) follows from the following fact

n z’!z wWix;i+x;
X RIS

<;<f<M+m wa,>+f Zw, x,>.

i=1
Thus, the proof is completed. [
We continue this section by improving and reversing the inequality (1.3).

THEOREM 2.3. Let f be a convex function on an interval [m,M] and A € B ()
be a self-adjoint operator with spectra in [m,M]. Then for any unit vector x €

Fltan) <2 (AT ) ) < @pnn, @)
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and
U@ - faxa <2 (@ - (r ()00 ) e

Both inequalities (2.7) and (2.8) hold in the reverse direction if [ is concave.

Proof. The first inequality in (2.7) follows directly from the inequality (1.3),
A+ (Ax,x) 1, A+ (Ax,x) 1
27 (B ) - ) = 2 ( () ) < p(ar)
=/ ((Ax,x)).
The second inequality in (2.7) follows from the following inequality

() ) < S @nn s @9)

for any unit vector x € S . In fact, if f:J — R is a convex function and a,b € J we

have,
F(50) < Lo
2 2

Applying functional calculus for the operator A, we get

A+bly\ _ f(A)+f(b)1y
() g

This implies for any unit vector x € 77,

(£ ) v < 5 Ur @) 7 0)).

By replacing b by (Ax,x), we infer (2.9).
The inequality (2.8) follows from (2.9). This completes the proof of Theorem
23. O

Theorem 2.3 implies the following refinement and reverse of Holder-McCarthy
inequality [7] (see also [4, Theorem 1.4]):

COROLLARY 2.1. Let A € B (H) be a positive operator and x € F be a unit
vector. Then for any r > 1,

(Ax,x)" <2 < (%) x,x> —{Ax, ) < (AT (2.10)

and

(ATx, %) — (Ax,x) < 2 ((A’x,x) _ <<w>”>) . @.11)

The above inequalities hold for r < 0, whenever A is positive and invertible.
Both inequalities (2.10) and (2.11) hold in the reverse direction if 0 <r < 1.
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The next elementary lemma will be used in the proof of Theorem 2.4, whose proof
is given for the completeness since we were unable to find a suitable reference.

LEMMA 2.1. Let @ be a positive linear map and let f be a real valued contin-
uous function on the interval J. If ®(A) = A for any self-adjoint operator A with
spectrum in J, then ® (f (A)) = f(A).

Proof. We know that A can be approximated uniformly by A = 3;7;E; where
{E j} is a decomposition of the unit 1. Then,

®(f(4) = (zfa,-)E,-)

= 2 )P(E)) =D f(t)E; = f(A).

J
This implies the assertion. [J
THEOREM 2.4. Let A € B () be a self-adjoint operator with spectra in J and

let ®: B () — PB(X) be aunital positive linear mapping which satisfies ® (A) =
A. Define A :=®(A). If f is an operator convex function on J, then

rewy<o(r(H2))-rew corw). e
and
o) - @) <20 (1 -1 (12)). 1)

Both inequalities (2.12) and (2.13) hold in the reverse direction if f is operator con-
cave.

Proof. We have

( (%%)-

_|_

( 5 )) ®(A)) (by (1.4)
A)+D(A)
2

) f(®(A)) (by the linearity of @)

=2f(A) f
= f(®(A) (by Lemma2 )
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then we get the left-hand side of (2.12). On the other hand,

201 (A%Z)) F@(a)

<20 (M) —f(®(A)) (since f is operator convex)

=D (f(A)+D(f(A)) —f(@(A)) (by the linearity of )
=®(f(A)) (byLemma?2.1)

then we obtain the right-hand side of (2.12).
The inequality (2.13) follows from the following fact

q><f <A+K)> L QU @) +f (@)

2 2

This completes the proof of Theorem 2.4. [J

The above result provides a refinement and a new reverse for inequality (1.4) as
claimed in the introduction.

REMARK 2.2. Put ®(A) = 177 (A)I, where A € ., is a Hermitian matrix with
eigenvalues contained in J and [, is the identity matrix in .#,. Then, of course, ®
preserves the operator @ (A).

COROLLARY 2.2. Let A € #() be a positive operator and let O : B (H°) —
B () be a unital positive linear mapping which satisfies ® (A) = A. Define A :=
D (A). Thenforany 1 <r<2,

D(A) <20 ((#)) —D(A) < DA, (2.14)
" D(A") — DA) <20 (A’ — (#)) . (2.15)

The above inequalities hold for —1 < r < 0, whenever A is positive and invertible.
Both inequalities (2.14) and (2.15) hold in the reverse direction if 0 < r < 1.
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