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Abstract. In the framework of inverse linear problems on infinite-dimensional Hilbert space,
we prove the convergence of the conjugate gradient iterates to an exact solution to the inverse
problem in the most general case where the self-adjoint, non-negative operator is unbounded and
with minimal, technically unavoidable assumptions on the initial guess of the iterative algorithm.
The convergence is proved to always hold in the Hilbert space norm (error convergence), as well
as at other levels of regularity (energy norm, residual, etc.) depending on the regularity of the
iterates. We also discuss, both analytically and through a selection of numerical tests, the main
features and differences of our convergence result as compared to the case, already available in
the literature, where the operator is bounded.

1. Introduction

We are concerned in this work with the rigorous proof of the convergence, in var-
ious meaningful senses, of a particular and well-known iterative algorithm for solving
inverse linear problems, the celebrated conjugate gradient method, in the generalised
setting of unbounded operators on Hilbert space.

In abstract terms, given a Hilbert space H over the (real or) complex field and a
non-negative self-adjoint operator A on H , we consider the inverse linear problem

A f = g , g ∈ ranA (1.1)

in the unknown f ∈ H with datum g – assuming g ∈ ranA makes the problem (1.1)
solvable. A is allowed to be unbounded, in which case necessarily H has infinite
dimension and the domain D(A) of A is only a dense subspace of H . The positivity
assumption on A reads 〈ψ ,Aψ〉 � 0 for all ψ ∈ D(A) : here and in the following 〈 · , ·〉
is the scalar product in H : if H is taken over the complex field, then 〈 · , ·〉 is assumed
to be anti-linear in the first entry and linear in the second, and ‖ ·‖ is the corresponding
norm. For a positive, self-adjoint operator A we shall also use the customary notation
A = A∗ � O .
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This setting generalises the classical, finite-dimensional one where H = Cd for
some d ∈ N and A is a d × d positive semi-definite matrix (in which case (1.1) can
be interpreted as a system of d linear equations), as well as the setting where A is
a bounded (and everywhere-defined) self-adjoint operator on an infinite-dimensional
Hilbert space.

Infinite dimensionality is also the framework where the phenomenon of ill-posed-
ness may occur. Indeed, it is a standard fact that for a (not necessarily bounded) self-
adjoint operator A on an infinite-dimensional Hilbert space H the properties

(i) the point 0 belongs to σ(A) and is not isolated in σ(A) ,

(ii) ranA is not closed,

(iii) on ranA the operator A has unbounded inverse,

are all equivalent (and none could occur if dimH < +∞): when any such property is
satisfied, the solution f cannot depend continuously on the datum g , as is evident from
(iii), and the problem (1.1) is said to be ill-posed.

As opposite to that, if any among (i), (ii), and (iii) above fails to hold and in
addition A is injective, and hence equivalently if A has an everywhere-defined bounded
inverse, the problem (1.1) is well-posed: in this case the solution f exists, is unique,
and depends continuously on the datum g .

A popular algorithm for the numerical solution to (1.1) in the above-mentioned
classical framework is the method of conjugate gradients (also referred to as CG).
It was first proposed in 1952 by Hestenes and Stiefel [16] and since then, together
with its related derivatives (e.g., conjugate gradient method on the normal equations
(CGNE), least-square QR method (LSQR), etc.), it has been widely studied in the
finite-dimensional setting (see the monographs [25, 28, 19]) and also, though to a lesser
extent, in the infinite-dimensional Hilbert space setting with bounded operators.

In order to describe the algorithm explicitly, let us introduce the solution manifold

S := { f ∈ D(A) |A f = g} (1.2)

relative to the problem (1.1). By assumption S is a convex, non-empty set in H
which is also closed, owing to the fact that A , being self-adjoint, is in particular a closed
operator. (In fact, S is an affine space, owing to the linearity of A .) As a consequence,
the projection map PS : H → S is unambiguously defined and produces, for generic
x ∈ H , the closest-to-x point in S . Observe that PS is not a linear map.

In its iterative implementation, the conjugate gradient algorithm starts with an
initial guess f [0] ∈ H and produces iterates f [N] according to a prescription that can
be described in various equivalent ways [25, 19], the most convenient of which for our
purposes is

f [N] := arg min
h∈{ f [0]}+KN(A,R0)

‖A1/2(h−PS f [0])‖ , N ∈ N . (1.3)

More generally, we shall discuss conjugate gradient style algorithms with iterates given
by

f [N] := arg min
h∈{ f [0]}+KN(A,R0)

‖Aθ/2(h−PS f [0])‖ , N ∈ N (1.4)
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for some parameter θ � 0 (the case θ = 1 being the conjugate gradient method). It
will be then convenient to refer to such f [N] ’s as the θ -iterates.

In (1.3)–(1.4) the vector R0 is the zero-th order of the residuals defined by

RN := A f [N] −g , N ∈ N0 (1.5)

in terms of each iterate, and the vector space

KN(A,R0) := span{R0,AR0, . . .A
N−1R0} , N ∈ N (1.6)

is the N -th order Krylov subspace associated to A and R0 .
Let us underline that (1.3)–(1.4) give the variational characterisation of the conju-

gate gradient algorithm, and we start from such formulas because our subsequent study
of the algorithm’s convergence will be variational in nature; as well known, in prac-
tice the algorithm is implemented numerically through equivalent algebraic versions
[25, 28, 19], that produce the same iterates f [N] without of course requiring the a priori
knowledge of the solution PS f [0] .

Clearly, the above definitions are all well-posed if A is bounded, whereas for (1.6)
and hence (1.3)–(1.4) to make sense for any N when A is unbounded, additional tech-
nical assumptions are needed in order to avoid possible domain issues. We shall discuss
them in the general set-up of the problem presented in Section 2 – but let us empha-
sise already at this stage that even when domain issues are taken under control, the
unbounded-case framework that we are considering in this work remains a non-trivial
generalisation at all of the bounded case.

As well known, for finite-dimensional inverse problems CG is an extremely pop-
ular, versatile, and efficient numerical scheme – it belongs, in particular, to the class of
Krylov subspace methods, that are sometimes even counted among the ‘Top 10 Algo-
rithms’ of the 20th century [12, 9] – and the convergence of f [N] to the exact solution f
is by now a classical and deeply understood theory (see, e.g., the monographs [25, 19]).

The convergence theory of CG has been markedly less explored in the setting
of infinite-dimensional H , a line of investigation in which yet important works have
been produced over the last five decades, both in the scenario where A is bounded with
everywhere-defined bounded inverse [10, 11, 15], or at least with bounded inverse on
its range [17], and in the scenario where A is bounded with possible unbounded inverse
on its range [17, 21, 22, 20, 3].

In contrast, the scenario where A is unbounded has been only recently considered
from special perspectives, in particular in view of existence [23] (for GMRES algo-
rithms), or convergence when A is regularised and made invertible with everywhere-
defined bounded inverse [13], whereas the general convergence theory (that is, includ-
ing the case where (1.1) is ill-posed) is virtually unexplored.

(We should also like to mention the ongoing related analysis on abstract Krylov
methods in infinite dimension and with possible unbounded A : see [6, 4, 5, 7] and the
references therein.)

In the present work we establish a class of convergence results for the conjugate
gradient algorithm precisely in the most general setting where A is unbounded and the
associated inverse problem (1.1) is possibly ill-posed. This applies, in particular, to
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the ubiquitous case where A = −Δ on L2(Rd) . Our analysis consists of a non-trivial
generalisation of the very subtle approach by Nemirovskiy and Polyak from their above-
mentioned 1984 work [21] for bounded A .

In such work the full convergence estimates of the error ‖ f [N] − f‖ and residual
‖A f [N] − g‖ were proved, and in the follow-up work [22] the results were shown to
be optimal in the sense that for the entire class of bounded, ill-posed problems, one
can do no better than the estimates provided. The boundedness of A was crucial in a
two-fold way. First, it forced the blow-up of a suitable sum (δN , in their notation –
see (3.20) below) of the reciprocals of the N zeroes of a polynomial that represents the
minimisation (1.4): since no such zero can exceed ‖A‖ , the reciprocals cannot vanish
and their sum necessarily diverges. As a consequence, the error and the residual, which
in turn can be controlled by an inverse power of δN , are then shown to vanish as N →∞ ,
thus establishing convergence. Second, boundedness of A was also determinant to
quantify the convergence, as the latter was boiled down to a min-max procedure for
polynomials on the finite spectral interval containing σ(A) , then on such an interval
(suitable modifications of) the Chebyshev polynomials are recognised to optimise the
rate of convergence, and explicit properties of (the zeroes of) Chebyshev polynomials
finally provide a quantitative version of the vanishing of error and residual.

In our approach we are able to bypass the restriction of the finiteness of ‖A‖ as
far as the convergence alone is concerned. As for the quantitative rate, the min-max
strategy of [21] by no means can be adapted to polynomials over the whole [0,+∞) and
in fact a careful analysis of the structure of the proof of [21, 22], as we shall comment
in due time, seems to indicate that if A is unbounded with unbounded inverse on its
range, then the convergence rate can be arbitrarily small.

The discussion is organised as follows. In Section 2 we introduce the rigorous
set-up of the convergence problem for the conjugate gradient method and we state and
comment our main result. In Section 3 we develop an amount of preparatory materials
of algebraic and measure-theoretic nature, which are needed to finally prove our main
theorem in Section 4. After the proof, an amount of remarks are collected with the
purpose of clarifying the importance of certain technical steps and, above all (Remarks
4.6–4.7) the actual novelties and differences of the present scheme as compared to the
bounded case scenario. Last, in Section 5 we discuss a selection of numerical tests that
confirm the main features of our convergence result and corroborate our intuition on
certain relevant differences with respect to the bounded case.

2. Set-up and main results

Let us start with the rigorous formulation of all the notions needed for our con-
vergence result. Here and in the following A is a non-negative, densely defined, self-
adjoint operator on a Hilbert space H , including the possibility that A be unbounded
and with a non-trivial kernel.

First, one needs to ensure that the conjugate gradient iterates are well-defined.
As mentioned in the Introduction, one chooses a datum g ∈ ranA and an initial guess
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f [0] ∈ H , and for some θ � 0 defines the θ -iterates

f [N] := arg min
h∈{ f [0]}+KN(A,R0)

‖Aθ/2(h−PS h)‖ , N ∈ N (2.1)

with

RN =A f [N] −g , N ∈ N0 , (2.2)

KN(A,R0)=span{R0,AR0, . . .A
N−1R0} , N ∈ N . (2.3)

In order to apply an arbitrary positive power of A to A f [0] − g , we require that
both g and f [0] be A-smooth vectors [24, Sect. X.6], meaning that they belong to the
space

C∞(A) :=
⋂

N∈N

D(AN) . (2.4)

In the applications where A is a differential operator, A-smoothness is a regularity
requirement.

In turn, A-smoothness of g and f [0] implies KN(A,R0) ⊂C∞(A) , and obviously
PS h ∈ S ⊂C∞(A) , whereas by interpolation C∞(A) ⊂ D(Aθ/2) for any θ � 0. This
guarantees that in the minimisation (2.1) one is allowed to apply Aθ/2 to any vector
h−PS h .

We have thus seen that under the assumptions

g ∈ ranA∩C∞(A) , f [0] ∈ C∞(A) (2.5)

the corresponding θ -iterates f [N] are unambiguously defined by (2.1)–(2.3) above for
any θ � 0. If A is bounded, (2.5) simply reduces to g∈ ranA . In fact, (2.5) are minimal
assumptions, inescapable if one wants to give meaning to conjugate gradient iterates in
the unbounded case.

Such iterates have three notable properties, whose proof is deferred to Section 3.

PROPOSITION 2.1. The θ -iterates f [N] defined for a given θ � 0 by means of
(2.1)–(2.3) under the assumption (2.5) satisfy

f [N] −PS f [N] ∈ (kerA)⊥ ∀N ∈ N0 , (2.6)

PS f [N]=PS f [0] ∀N ∈ N , (2.7)

f [N] −PS f [N]=pN(A)( f [0] −PS f [0]) ∀N ∈ N , (2.8)

where pN(λ ) is for each N a polynomial of degree at most N and such that pN(0) = 1 .

As, by (2.7), all such f [N] ’s have the same projection onto the solution manifold
S , the approach of f [N] to S consists explicitly of a convergence f [N] → PS f [0] . Let
us now specify in which sense this convergence is to be monitored.

The underlying idea, as is clear in the typical applications where A is a differential
operator on a L2 -space, is that ‖ f [N] −PS f [0]‖(A) → 0 in some A-dependent Sobolev

norm. For this to make sense, clearly one needs enough A-regularity on f [N] −PS f [0] ,
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which eventually is guaranteed by the regularity initially assumed on f [0] . Thus, the
general indicator of convergence has the form ‖Aσ/2( f [N] −PS f [0])‖ , but an extra care
is needed if one wants to control the convergence in the abstract analogue of a low-
regularity, negative-Sobolev norm, which would amount to formally consider σ < 0,
for in general A can have a kernel and hence is only invertible on its range.

Based on these considerations, and inspired by the analogous discussion in [21]
for bounded A , let us introduce the class CA,g(θ ) of vectors of H defined for generic
θ ∈ R as

CA,g(θ ) :=

{
{x ∈ H |x−PS x ∈ D(A

θ
2 )} , θ � 0 ,

{x ∈ H |x−PS x ∈ ran(A− θ
2 )} , θ < 0 .

(2.9)

(The dependence of CA,g(θ ) on g is implicit through the solution manifold S .) Dis-
tinguishing the two cases in (2.9) is needed whenever A has a non-trivial kernel. If

instead A is injective, and so too is therefore A− θ
2 for θ < 0, then A− θ

2 is a bijection
between the two dense subspaces D(A− θ

2 ) = ran(A
θ
2 ) and ran(A− θ

2 ) = D(A
θ
2 ) of H .

Related to the class CA,g(θ ) we have two further useful notions. One, for fixed
θ ∈ R and x ∈ CA,g(θ ) , is the vector

uθ (x) :=

{
A

θ
2 (x−PS x) , θ � 0 ,

the minimal norm solution u to A− θ
2 u = x−PS x , θ < 0 .

(2.10)

The other is the functional ρθ defined on the vectors x ∈ CA,g(θ ) as

ρθ (x) := ‖uθ (x)‖2 . (2.11)

Thus,

ρθ (x) =

⎧⎨⎩ ‖A θ
2 (x−PS x)‖2 , θ � 0 ,∥∥∥(A− θ
2

∣∣∣
ran
(
A− θ

2
))−1

(x−PS x)
∥∥∥2

, θ < 0 ,
(2.12)

with an innocent abuse of notation in (2.12) when θ < 0, as the operator inverse is to be
understood for a (self-adjoint, and positive-definite) operator on the Hilbert subspace
ranA .

It is worth remarking that in the special case when A is bounded, the following
interesting properties hold, whose proof is deferred to Section 3, which do not have a
counterpart in the unbounded case except for the obvious identity CA,g(0) = H .

LEMMA 2.2. If A (besides being self-adjoint and non-negative) is bounded, and
if g ∈ ranA, then:

(i) CA,g(θ ) = H whenever θ � 0 ;

(ii) CA,g(θ ) ⊂ CA,g(θ ′) for θ � θ ′ ;

(iii) for θ � θ ′ and x ∈ CA,g(θ ) one has uθ ′(x) = A(θ ′−θ)/2uθ (x) , whence also
ρθ ′(x) � ‖A‖θ ′−θ ρθ (x) .
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Back to the general case where A is possibly unbounded, the goal is to evaluate
certain ρσ -functionals along the sequence of the f [N] ’s. This may require an extra
assumption on the initial guess f [0] , as the following Lemma shows.

LEMMA 2.3. Consider the θ -iterates f [N] defined for a given θ � 0 by means of
(2.1)–(2.3) under the assumption (2.5). Then:

(i) f [N] ∈ CA,g(σ) ∀σ � 0 ;

(ii) f [N] ∈ CA,g(σ) for any σ < 0 such that, additionally, f [0] ∈ CA,g(σ) , in which
case

uσ ( f [N]) = pN(A)uσ ( f [0]) , (2.13)

where pN(λ ) is precisely the polynomial mentioned in Proposition 2.1.

Lemma 2.3 is a direct consequence of (2.8) in Proposition 2.1 above: for com-
pleteness we include its proof in Section 3.

It then makes sense to control the convergence f [N] → PS f [0] in the ρσ -sense,
for σ positive or negative, with suitable assumptions on f [0] . Explicitly,

ρσ ( f [N]) = ‖uσ ( f [N])‖2

=

⎧⎨⎩ ‖A σ
2 ( f [N] −PS f [0])‖2 , σ � 0 ,∥∥∥(A− σ
2

∣∣∣
ran
(
A− σ

2
))−1

( f [N] −PS f [0])
∥∥∥2

, σ < 0 ,

(2.14)

having used (2.7). The most typical and meaningful choices in the applications are

ρ0( f [N]) =
∥∥ f [N] −PS f [0]∥∥2

,

ρ1( f [N]) =
〈
f [N] −PS f [0],A( f [N] −PS f [0])

〉
,

ρ2( f [N]) =
∥∥A( f [N] −PS f [0])

∥∥2
,

(2.15)

that is, respectively, the norm of the error, the so-called ‘energy’ (semi-)norm, and the
norm of the residual.

The preparation made so far for our forthcoming main result (Theorem 2.4 below)
does not account yet for the necessity of one further, restrictive assumption on the datum
g and the initial guess f [0] of the algorithm, a restriction needed once again to deal with
the possible unboundedness of the operator A (the bounded case being controllable for
arbitrary g ∈ ranA and f [0] ∈ H ). The actual need of a special, inevitable choice of g
and f [0] will be fully clear in the course of the proof; for the time being, let us outline
here a short heuristic reasoning.

From the expression of the indicator of convergence ρσ ( f [N]) , for concreteness
the case σ � 0 in (2.14), and from the iterates properties (2.7)–(2.8) announced in
Proposition 2.1, it is easy to realise, as we shall argue in the next Section, that the actual
quantity to control along the limit N → ∞ is an integral of the form∫

[0,+∞)

∣∣λ σ
2 pN(λ )

∣∣2 d〈 f [0] −PS f [0],EA(λ )( f [0] −PS f [0])〉 ,
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for suitable polynomials pN determined by the minimisation (2.1), where the measure
is the scalar spectral measure associated to the self-adjoint operator A , and hence (by
positivity of A) the integration runs over [0,+∞) . For bounded A’s the integration is
actually restricted within the spectrum of A , hence within a compact interval of the
non-negative half line, and this naturally provides a kind of uniformity in N that is
crucial in controlling the vanishing of the above integral in the limit. When instead
A (and hence the integration domain) is unbounded, some other source of uniformity
in N must be implemented, which eventually is to be some kind of uniformity of the
measure λ 2Nd〈 f [0] −PS f [0],EA(λ )( f [0] −PS f [0])〉 , in other words, a suitable control
of the growth in N of the norm ‖AN( f [0] −PS f [0])‖ . In turn, this requires a control in
N of ‖AN f [0]‖ and ‖ANg‖ .

It is with the above heuristics in mind that we recall the following classes of vectors
[26, Definition 7.1]: the analytic vectors for A are the elements of the subspace

Da(A) :=

⎧⎨⎩g ∈C∞(A) =
⋂
n∈N

D(An)

∣∣∣∣∣∣
‖Ang‖ � Cn

gn!
for any n ∈ N

and some Cg > 0

⎫⎬⎭ , (2.16)

and the quasi-analytic vectors for A are the elements of the set

Dqa(A) :=
{

g ∈C∞(A)
∣∣∣ ∑

n∈N

‖Ang‖− 1
n = +∞

}
. (2.17)

Clearly Da(A) ⊂ Dqa(A) ⊂C∞(A) , and the self-adjointness of A ensures that the sub-
space of its analytic vectors is dense in H (this is the celebrated Nelson theorem: see,
e.g., [26, Theorem 7.16]). Obviously when A is bounded the whole H is made of
analytic vectors for A .

We are finally in the condition to formulate our main result.

THEOREM 2.4. Let A be a non-negative self-adjoint operator on the Hilbert space
H . Let

g ∈ Da(A)∩ ranA . (2.18)

Consider the conjugate gradient algorithm associated with A and g where the initial
guess vector f [0] satisfies

f [0] ∈ Da(A)∩CA,g(σ∗) , σ∗ = min{σ ,0} (2.19)

for a given σ ∈ R , and where the iterates f [N] , N ∈ N , are constructed via (2.1) with
parameter θ = ξ � 0 under the condition σ � ξ . Then

lim
N→∞

ρσ ( f [N]) = 0 . (2.20)

As a corollary of the proof that we shall discuss, we also have:
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COROLLARY 2.5. The same conclusion of Theorem 2.4 follows also when the
assumptions on g and f [0] are replaced by

g ∈ C∞(A)∩ ranA ,

f [0] ∈ C∞(A)∩CA,g(σ∗) ,

f [0] −PS f [0] ∈ Dqa(A) ,

(2.21)

or by

g ∈ Dqa(A)∩ ranA ,

f [0] = 0 .
(2.22)

In other words, Theorem 2.4 states that the convergence holds at a given ‘A-
regularity level’ σ for ξ -iterates built with equal or higher ‘A-regularity level’ ξ � σ ,
and with an initial guess f [0] that is A-analytic if σ � 0, and additionally belongs to
the class CA,g(σ) if σ < 0.

In particular, with no extra assumption on f [0] but its A-analyticity, the ξ -iterates
with ξ � 0 automatically converge in the sense of the error (σ = 0, see (2.15) above),
the ξ -iterates with ξ � 1 automatically converge in the sense of the error and of the
energy norm (σ = 1), the ξ -iterates with ξ � 2 automatically converge in the sense of
the error, energy norm, and residual (σ = 2).

REMARK 2.6. If, for a finite N , ρσ ( f [N]) = 0, then the very iterate f [N] is a
solution to the linear problem A f = g , and one says that the algorithm ‘has come to
convergence’ in a finite number (N ) of steps. Indeed, ρσ ( f [N]) = 0 is the same as
A

σ
2 ( f [N] −PS f [0]) = 0 if σ � 0, i.e., f [N] −PS f [0] ∈ kerA

σ
2 = kerA ; this, combined

with f [N]−PS f [0] ∈ (kerA)⊥ (see (2.6)–(2.7) above), implies that f [N] = PS f [0] ∈S .
On the other hand, ρσ ( f [N]) = 0 is the same as uσ ( f [N]) = 0 with A− σ

2 uσ ( f [N]) =
f [N] −PS f [0] if σ < 0, whence again f [N] = PS f [0] ∈ S .

REMARK 2.7.

(i) In the special scenario where A is (everywhere-defined and) bounded, A-ana-
lyticity is automatically guaranteed, so one only needs to assume that g ∈ ranA
and f [0] ∈ CA,g(σ∗) for some σ ∈ R (σ∗ = min{σ ,0} ) in order for the con-
vergence of the ξ -iterates (ξ � σ ) to hold in the sense ρσ ( f [N]) → 0. Then,
owing to Lemma 2.2, one automatically has also ρσ ′( f [N]) → 0 for any σ ′ � σ .
This is precisely the form of the convergence result originally established by Ne-
mirovskiy and Polyak [21].

(ii) Thus, in the bounded-case scenario, if σ is the minimum level of convergence
chosen, then not only are the ξ -iterates with ξ � σ proved to ρσ -converge, but
in addition the same ξ -iterates also ρσ ′ -converge at any other level σ ′ � σ , with
no upper bound on σ ′ . In particular, it is shown in [21] that

ρσ ′( f [N]) � C(‖A‖op,ξ −σ)(2N +1)−2(σ ′−σ) ρσ ( f [0]) , σ < σ ′ � ξ , (2.23)
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for some constant C(‖A‖op,ξ −σ) > 0, thus providing an explicit rate of con-
vergence of the ξ -iterates in a generic ρσ ′ -sense such that σ ′ ∈ (σ ,ξ ] .

(iii) In the general unbounded-case scenario, instead, the ρσ -convergence guaranteed
by Theorem 2.4 is not exportable to ρσ ′ -convergence with σ ′ > σ .

REMARK 2.8. When, in the unbounded case, A has an everywhere-defined boun-
ded inverse, one has CA,g(σ) = H for any σ � 0. Therefore, Theorem 2.4 guarantees
the ρσ -convergence of the ξ -iterates for any σ � 0, provided that g and f [0] are A-
analytic. Such ‘weaker’ convergence can be still informative in many contexts. For
instance, choosing

H = L2(Rd)

A = −Δ +� with D(A) = H2(Rd) (ranA = H )

g, f [0] ∈C∞(Rd) ,

we see that the θ -iterates defined by (1.4) with the above data converge to the unique
solution f to the inverse problem −Δ f + f = g in any negative Sobolev space Hσ (Rd) ,
σ < 0; in particular, f [N](x) → f (x) point-wise almost everywhere.

REMARK 2.9.

(i) Assumptions (2.18)–(2.19) of Theorem 2.4, as well as assumptions (2.21) of
Corollary 2.5, are needed to cover the case of our primary interest, the unbound-
edness of A .

(ii) Such restrictions still allow the admissible g and f [0] to run over a dense of H .

(iii) Assumptions (2.21) are slightly less restrictive than (2.18)–(2.19). Indeed, from
(2.18)–(2.19), since g is analytic, so is PS f [0] (a fact that we shall prove in
Lemma 3.7), and by linearity f [0] −PS f [0] is analytic too, whence (2.21).

(iv) Albeit more general, assumptions (2.21) have the apparent drawback of being
formulated in terms of a vector, PS f [0] , that is unknown prior to actually solving
the inverse problem. We singled out (2.21) because, as is going to emerge in the
forthcoming discussion, it is precisely the quasi-analyticity of f [0] −PS f [0] (to-
gether with the inevitable operational assumption g ∈C∞(A)∩ ranA) that makes
our proof work. In fact, quasi-analyticity of f [0] −PS f [0] provides a control on
the N -growth of ‖AN( f [0] −PS f [0])‖ , the quantity we heuristically discussed
prior to stating Theorem 2.4.

(v) Assumptions (2.22) are in fact a special case of (2.21), as will be clear from
Lemma 3.7(i). We singled them out to connect our result with the frequent oc-
currence, in conjugate gradient methods, where the initial guess f [0] is just the
zero function.
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REMARK 2.10. As a follow-up of Remark 2.9(iii): although the quasi-analyticity
of f [0] − PS f [0] is only a sufficient condition, some possibly weaker assumption of
that sort, namely some kind of control of the growth in N of ‖AN( f [0] − PS f [0])‖ ,
is surely needed for the conjugate gradient convergence (2.20). That in the regime
g, f [0] ∈C∞(A) the vanishing ρσ ( f [N]) → 0 is not guaranteed, is going to be explained
in Proposition 4.8, when the technical details of Theorem 2.4 will be clear.

3. Intermediate technical facts

We discuss in this Section an amount of technical properties that are needed for
the proof of the main Theorem 2.4.

For convenience, let us set for each N ∈ N

P([0,+∞)) := {real-valued polynomials p(λ ), λ ∈ [0,+∞)}
PN := { p ∈ P([0,+∞)) | deg p � N }

P
(1)
N := { p ∈ PN | p(0) = 1} .

(3.1)

Let us start with the proof of those properties stated in Section 2. The proof of
Proposition 2.1 requires the following elementary fact.

LEMMA 3.1. Let z ∈ H . For a point y ∈ S these conditions are equivalent:

(i) y = PSz ,

(ii) z− y ∈ (kerA)⊥ .

Proof. By linearity of A , S = {y}+ kerA . If z− y ∈ (kerA)⊥ , then for any
x ∈ kerA , and hence for a generic point y+ x ∈ S , one has

‖z− (y+ x)‖2 = ‖z− y‖2 +‖x‖2 � ‖z− y‖2 ,

therefore y is necessarily the closest to z among all points in S , i.e., y = PSz . This
proves that (ii) ⇒ (i). Conversely, if y = PSz , and if by contradiction z− y does not
belong to (kerA)⊥ , then 〈x0,z−y〉> 0 for some x0 ∈ kerA . In this case, let us consider
the polynomial

p(t) := ‖z− y− tx0‖2 = ‖x0‖2t2−2〈x0,z− y〉t +‖z− y‖2 .

Clearly, t = 0 is not a point of minimum for p(t) , as for t > 0 and small enough one has
p(t) � p(0) . This shows that there are points y+ tx0 ∈ S for which ‖z− (y+ tx0)‖ �
‖z− y‖ , thus contradicting the assumption that y is the closest to z among all points in
S . Then necessarily z− y ∈ (kerA)⊥ , which proves that (i) ⇒ (ii). �

Proof of Proposition 2.1. In the minimisation (2.1)

h− f [0] = qN−1(A)(A f [0] −g) = qN−1(A)A( f [0] −PS f [0])
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for some polynomial qN−1 ∈ PN−1 , whence also

h−PS f [0] = qN−1(A)A( f [0] −PS f [0])+ ( f [0]−PS f [0]) .

This implies, upon setting pN(λ ) := λ qN−1(λ )+1, that

f [N] −PS f [0] = pN(A)( f [0] −PS f [0]) ∀N ∈ N , (*)

where pN ∈ P
(1)
N .

Moreover, f [N] −PS f [N] ∈ (kerA)⊥ , as a consequence of Lemma 3.1 applied to
the choice z = f [N] and y = PS f [N] . With an analogous argument, also f [0] −PS f [0] ∈
(kerA)⊥ . Thus, (2.6) is proved.

Owing to (2.5) and (2.6), f [0]−PS f [0] ∈ (kerA)⊥∩C∞(A) . Now, (kerA)⊥∩C∞(A)
is invariant under the action of polynomials of A , and therefore owing to (*) we deduce
that f [N] −PS f [0] ∈ (kerA)⊥ .

Next, let us split

PS f [N] −PS f [0] = ( f [N] −PS f [0])− ( f [N] −PS f [N]) .

Obviously, PS f [N] −PS f [0] ∈ kerA . But in the right-hand side, as just shown, both
f [N]−PS f [0] ∈ (kerA)⊥ and f [N]−PS f [N] ∈ (kerA)⊥ . So PS f [N]−PS f [0] ∈ (kerA)⊥ .
The conclusion is necessarily PS f [N] −PS f [0] = 0.

This establishes (2.7), by means of which formula (*) above takes also the form of
(2.8). �

Let us now prove Lemmas 2.2 and 2.3.

Proof of Lemma 2.2. Part (i) is evident from the fact that D(A
θ
2 ) = H for any

θ � 0, as A is (everywhere-defined and) bounded and non-negative.
Part (ii) is therefore obvious if θ ′ � 0. If, instead, θ � θ ′ < 0, then ran(A− θ

2 ) ⊂
ran(A− θ ′

2 ) , owing again to the boundedness and non-negativity of A , so part (ii) is
actually valid in general.

If 0 � θ � θ ′ , then

uθ ′(x) = Aθ ′/2(x−PS x) = A(θ ′−θ)/2Aθ/2(x−PS x) = A(θ ′−θ)/2uθ (x) .

If instead θ < 0 � θ ′ , then uθ ′(x) = Aθ ′/2(x− PS x) and A−θ/2uθ (x) = x− PS x ,
whence

A(θ ′−θ)/2uθ (x) = Aθ ′/2(x−PS x) = uθ ′(x) .

Last, if θ � θ ′ < 0, then A−ξ/2uξ (x) = x−PS x for both ξ = θ and ξ = θ ′ , therefore
from

x−PS x = A−θ/2uθ (x) = A−θ ′/2A(θ ′−θ)/2uθ (x) and A−θ ′/2uθ ′(x) = x−PS x

one deduces that uθ ′(x) = A(θ ′−θ)/2uθ (x) . In all possible cases the claimed identity is
therefore proved. The inequality ρθ ′(x) � ‖A‖θ ′−θ ρθ (x) then follows at once from
(2.11). This completes the proof of part (iii). �
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Proof of Lemma 2.3. Owing to (2.8) and to the A-smoothness of g and f [0] ,
f [N]−PS f [N] ∈C∞(A) , which by interpolation means in particular that f [N]−PS f [N] ∈
D(A

σ
2 ) ∀σ � 0. This proves part (i) of the Lemma.
Assume now that f [0] ∈ CA,g(σ) for some σ < 0. In this case (2.8) reads

f [N] −PS f [N] = pN(A)( f [0] −PS f [0]) = pN(A)A− σ
2 uσ ( f [0]) ,

thanks to the definition (2.10) of uσ ( f [0]) . Therefore f [N] −PS f [N] ∈ ran(A− σ
2 ) and,

again by (2.10), uσ ( f [N]) = pN(A)uσ ( f [0]) . This proves part (ii). �

Next, let us establish an amount of important results that are measure-theoretic in
nature. To this aim, with customary notation [26], let EA denote the projection-valued
measure associated with the self-adjoint operator A , and let d〈x,EA(λ )x〉 denote the
corresponding scalar measure associated with a vector x ∈ H . Such measures are
supported on σ(A) ⊂ [0,+∞) .

A special role is going to be played by the measure

dμσ (λ ) := d〈uσ ( f [0]),EA(λ )uσ ( f [0])〉 (3.2)

defined under the assumption that f [0] ∈ CA,g(σ) for a given σ ∈ R . Clearly, by defi-
nition, μσ is a finite measure with∫

[0,+∞)
dμσ (λ ) = ‖uσ( f [0])‖2 . (3.3)

Two relevant properties of μσ are the following.

PROPOSITION 3.2. For the given self-adjoint and non-negative operator A on
H , and for given g ∈ C∞(A) , σ ∈ R , f [0] ∈C∞(A)∩CA,g(σ) , consider the measure
μσ defined by (3.2). Then:

(i) one has
dμσ (λ ) = λ σ d〈 f [0] −PS f [0],EA(λ )( f [0] −PS f [0])〉 ; (3.4)

(ii) the spectral value λ = 0 is not an atom for μσ , i.e.,

μσ ({0}) = 0 . (3.5)

Proof. The identity (3.4) when σ � 0 follows immediately from the definition
(3.2) of dμσ and from the definition (2.10) of uσ ( f [0]) = A

σ
2 ( f [0] −PS f [0]) , owing to

the property

d〈Aαψ ,EA(λ )Aα ψ〉 = λ 2αd〈ψ ,EA(λ )ψ〉 , α � 0 , ψ ∈ D(Aα) .

If instead σ < 0, let us consider the auxiliary measures

dμ̃σ (λ ) := λ−σdμσ (λ ) , dμ̂σ (λ ) := d〈 f [0] −PS f [0],EA(λ )( f [0] −PS f [0])〉 .



48 N. CARUSO AND A. MICHELANGELI

On an arbitrary Borel subset Ω ⊂ [0,+∞) one then has

μ̃σ (Ω) =
∫

Ω
λ−σ dμσ (λ ) = ‖EA(Ω)A− σ

2 uσ ( f [0])‖2

= ‖EA(Ω)( f [0] −PS f [0])‖2 =
∫

Ω
dμ̂σ (λ ) = μ̂σ (Ω) ,

having used the definition (2.10) in the form A− σ
2 uσ ( f [0]) = f [0] −PS f [0] . This shows

that dμ̃σ (λ ) = dμ̂σ (λ ) , whence again (3.4). Part (i) is proved.
Concerning part (ii), let us recall from (2.6) that f [0] −PS f [0] ∈ (kerA)⊥ . There-

fore, μ̂σ ({0}) = 0. Thus, (3.4) implies that also μσ ({0}) = 0. �

In turn, Proposition 3.2 allows us to discuss one further set of technical ingredients
for the proof of Theorem 2.4. They concern the polynomial pN , in the expression (2.8)
of the ξ -iterates f [N] , that corresponds to the actual minimisation (2.1).

PROPOSITION 3.3. For the given self-adjoint and non-negative operator A on
H , and for given g ∈C∞(A) , σ ∈ R , f [0] ∈C∞(A)∩CA,g(σ) , and ξ � 0 let f [N] be
the N -th ξ -iterate defined by (2.1) with initial guess f [0] and parameter θ = ξ , and
let

sN := arg min
pN∈P

(1)
N

∫
[0,+∞)

λ ξ p2
N(λ )d〈 f [0] −PS f [0],EA(λ )( f [0] −PS f [0])〉 (3.6)

for each N ∈ N . Then the following properties hold.

(i) One has

f [N] −PS f [N] = sN(A)( f [0] −PS f [0]) ∀N ∈ N . (3.7)

(ii) The family (sN)N∈N is a set of orthogonal polynomials on [0,+∞) with respect
to the measure

dνξ (λ ) := λ ξ−σ+1 dμσ (λ )

= λ ξ+1 d〈 f [0]−PS f [0],EA(λ )( f [0] −PS f [0])〉
(3.8)

and satisfying

degsN = N , sN(0) = 1 ∀N ∈ N (3.9)

(under the further tacit assumption that the sN ’s are all non-vanishing with re-
spect to the measure μσ ).

(iii) One has

ρσ ( f [N]) =
∫

[0,+∞)
s2
N(λ )dμσ (λ ) ∀N ∈ N . (3.10)
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Proof. Denote temporarily by s̃N ∈ P
(1)
N the polynomial that qualifies the iterate

f [N] in (2.8) by means of the minimisation (2.1) with θ = ξ . Then

min
h∈{ f [0]}+KN(A,R0)

‖Aξ/2(h−PS h)‖2 = ‖Aξ/2( f [N] −PS f [N])‖2

= ‖Aξ/2s̃N(A)( f [0] −PS f [0])‖2

=
∫

[0,+∞)
λ ξ s̃2

N(λ )d〈 f [0] −PS f [0],EA(λ )( f [0] −PS f [0])〉 .

Comparing the above identity with (3.6) we see that s̃N must be precisely the polyno-
mial sN . Therefore, (2.8) takes the form (3.7). This proves part (i).

By means of (3.4) we may re-write (3.6) as

sN = arg min
pN∈P

(1)
N

∫
[0,+∞)

λ ξ−σ p2
N(λ )dμσ (λ ) .

The latter minimising property of sN implies

0 =
d
dε

∣∣∣
ε=0

∫
[0,+∞)

λ ξ−σ (sN(λ )+ ελ qN−1(λ ))2 dμσ (λ )

= 2
∫

[0,+∞)
λ ξ−σ+1 sN(λ )qN−1(λ )dμσ (λ )

for any qN−1 ∈ PN−1 (indeed, sN + ελ qN−1 ∈ P
(1)
N ). Equivalently, owing to (3.8),∫

[0,+∞)
sN(λ )qN−1(λ )dνξ (λ ) = 0 ∀qN−1 ∈ PN−1 .

Such a condition is valid for each N ∈ N and, as well known [30, 8, 18], this amounts
to saying that (sN)N∈N is a set of orthogonal polynomials on [0,+∞) with respect to
the measure dνξ . Part (ii) is thus proved.

If σ � 0, then (2.7), (2.14), (3.4), and (3.7) yield

ρσ ( f [N]) =
∥∥A σ

2 ( f [N] −PS f [N])
∥∥2 =

∥∥A σ
2 sN(A)( f [0] −PS f [0])

∥∥2

=
∫

[0,+∞)
s2
N(λ )dμσ (λ ) .

If instead σ < 0, then owing to (3.7) the identity (2.13) reads

uσ ( f [N]) = sN(A)uσ ( f [0]) .

The latter identity, together with (2.14) and (3.2), yield

ρσ ( f [N]) =
∥∥uσ ( f [N])

∥∥2 =
∥∥sN(A)uσ ( f [0])

∥∥2 =
∫

[0,+∞)
s2
N(λ )dμσ (λ ) .

In either case (3.10) is established. This proves part (iii). �
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REMARK 3.4. The measure νξ too is finite, with∫
[0,+∞)

dνξ =
∥∥A ξ+1

2 ( f [0] −PS f [0])
∥∥2

, (3.11)

as is evident from (3.8). In fact, one could define νξ for arbitrary ξ � −1: we keep the
restriction to ξ � 0 because ξ here is the parameter θ = ξ required in the definition
(2.1) of the ξ -iterates, and as such must therefore be non-negative.

REMARK 3.5. There is an implicit dependence on ξ in each sN , as is clear from
(3.6), analogously to the fact that the iterates f [N] ’s depend on the choice of the param-
eter ξ . We simply omit such a dependence from the notation sN .

We thus see from Proposition 3.3(iii) that the control of the convergence of the
f [N] ’s in the ρσ -sense is boiled down to monitoring a precise spectral integral, namely
the right-hand side of (3.10). For an efficient estimate of the latter we shall make use of
properties of the polynomials sN and of the measure νξ that we are going to discuss in
the remaining part of this Section.

Here is our main result in this context.

PROPOSITION 3.6. Consider the set (sN)N∈N of orthogonal polynomials on [0,+∞)
with respect to the measure νξ , as defined in (3.6) and (3.8) under the assumptions of
Proposition 3.3.

(i) For each N ∈ N , either sN(λ ) = 0 νξ -almost everywhere, or sN has exactly N
simple zeroes, all located in (0,+∞) .

Assume now the sN ’s are all non-vanishing with respect to the νξ -measure, and denote

by λ (N)
k the k -th zero of sN , ordering the zeros as

0 < λ (N)
1 < λ (N)

2 < · · · < λ (N)
N . (3.12)

(ii) (Separation.) One has

λ (N+1)
k < λ (N)

k < λ (N+1)
k+1 ∀k ∈ {1,2, . . . ,N−1} , (3.13)

that is, the zeroes of sN and sN+1 mutually separate each other.

(iii) (Monotonicity.) For each integer k � 1 ,

(λ (N)
k )∞

N=k is a decreasing sequence,

(λ (N)
N−k+1)

∞
N=k is an increasing sequence.

(3.14)

In particular, the limits

λ1 := lim
N→∞

λ (N)
1 , λ∞ := lim

N→∞
λ (N)

N (3.15)

exist in [0,+∞)∪{+∞} .
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(iv) (Orthogonality.) One has∫
[0,λ (N)

1 )
s2
N(λ )

λ (N)
1

λ (N)
1 −λ

dνξ (λ ) =
∫

[λ (N)
1 ,+∞)

s2
N(λ )

λ (N)
1

λ −λ (N)
1

dνξ (λ ) (3.16)

for any N ∈ N .

Finally, assume in addition to the assumptions of Proposition 3.3 also assumptions
(2.18)–(2.19) of Theorem 2.4, or assumptions (2.21) of Corollary 2.5. In other words,
assume in addition that f [0],g ∈ Da(A) , or also that f [0] −PS f [0] ∈ Dqa(A) .

(v) (Representation.) The measure νξ is only supported on the so-called ‘true inter-
val of orthogonality’ [λ1,λ∞] . Here and in the following, the symbol [λ1,λ∞] is
understood as the closure of (λ1,λ∞) .

Observe that, for the first time, in Proposition 3.6(v) the assumption of A-analyticity
of g and f [0] kicks in, replacing the mere A-smoothness. This is the condition pre-
scribed in the final Theorem 2.4. So, prior to presenting the proof of Proposition 3.6,
let us highlight in what form we shall exploit the extra condition of A-analyticity of g
and f [0] .

LEMMA 3.7. Let A be a linear operator on a Hilbert space H .

(i) Assume that g ∈ Dqa(A)∩ ranA. Then any f ∈ D(A) such that A f = g satisfies
f ∈ Dqa(A) .

(ii) Assume that g ∈ Da(A)∩ ranA. Then any f ∈ D(A) such that A f = g satisfies
f ∈ Da(A) .

(iii) Assume that g ∈ Da(A)∩ ranA and f [0] ∈ Da(A) . Then f [0] −PS f [0] ∈ Da(A) .

Proof. (i) As A f = g , then

∞

∑
n=1

‖An f‖− 1
n = ‖g‖−1 +

∞

∑
n=1

‖Ang‖− 1
n+1 .

The latter series, by a standard ratio test (d’Alembert’s criterion), is asymptotic to

∑∞
n=1 ‖Ang‖− 1

n and hence diverges because g is quasi-analytic (see (2.17) above). Then

also ∑∞
n=1‖An f‖− 1

n = +∞ , whence the quasi-analyticity of f .
(ii) As A f = g , then An−1g = An f for any integer n � 1. By definition of A-

analyticity of g (see (2.16) above), there is Cg > 0 such that

‖An f‖ = ‖An−1g‖ � Cn−1
g (n−1)! � Dn

f n! , n � 2 ,

having set Df := max{1,Cg} . The latter inequality is due to Df �Cg , whence Dn−1
f �

Cn−1
g , and to Df � 1, whence Dn

f � Dn−1
f . As ‖A f‖ = ‖g‖ (the n = 1 case), then

setting Cf := max{‖g‖,Df} finally yields

‖An f‖ � Cn
f n! , n � 1 ,
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which in view of (2.16) expresses the A-analyticity of f .
(iii) On account of part (ii), any solution f belongs to Da(A) . Then in particu-

lar PS f [0] ∈ Da(A) , and since Da(A) is a linear subspace, the conclusion follows by
linearity. �

LEMMA 3.8. Given A = A∗ � O ,

Aβ Dqa(A) ⊂ Dqa(A) ∀β � 0 . (3.17)

Proof. We intend to apply this simple property (see, e.g., [26, Lemma 7.17]):

if S and T are two densely defined operators with common domain D
and such that TD ⊂ D , SD ⊂ D , and TS = ST on D , then SDqa(T ) ⊂
Dqa(T ).

(*)

In the present case let us take

S := Aβ ∣∣
C∞(A) , T := A

∣∣
C∞(A) , D := C∞(A) .

With this choice, obviously, C∞(T ) = C∞(A) , whence also, owing to the definition
(2.17), Dqa(T ) = Dqa(A) . So, provided that all assumptions of (*) are matched, the
conclusion SDqa(T ) ⊂ Dqa(T ) amounts precisely to (3.17). Concerning the assump-
tions of (*), it is clear that both T and S are symmetric and densely defined, with
common domain D . The invariance properties TD ⊂ D and SD ⊂ D are tantamount
as AτC∞(A) ⊂ C∞(A) , respectively with τ = 1 and τ = β , and in either case they
follow from the fact that for every h ∈C∞(A) and any k ∈ N , the vector Aτh satisfies

‖AkAτh‖2 =
∫

[0,+∞)
λ 2(k+τ) dμ (A)

h (λ )

�
∫

[0,1)
dμ (A)

h (λ )+
∫
[1,+∞)

λ 2(k+τ) dμ (A)
h (λ )

� ‖h‖2 +‖Ak+�τ�h‖2 < +∞ ,

where �τ� is the smallest integer greater than τ . Last, the commutativity of S and T
on D is obviously tantamount as AAβ h = A1+βh = Aβ Ah for h ∈ D . All assumptions
of (*) are verified, and the Lemma is proved. �

On a related note, for completeness and later use, let us also recall this simple
property.

LEMMA 3.9. For any operator A on a Hilbert space H , ADa(A) ⊂ Da(A)

Proof. Let f ∈ Da(A) and g := A f . Then

‖Ang‖ = ‖An+1 f‖ � Cn+1
f (n+1)!
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for some Cf > 0 and for all n ∈ N0 . Set Cg := 2(max{Cf ,1})2 and take n ∈ N . Then

C
1+ 1

n
f (1+n)

1
n � (max{Cf ,1})2 ·2 = Cg , whence

‖Ang‖ � Cn+1
f (n+1)! � Cn

g n! ∀n ∈ N ,

which shows that g ∈ Da(A) . �
Proof of Proposition 3.6. Part (i) is standard from the theory of orthogonal poly-

nomials (see, e.g., [30, Theorem 3.3.1] or [8, Theorem 5.2]), owing to the fact that the
map

P([0,+∞)) � p �−→
∫

[0,+∞)
p(λ )dνξ (λ )

is a positive-definite functional on P([0,+∞)) .
Part (ii) is another standard fact in the theory of orthogonal polynomials (see, e.g.,

[30, Theorem 3.3.2] or [8, Theorem I.5.3]). Part (iii), in turn, is an immediate corollary
of part (ii).

Part (iv) follows from the identity∫
[0,+∞)

sN(λ )qN−1(λ )dνξ (λ ) = 0 ∀qN−1 ∈ PN−1

(already considered in the proof of Proposition 3.3, as a consequence of the orthogo-
nality of the sN ’s), when the explicit choice

qN−1(λ ) :=
λ (N)

1 sN(λ )

λ (N)
1 −λ

is made.
For Part (v) let us first recall [8, Definition I.5.2] that the true interval of orthogo-

nality [λ1,λ∞] is the smallest closed interval containing all the zeroes λ (N)
k , and more-

over [8, Theorem II.3.1] there exists a measure η on [0,+∞) supported only on [λ1,λ∞]
such that the sN ’s remain orthogonal with respect to η too and

μk :=
∫

[0,+∞)
λ k dνξ (λ ) =

∫
[λ1,λ∞]

λ k dη(λ ) , ∀k ∈ N0 .

Such η -measure is actually a Stieltjes measure associated with a bounded, non-decrea-
sing function ψ obtained as point-wise limit of a sub-sequence of (ψN)N∈N , where

ψN(λ ) :=

⎧⎪⎨⎪⎩
0 , λ < λ (N)

1 ,

A(N)
1 + · · ·+A(N)

p , λ ∈ [λ (N)
p ,λ (N)

p+1) for p ∈ {1, . . . ,n−1} ,

μ0 , λ � λ (N)
N

and A(n)
1 , . . . ,A(n)

N are positive numbers determined by the Gauss quadrature formula

μk =
N

∑
p=1

A(N)
p (λ (N)

p )k , ∀k ∈ {0,1, . . . ,2N−1} .
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We want to show that νξ = η , i.e., that the Hamburger moment problem that
guarantees that (sN)N∈N is an orthogonal system on [0,+∞) is uniquely solved with
the measure νξ . To this aim, let us re-write the even moments of νξ as

μ2k =
∫

[0,+∞)
λ 2kλ ξ+1 d〈 f [0]−PS f [0],EA(λ )( f [0] −PS f [0])〉

=
∥∥AkA

ξ+1
2 ( f [0] −PS f [0])

∥∥2 = ‖Akφ‖2 ,

having set φ := A
ξ+1

2 ( f [0] −PS f [0]) . The extra assumptions made for this part ensure
that f [0] −PS f [0] ∈ Da(A) , on account of Lemma 3.7, or directly that f [0] −PS f [0] ∈
Dqa(A) . As a consequence, owing to Lemma 3.8, φ ∈ Dqa(A) . The quasi-analyticity
of φ then implies (see (2.17) above)

∞

∑
k=1

μ− 1
2k

2k =
∞

∑
k=1

‖Akφ‖− 1
k = +∞ .

Now, the divergence of the above series ∑∞
k=1 μ− 1

2k
2k is a well-known sufficient con-

dition (Carleman’s criterion, see, e.g., [27, Theorem I.10]) for the uniqueness of the
Hamburger moment problem’s solution. This shows that νξ = η , thus proving that νξ
is supported only on [λ1,λ∞] . �

REMARK 3.10. Analogously to what already observed in Remark 3.5, there is an

implicit dependence on ξ of all the zeroes λ (N)
k . For a more compact notation, such a

dependence is omitted.

In view of Proposition 3.6(i), when the sN ’s are not identically zero we can ex-
plicitly represent

sN(λ ) =
N

∏
k=1

(
1− λ

λ (N)
k

)
. (3.18)

The integral (3.16) is going to play a central role in the main proof, so the next
technical result we need is the following efficient estimate of such a quantity.

LEMMA 3.11. Consider the set (sN)N∈N of orthogonal polynomials on [0,+∞)
with respect to the measure νξ , as defined in (3.6) and (3.8) under the assumptions of
Proposition 3.3 and with the further restriction ξ −σ + 1 � 0 . Assume that the sN ’s
are non-zero polynomials with respect to the measure νξ . Then, for any N ∈ N ,

∫
(λ1,λ

(N)
1 )

s2
N(λ )

λ (N)
1

λ (N)
1 −λ

dνξ (λ ) � μσ ((λ1,λ
(N)
1 ))

(ξ −σ +1
δN

)ξ−σ+1
, (3.19)

where

δN :=
1

λ (N)
1

+2
N

∑
k=2

1

λ (N)
k

. (3.20)
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REMARK 3.12. Estimate (3.19) provides a (ξ ,σ)-dependent bound on a quantity
that is ξ -dependent only. This is only possible for a constrained range of σ , namely
σ � ξ +1.

Proof of Lemma 3.11. For each N ∈ N , the function

[0,λ (N)
1 ] � λ �−→ aN(λ ) :=

λ (N)
1 λ ξ−σ+1s2

N(λ )

λ (N)
1 −λ

= λ ξ−σ+1
(

1− λ
λ (N)

1

) N

∏
k=2

(
1− λ

λ (N)
k

)2

(where we used the representation (3.18) for sN ) is non-negative, smooth, and such

that aN(0) = aN(λ (N)
1 ) = 0. Let λ ∗

N ∈ (0,λ (N)
1 ) be the point of maximum for aN . Then

a′N(λ ∗
N) = 0, which after straightforward computations yields

ξ −σ +1 � λ ∗
N

(
1

λ (N)
1

+2
N

∑
k=2

1

λ (N)
k

)
= λ ∗

NδN ,

whence also

λ ∗
N � ξ −σ +1

δN
.

Moreover, 0 � 1−λ/λ (N)
k � 1 for λ ∈ [0,λ (N)

1 ] and for all k ∈ {1, . . . ,N} , as λ (N)
1 is

the smallest zero of sN . Therefore,

aN(λ ) � aN(λ ∗
N) � (λ ∗

N)ξ−σ+1 �
(ξ −σ +1

δN

)ξ−σ+1
, λ ∈ [0,λ (N)

1 ] .

We then conclude∫
(λ1,λ

(N)
1 )

s2
N(λ )

λ (N)
1

λ (N)
1 −λ

dνξ (λ ) =
∫

(λ1,λ
(N)
1 )

aN(λ )dμσ (λ )

� μσ ((λ1,λ
(N)
1 ))

(ξ −σ +1
δN

)ξ−σ+1
,

which completes the proof. �

4. Proof of Theorem 2.4 and additional observations

Let us present in this Section the proof of our main statements, Theorem 2.4 and
Corollary 2.5, based on the intermediate results established in the previous Section.

Owing to Proposition 3.3, we have to control the behaviour for large N of the
quantity

ρσ ( f [N]) =
∫

[0,+∞)
s2
N(λ )dμσ (λ ) .
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Obviously, in the following we assume that none of the polynomials sN vanish
with respect to the measure νξ previously introduced in (3.8), for otherwise for some

N one would have ρσ ( f [N]) = 0 and therefore f [N] = PS f [0] ∈ S (see Remark 2.6, or
also (3.7)), meaning that the conjugate gradient algorithm has come to convergence in
a finite number of steps. The conclusion of Theorem 2.4 would then be trivially true.

Let us first observe, from the relation (3.8) between the measures μσ and νξ and
from the fact that the latter is supported on the true interval of orthogonality [λ1,λ∞]
(Proposition 3.6(v)), that the measure μσ too is supported on such an interval. Thus, in
practice,

ρσ ( f [N]) =
∫

[λ1,λ∞]
s2
N(λ )dμσ (λ ) . (4.1)

(Let us recall that [λ1,λ∞] is a shorthand for the closure of (λ1,λ∞) , even when λ∞ =
+∞ .)

It is convenient to split∫
[λ1,λ∞]

s2
N(λ )dμσ (λ ) = μσ ({λ1})s2

N(λ1)+
∫
(λ1,λ

(N)
1 )

s2
N(λ )dμσ (λ )

+
∫
[λ (N)

1 ,+∞)
s2
N(λ )dμσ (λ )

� μσ ({λ1})s2
N(λ1)+ μσ((λ1,λ

(N)
1 ))+

∫
[λ (N)

1 ,+∞)
s2
N(λ )dμσ (λ ) .

(4.2)

Here we used the bound s2
N(λ ) � 1, λ ∈ [0,λ (N)

1 ) , that is obvious from (3.18).
Next, let us show that

∫
[λ (N)

1 ,+∞)
s2
N(λ )dμσ (λ ) � 1

(λ (N)
1 )ξ−σ+1

∫
[0,λ (N)

1 )
s2
N(λ )

λ (N)
1

λ (N)
1 −λ

dνξ (λ ) . (4.3)

In fact, (4.3) is a consequence of the properties of sN discussed in Section 3. To
see that, let us consider the inequality

1 �
( λ

λ (N)
1

)ξ−σ
=

1

(λ (N)
1 )ξ−σ+1

· λ (N)
1

λ
·λ ξ−σ+1

� 1

(λ (N)
1 )ξ−σ+1

· λ (N)
1

λ −λ (N)
1

·λ ξ−σ+1 (λ � λ (N)
1 ) ,

(4.4)

which is valid owing to the constraint ξ −σ � 0. Then,

∫
[λ (N)

1 ,+∞)
s2
N(λ )dμσ (λ ) � 1

(λ (N)
1 )ξ−σ+1

∫
[λ (N)

1 ,+∞)
s2
N(λ )

λ (N)
1

λ −λ (N)
1

dνξ (λ )

=
1

(λ (N)
1 )ξ−σ+1

∫
[0,λ (N)

1 )
s2
N(λ )

λ (N)
1

λ (N)
1 −λ

dνξ (λ ) ,
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having used (3.8) and (4.4) in the first step, and the orthogonality property (3.16) in the
second. Estimate (4.3) is thus proved.

In turn, from (4.3) one gets

∫
[λ (N)

1 ,+∞)
s2
N(λ )dμσ (λ ) � λ (N)

1 s2
N(λ1)

λ (N)
1 −λ1

νξ ({λ1})
(λ (N)

1 )ξ−σ+1

+
1

(λ (N)
1 )ξ−σ+1

∫
(λ1,λ

(N)
1 )

s2
N(λ )

λ (N)
1

λ (N)
1 −λ

dνξ (λ )

� λ (N)
1 s2

N(λ1)

λ (N)
1 −λ1

μσ ({λ1})+
(ξ −σ +1

λ (N)
1 δN

)ξ−σ+1
μσ ((λ1,λ

(N)
1 ))

� λ (N)
1 s2

N(λ1)

λ (N)
1 −λ1

μσ ({λ1})+ (ξ −σ +1)ξ−σ+1μσ ((λ1,λ
(N)
1 )) ,

(4.5)

where in the intermediate identity we used (3.8) to pass from νξ to μσ and we applied

Lemma 3.11, and in the final inequality we used the property λ (N)
1 δN � 1 (following

from (3.20)).
Thus, (4.1), (4.2) and (4.5) yield

ρσ ( f [N]) �
(

s2
N(λ1)+

λ (N)
1 s2

N(λ1)

λ (N)
1 −λ1

)
μσ ({λ1})

+
(
1+(ξ −σ +1)ξ−σ+1

)
μσ ((λ1,λ

(N)
1 )) ,

whence also, using the factorisation (3.18) for sN ,

ρσ ( f [N]) � 2

(
1− λ1

λ (N)
1

) N

∏
k=2

(
1− λ1

λ (N)
k

)2

μσ ({λ1})

+
(
1+(ξ −σ +1)ξ−σ+1

)
μσ ((λ1,λ

(N)
1 )) .

(4.6)

In the right-hand side of (4.6) one has μσ ((λ1,λ
(N)
1 )) N→∞−−−−→ 0. Moreover, de-

pending on the value of λ1 , the quantity(
1− λ1

λ (N)
1

) N

∏
k=2

(
1− λ1

λ (N)
k

)2

μσ ({λ1})

either attains at every N the value μσ ({0}) , if λ1 = 0, and hence vanishes, owing to
(3.5) from Proposition 3.2, or in general is bounded by

λ (N)
1 −λ1

λ (N)
1

‖uσ ( f [0])‖2 ,
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owing to (3.3) and to the ordering 0 < λ (N)
1 < λ (N)

2 < · · · < λ (N)
N and λ1 � λ (N)

1 , and
hence when λ1 > 0 it vanishes in the limit N → ∞ .

In either case one concludes from (4.6) that ρσ ( f [N]) N→∞−−−−→ 0, thus completing
the proof of Theorem 2.4, and also of Corollary 2.5, as our crucial Proposition 3.6 is
proved under the assumptions of either of them.

In the second part of this Section, we intend to highlight a number of important
observations.

REMARK 4.1. We see that the assumption that none of the polynomials sN vanish
with respect to the measure νξ in the proof of Theorem 2.4 immediately excludes

the possibility that λ (N)
1 = λ1 for any N ∈ N by considerations in Proposition 3.6(ii).

Clearly λ (N)
1 �= 0 for any N ∈ N too owing to Proposition 3.6(i).

REMARK 4.2. In retrospect, the assumption ξ � σ was necessary to establish
the bound (4.3) – more precisely, the inequality (4.4). In the step (4.6) (which is an
application of Lemma 3.11), only the less restrictive assumption ξ � σ −1 was needed.

REMARK 4.3. Where exactly the true interval of orthogonality lies within [0,+∞)
depends on the behaviour of the zeroes of the sN ’s. In particular, in terms of the quantity
δN defined in (3.20) we distinguish two alternative scenarios:

CASE I: δN → ∞ as N → ∞ ;

CASE II: δN remains uniformly bounded, strictly above 0, in N .

If the operator A is bounded, then we are surely in Case I: indeed the orthogonal
polynomials sN are defined on σ(A) ⊂ [0,‖A‖] , and their zeroes cannot exceed ‖A‖ :

this forces δN to blow up with N . Moreover, λ∞ = limN→∞ λ (N)
N < +∞ .

If instead A is unbounded, the λ (N)
k ’s fall in [0,+∞) and depending on their rate

of possible accumulation at infinity δN may still diverge as N → ∞ or stay bounded.
Clearly in Case II one has λ1 > 0 and λN = +∞ , for otherwise the condition λ1 =

limN→∞ λ (N)
1 = 0 or λ∞ = limN→∞ λ (N)

N < +∞ would necessarily imply δN → +∞ .
Thus, in Case II the true interval of orthogonality is [λ1,+∞) and it is separated from
zero.

REMARK 4.4. Estimate (4.6) in the proof and the reasoning thereafter show that
the vanishing rate of ρσ ( f [N]) is actually controlled by the vanishing rate of the quan-

tity μσ ((λ1,λ
(N)
1 )) if λ1 = 0, or more generally of both quantities (λ (N)

1 − λ1) and

μσ ((λ1,λ
(N)
1 )) if λ1 > 0. It is however unclear how to possibly quantify, in the above

senses, the pace of λ (N)
1 → λ1 . Let us recall (see Remark 2.7 and (2.23) in particular)

that the Nemirovskiy-Polyak analysis [21] for the bounded-A case provides an explicit
vanishing rate for ρσ ′( f [N]) for any σ ′ ∈ (σ ,ξ ] , based on a polynomial min-max ar-
gument that relies crucially on the finiteness of the interval where the orthogonal poly-
nomials sN are supported on (i.e., it relies on the boundedness of σ(A)). Therefore,
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there is certainly no room for applying the same argument to the present setting. In fact,
we find it reasonable to expect that for generic (unbounded) A the quantity ρσ ( f [N])
vanishes with arbitrarily slow pace depending on the choice of the initial guess f [0] . A
strong indication in this sense comes from the numerical tests discussed in Section 5.

REMARK 4.5. It is worth pointing out that removing from the hypotheses of The-
orem 2.4 (respectively Corollary 2.5) the A-analyticity of g and f [0] (respectively, the
quasi-analyticity assumptions (2.21) or (2.22)) and replacing it with just the minimal
assumption of A-smoothness, one could have only come to the (still non-trivial, yet
not-informative) conclusion that ρσ ( f [N]) � κ uniformly in N for some κ > 0. This is
seen as follows. For sure, even if the moment problem for νξ is indeterminate, the mea-
sure νξ has some support within [λ1,λ∞] (see, e.g., [8, Theorem II.3.2]), and so does
μσ . However, in the lack of the information that μσ is only supported in [λ1,λ∞] , in
the above proof one should additionally estimate, besides the vanishing quantity (4.2),
the extra term ∫

[0,λ1)
s2
N(λ )dμσ (λ ) .

On account of the inequalities λ1 � λ (N)
1 (Proposition 3.6(iii)) and sN(λ ) � 1 ∀λ ∈

[0,λ1) (representation (3.18)), the above integral is controlled by
∫
[0,λ1) dμσ (λ ) , and is

therefore bounded uniformly in N .

REMARK 4.6. (Comparison with the proof of [21] valid for bounded A) Our proof
generalises the Nemirovskiy-Polyak analysis [21] with a crucial technical novelty that
is necessary when A is unbounded, and in fact it also yields a subtle improvement of
the old argument for the bounded case. More precisely, in [21] one does not make use
of the very useful property that μσ is only supported on [λ1,λ∞] , which is the outcome
of the somewhat laborious path that led to Proposition 3.6(v) here. The sole measure-
theoretic information used in [21] is that λ = 0 is not an atom for μσ . Then in [21],
instead of naturally splitting the integration as in (4.2) above, one separates the small

and the large spectral values at a threshold γN = min{λ (N)
1 ,δ−1/2

N } . Clearly γN → 0, be-
cause δN → +∞ since A is bounded (see Remark 4.3 above), and through a somewhat
lengthy analysis of the integration for λ < γN and λ � γN one reduces both integra-
tions to one over [0,γN) . Then one finally pulls out the upper bound μσ ([0,γN)) , which
vanishes as N → ∞ precisely because μσ is atom-less at λ = 0. In the unbounded case
such a scheme cannot work: δN does not necessarily diverge and only the informa-
tion that μσ is supported at the right of, and possibly at, λ1 makes the final estimate
meaningful. Furthermore, in retrospect, by splitting the integration as in (4.2) and not
in the old manner of [21], our proof shortens the overall argument and applies both to
the bounded and to the unbounded case, with no need to introduce the γN cut-off.

REMARK 4.7. (Continuation: comparison with subsequent surveys of [21]) The
analysis of conjugate gradients in the bounded case is nicely revisited by Hanke in
the monograph [14], both by presenting a version of the same Nemirovskiy-Polyak γN -
argument [21], and by relying on a dominated convergence argument for a choice of a
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sequence of polynomials that vanishes point-wise over (0,1] or on a Banach-Steinhaus
uniform boundedness argument. For obvious reasons, none of such schemes are ex-
portable to the present unbounded setting by merely updating the assumption of g and
f [0] so as to be A-smooth: in order to deal with a measure supported on [λ1,λ∞] , an in-
terval that is possibly infinite and separated from zero, the additional measure-theoretic
analysis of Proposition 3.6 is needed. (One should not be misled when in [14] certain
spectral integrals appear to run over the whole positive half-line: it is clear from the
discussion therein that the zeroes of the considered orthogonal polynomials only fall
within a bounded interval.) Of course, as commented already, in the present gener-
alised scheme one pays the price that any quantitative bound on the rate of convergence
is lost.

We conclude this Section with one further important fact we had alluded to in
Remark 2.10.

PROPOSITION 4.8. Let ξ � 0 , and with respect to the Hilbert space H = L2(R,dx)
let A be the self-adjoint multiplication by x2 , and let g := x2 f with

f (x) :=
√

21R+(x)

x
3
2 +ξ (2π)

1
4

e−
1
4 (logx2)2 . (4.7)

Set further f [0] ≡ 0 . Then:

(i) A is non-negative and g ∈C∞(A)∩ ran(A);

(ii) Neither f nor g are quasi-analytic for A;

(iii) PS f [0] = f ;

(iv) the measure νξ defined in (3.8) is a log-normal distribution, i.e.,

dνξ (λ ) =
1R+(λ )
λ
√

2π
e−

1
2 (logλ )2 dλ , λ � 0 .

(v) The Hamburger moment problem for νξ is indeterminate.

Proposition 4.8 shows that in general, when g and f [0] are only assumed to be
A-smooth, and the vector f [0]−PS f [0] is not necessarily quasi-analytic for A , the mea-
sure νξ may fail to be supported entirely in the true interval of orthogonality [λ1,λ∞] .
(Moreover, let us recall – see, e.g., [8, Exercise II.5.7] – that in the lack of unique so-
lution to the moment problem discussed in the proof of Proposition 3.6, at least one
representative measure has a part of its support outside [λ1,λ∞] .) As a consequence,
the quantity ρσ ( f [N]) , while staying uniformly bounded (Remark 4.5) is not guaranteed
to vanish as N → ∞ .

Proof of Proposition 4.8. The facts that A � O and g∈ ran(A) (provided that f ∈
D(A)) are obvious. Let us prove that f ∈C∞(A) (whence f ∈ D(A) and g ∈C∞(A)).



CONVERGENCE OF CONJUGATE GRADIENT WITH UNBOUNDED OPERATORS 61

For n ∈ N0 , and with the change of variable y := logx2 , we compute

‖An f‖2
L2 = ‖x2n f‖L2 =

2√
2π

∫ +∞

0
x4n−3−2ξ e−

1
2 (logx2)2 dx

=
1√
2π

∫
R

e(2n−1−ξ )y e−
1
2 y2

dy = e
1
2 (2n−1−ξ )2 < +∞ .

Thus, f ∈C∞(A) and part (i) is proved.
From the latter computation we also find

∑
n∈N

‖An f‖−
1
n

L2 = ∑
n∈N

e−
1
4n (2n−1−ξ )2 < +∞ ,

whence f /∈ Dqa(A) (on account of definition (2.17)), and also g /∈ Dqa(A) . Thus, (ii)
is proved.

Part (iii) follows from A f = g and from the injectivity of A .
Concerning part (iv), let us observe first of all that the spectral measure of A is

only supported on σ(A) = [0,+∞) , and moreover (see, e.g., [26, Example 5.3]), the
spectral projections E(A)(Ω) , for given Borel subset Ω ⊂ [0,+∞) , are nothing but the
multiplication operators by the characteristic functions 1a−1(Ω) , where x �→ a(x) := x2 .
Thus,

〈 f ,EA(Ω) f 〉 =
∫

a−1(Ω)
| f (x)|2 dx =

∫
{λ∈R |λ 2∈Ω}

| f (x)|2 dx

=
∫
{
√

λ |λ∈Ω}
| f (x)|2 dx+

∫
{−

√
λ |λ∈Ω}

| f (x)|2 dx .

Therefore, with Ω = [0,λ ] and E(A)(λ ) ≡ E(A)([0,λ ]) for λ � 0,

d〈 f ,EA(λ ) f 〉
dλ

=
d

dλ

∫ √
λ

−√
λ
| f (λ )|2dλ =

1

2
√

λ

∣∣ f (√λ )
∣∣2 +

1

2
√

λ

∣∣ f (−√
λ )
∣∣2

=
1

2
√

λ

∣∣ f (√λ )
∣∣2 =

1R+(λ )
λ 2+ξ

√
2π

e−
1
2 (logλ )2 .

From this, from part (iii), and from (3.8),

dνξ (λ ) = λ ξ+1 d〈 f ,EA(λ ) f 〉 =
1R+(λ )
λ
√

2π
e−

1
2 (logλ )2 dλ .

Part (iv) is proved.
Last, concerning part (v), it is well known (see, e.g., [29, Exercise 8.7]) that the

space of polynomials on [0,+∞) is not dense in L2([0,+∞),dνξ ) when the measure
νξ , as in the present case, is a log-normal distribution. As an immediate consequence
the solution for the Hamburger moment problem for νξ is not unique: for any νξ -
integrable function ϕ that is νξ -orthogonal to the subspace of polynomials, the distinct
measures νξ and (1+ϕ)νξ have obviously the same moments (see, e.g., [2, Corollary
2.3.3] for the same conclusion in abstract terms). �
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5. Numerical tests

In this Section we discuss a selection of numerical tests that we run with the three-
fold purpose of confirming the main features of our convergence result, corroborating
our intuition on certain relevant differences with respect to the bounded case, and ex-
ploring the behaviour of the unbounded conjugate gradient algorithm beyond the regime
covered by our main theorem.

We choose H = L2(R) and

test-1a: A = − d2

dx2 +� , D(A) = H2(R) , f (x) = e−x2
,

test-1b: A = − d2

dx2 , D(A) = H2(R) , f (x) = e−x2
,

test-2a: A = − d2

dx2 +� , D(A) = H2(R) , f (x) = (1+ x2)−1 ,

test-2b: A = − d2

dx2 , D(A) = H2(R) , f (x) = (1+ x2)−1 ,

(5.1)

where H2 denotes the usual Sobolev space of second order. In either case A is an
unbounded, injective, non-negative, self-adjoint operator on H ; but only in tests 1a
and 2a does A−1 exist as an everywhere defined bounded operator.

We then consider the inverse linear problem A f = g with the datum g∈ ranA given
by the above explicit choice of the solution f , and we construct conjugate gradient
approximate solutions f [N] to f , namely ξ -iterates with ξ = 1, with initial guess
f [0] = 0 (the zero function on R). Thus, each f [N] is searched for over the Krylov
subspace KN(A,g) = span{g,Ag, . . . ,AN−1g} . f [0] is trivially smooth, and so are f
and g , therefore the 1-iterates are all well-defined. Owing to the injectivity of A in
all considered cases, necessarily PS f [0] = f . The algorithm is well defined in all tests,
as f (and hence g ) is a smooth function and is square-integrable together with all its
derivatives (i.e., g ∈C∞(A)).

Of course in practice we replace the minimisation (2.1) with the standard, equiva-
lent algebraic construction for the f [N] ’s [25, 19], so as to implement it as a routine in
a symbolic computation software.

Iteratively we evaluate

ρ0( f [N]) =
∥∥ f [N] − f

∥∥2

ρ1( f [N]) =
〈
f [N] − f ,A( f [N] − f )

〉
ρ2( f [N]) =

∥∥A f [N] −g
∥∥2

,

(5.2)

(see (2.15) above) and we monitor the behaviour of such three quantities as N increases.
The choice of the data g in our tests is made so as tests 1 fall within the scope of

our Theorem 2.4, whereas tests 2 go beyond it. Indeed:

LEMMA 5.1. With respect to the Hilbert space L2(R,dx) and the self-adjoint op-

erators A = − d2

dx2 +1 or A = − d2

dx2 introduced above,
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(i) the function f = e−x2
, and hence g = A f is analytic;

(ii) the function f = (1+ x2)−1 , and hence g = A f is not quasi-analytic.

Proof. (i) It suffices to show that f is A-analytic, the same conclusion for g then
follows from Lemma 3.9. By a standard criterion, A-analyticity of f is tantamount as
f ∈ D(ezT ) for all z ∈ C with |Rez| small enough (see, e.g., [26, Corollary 7.9]). In

terms of the Hilbert space isomorphism L2(R,dx)
∼=−→ L2(R,dp) , h �→ ĥ induced by the

Fourier transform, when f = e−x2
one has f̂ = 1√

2
e−

1
4 p2

and the considered A’s are

unitarily equivalent to the multiplication by p2 +1, or by p2 . Therefore,

êzA f =
1√
2

ez(p2+1) e−
1
4 p2 ∈ L2(R,dp) for |Rez| < 1

4
,

and the same conclusion holds with ez p2
in place of ez(p2+1) , so both A’s are covered.

Thus, f = e−x2
is indeed A-analytic. Incidentally the same criterion also shows that

f = (1+ x2)−1 is not analytic, because f̂ =
√π

2 e−|p| , and for no non-zero values of
Rez is the function

êzA f =
√

π
2

ez(p2+1) e−|p|

square-integrable on R .
(ii) It suffices to show that f is not quasi-analytic for A , the same conclusion

for g then follows from Lemma 3.7(i). Besides, it suffices to show the lack of quasi-
analyticity of f with respect to A = − d2

dx2 : then, since for n ∈ N

‖(− d2

dx2 +�)n f‖2
L2 = 〈 f ,(− d2

dx2 +�)2n f 〉L2 � 〈 f ,(− d2

dx2 )2n f 〉L2

= ‖(− d2

dx2 )n f‖2
L2 ,

one concludes

∑
n∈N

‖(− d2

dx2 +�)n f‖−
1
n

L2 � ∑
n∈N

‖(− d2

dx2 )n f‖−
1
n

L2 < +∞

(last inequality following from 2.17 and the fact that f is not quasi-analytic for − d2

dx2 ),

that is, the lack of quasi-analyticity of f also for − d2

dx2 +� . So now let A = − d2

dx2 ,

f = (1+ x2)−1 , and using f̂ =
√π

2 e−|p| we compute

‖An f‖2
L2 =

∫
R

(√π
2

(p2)ne−|p|
)2

dp = π
∫ +∞

0
p4n e−2p dp

= π
Γ(1+4n)

21+4n .

Using the known asymptotics [1, Eq. (6.1.37)] of the gamma function

Γ(t) t→+∞=
√

2π e−t tt−
1
2 (1+O(t−1)) ,
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we obtain, asymptotically as n → ∞ ,

‖An f‖2
L2 =

π
√

2π
e

e−4n (1+4n)
1
2 +4n 2−(1+4n) (1+O(n−1)) ,

whence

‖An f‖−
1
n

L2 = 4e2n−2 (1+O(n−1)) .

This shows that the series ∑n∈N ‖An f‖−
1
n

L2 is asymptotics to ∑n∈N n−2 and therefore
converges. f is not quasi-analytic for A . �

On account of Lemma 5.1, tests 1 are covered by our theoretical analysis: since
obviously f [0] ∈CA,g(σ) ∀σ � 0, then Theorem 2.4 ensures that ρσ ( f [N])→ 0 for any
σ ∈ [0,1] . In particular, both the error (ρ0 ) and the energy norm (ρ1 ) are predicted to
vanish as N → ∞ .

In the bounded case also the residual (ρ2 ) would automatically vanish (Remark
2.7), but in tests-1 this indicator is not controlled by Theorem 2.4 and it is worth moni-
toring it.

A fourth meaningful quantity to monitor is N2ρ1( f [N]) . Recall indeed that if A
was bounded the energy norm would be predicted to vanish not slower than a rate of
order N−2 (as given by (2.23) with ξ = 1, σ = 0, σ ′ = 1). Thus, detecting now
the possible failure of N2ρ1( f [N]) to stay bounded uniformly in N is an immediate
signature of the fact that one cannot apply to the unbounded-A scenario the ‘classical’
quantitative convergence rate predicted by Nemirovskiy and Polyak for the bounded-A
scenario [21], which in fact was also proved to be optimal in that case [22].

The results of tests 1a and 1b are shown respectively in Figure 1 and 2.
Both tests 1a and 1b reveal that the iterates not only converge in the sense of the

error and of the energy norm as predicted by Theorem 2.4, but also in the residual sense
(not covered by Theorem 2.4). Of course in retrospect the error’s vanishing in test 1a
is consistent with the residual’s vanishing, owing to the boundedness of A−1 in tests 1:
indeed, obviously,

ρ0( f [N]) = ‖ f [N] − f
∥∥2 � ‖A−1‖2

op‖A f [N] −g
∥∥2 � ‖A−1‖2

op ρ2( f [N]) .

In addition, the classical Nemirovskiy-Polyak convergence rate for the energy norm is
not violated in test 1a (Figure 1), whereas it appears to be violated in test 1b (Figure 2),
where A does not have a bounded inverse.

Heuristically, the slower vanishing rate of ρ0 , ρ1 , and ρ2 in test 1b is due to the

presence of zero in the spectrum of A = − d2

dx2 : as we are approximating A−1g with
polynomials pN(A)g , the approximation to the inverse with polynomials is hampered
about the “bad” spectral point λ = 0.

As opposite to tests 1a and 1b, we know from Lemma 5.1(ii) that tests 2a and 2b,
represented respectively in Figure 3 and 4, are not covered by our theoretical analy-
sis, but for the fact that the quantities ρ0( f [N]) and ρ1( f [N]) are surely predicted to
stay uniformly bounded in N (Remark 4.5). Such uniform boundedness is confirmed
numerically.
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Figure 1: Numerical experiments for test 1a. From top left: ρ0( f [N]) , ρ1( f [N]) , ρ1( f [N])N2 ,
and ρ2( f [N]) indicators of convergence vs N .

1 5 10 15 20 25 30
10 -1

10 0

1 5 10 15 20 25 30
10 -2

10 -1

10 0

1 5 10 15 20 25 30

10 0

10 1

1 5 10 15 20 25 30

10 -1

10 0

Figure 2: Numerical experiments for test 1b. From top left: ρ0( f [N]) , ρ1( f [N]) , ρ1( f [N])N2 ,
and ρ2( f [N]) indicators of convergence vs N .
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Figure 3: Numerical experiments for test 2a. From top left: ρ0( f [N]) , ρ1( f [N]) , ρ1( f [N])N2 ,
and ρ2( f [N]) indicators of convergence vs N .

1 5 10 15 20 25 30
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1 5 10 15 20 25 30
0.1

0.2

0.3

0.4

0.5

1 5 10 15 20 25 30

10 0

10 1

10 2

1 5 10 15 20 25 30
2

2.5

3

3.5

Figure 4: Numerical experiments for test 2b. From top left: ρ0( f [N]) , ρ1( f [N]) , ρ1( f [N])N2 ,
and ρ2( f [N]) indicators of convergence vs N .
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In test 2a, where A has bounded inverse on the whole H , numerics indicate that
ρ0( f [N]) → 0 and ρ1( f [N]) → 0 as N → ∞ . That provides some practical evidence that
there exist non-quasi-analytic data g that still display “good behaviour”, i.e., conver-
gence at suitable ρσ -level. This is completely compatible with our Theorem 2.4 and
Corollary 2.5: the use of (quasi-)analyticity that we made therein is solely localised
in Proposition 3.6(v) in order to apply Carleman’s criterion for the determinacy of the
Hamburger moment problem, and that criterion is only a sufficient condition for the
uniqueness of the νξ -measure. In fact, investigating the nebulous regime beyond quasi-
analyticity would be of substantial relevance to understand what minimal assumptions
on g and f [0] guarantee the uniqueness of the νξ -measure (that surely fails in certain
cases, as we saw in Proposition 4.8), or at least the convergence of the unbounded CG
algorithm.

In comparison, in test 2b (unbounded A−1 ) the decay rates of ρ0 and ρ1 appear to
be slower than the counterpart 2a and it is unclear whether there is an actual vanishing,
beside the evident decreasing behaviour.

The residual ρ2 looks clearly decreasing in test 2a, with insufficient numerical
evidence for vanishing, though, and instead manifestly divergent in test 2b. Here the
solution f = (1 + x2)−1 is not localised as the Gaussian of tests 1a and 1b, and has
instead a long tail at large distances: the intuition suggests that this feature affects the
convergence at higher regularity levels.

In either test 2a and 2b numerics give definite evidence of violation of the Nemi-
rovskiy-Polyak convergence rate.
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