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PRODUCT OF A NILPOTENT AND A UNIPOTENT

MATRIX OVER AN ALGEBRAICALLY CLOSED FIELD

FLAVIEN MABILAT

(Communicated by R. A. Brualdi)

Abstract. In this note, we give a proof that a matrix of determinant 0 on any algebraically closed
field is the product of a nilpotent matrix and a unipotent matrix which only uses elementary facts.

“Nous sommes toujours étonnés que les autres ignorent ce que nous savons depuis
cinq minutes.”

Marie Valyère, Nuances Morales

1. Introduction

In this note, all fields considered are commutative. Let K be an arbitrary field. 0k,l

denotes the zero matrix of Mk,l(K) . If A ∈ Mn(K) we denote χA(X) = det(XIn −A)
the characteristic polynomial of A (with this definition χA(X) is a monic polynomial).

The multiplicative form of the well-known theorem of Jordan-Chevalley states
that an invertible and triangularizable matrix over K can be written in a unique way
as the product of a diagonalizable matrix and a unipotent matrix (for a proof of this
classical result see for example [2] Theorem 21.24). Here, we want to find a similar
decomposition in the case of a non invertible matrix. We have the following results
which can help us to express a matrix into a product of two matrices with prescribed
eigenvalues:

THEOREM 1. (A. R. Sourour, K.Tang, [3] Theorem 1) Let A be an n× n singu-
lar matrix over an arbitrary commutative field F and let β j and γ j (1 � j � n) be
elements of F . If A is not a nonzero 2×2 nilpotent matrix, then A can be factored as
a product BC where the eigenvalues of B and C are β1, . . . ,βn and γ1, . . . ,γn respec-
tively, if and only if the number of zeros m among β1, . . . ,βn,γ1, . . . ,γn is not less than
the dimension of the null space of A. If A is a nonzero 2× 2 nilpotent matrix then A
can be factored as above if and only if 1 � m � 3 .
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In particular, an easy corollary of this theorem is that on an arbitrary commutative
field a non invertible matrix is the product of a nilpotent matrix and a unipotent matrix.
However, the proof of theorem 1 is quite dificult and uses the nilpotent factorization
theorem (see [4] for the complex case and [1] Theorem 4 for the general result). Here,
we want to give a proof of this result in the case of an algebraically closed field which
only uses elementary facts. Hence, we prove the following result:

THEOREM 2. Let K be an algebraically closed field and A ∈ Mn(K) such that A
is not invertible. A is the product of a nilpotent matrix and a unipotent matrix.

Unfortunately this decomposition is not unique and we give an example at the end
of this note of an non-invertible matrix which has two decompositions of this type.

2. Proof of the result

2.1. Preliminary lemma

In this subpart, K is an arbitrary commutative field. We need the following pre-
liminary result:

LEMMA 1. Let A =

⎛
⎜⎜⎜⎜⎜⎜⎝

a1,1 a1,2 a1,3 . . . a1,n

0 a2,2 a2,3 . . . a2,n
...

. . .
. . .

...
...

. . . an−1,n−1 an−1,n

0 . . . . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ Mn(K) with ai,i �= 0 and

P ∈ K[X ] a monic polynomial of degree n. It exists (α1, . . . ,αn) ∈ K
n such that the

characteristic polynomial of the matrix B =

⎛
⎜⎜⎜⎜⎜⎝

α1 α2 . . . . . . αn

a1,1 a1,2 . . . . . . a1,n

0 a2,2 . . . . . . a2,n
...

. . .
. . .

...
0 . . . 0 an−1,n−1 an−1,n

⎞
⎟⎟⎟⎟⎟⎠ is equal

to P.

Proof. The characteristic polynomial of B is

χB(X) =

∣∣∣∣∣∣∣∣∣∣∣

X −α1 −α2 . . . . . . −αn

−a1,1 X −a1,2 . . . . . . −a1,n

0 −a2,2 . . . . . . −a2,n
...

. . .
. . .

...
0 . . . 0 −an−1,n−1 X −an−1,n

∣∣∣∣∣∣∣∣∣∣∣
.

We will prove that it exists (P1, . . . ,Pi) ∈ K[X ]i such that Pi is a monic polynomial of
degree n− i whose coefficients depend only of the coefficients ak,l and such that χB(X)
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satisfy the following equality:

χB(X) = (X −α1)P1 +a1,1(−α2P2 +a2,2(−α3P3 +a3,3(. . .

+(−1)n−iai,i

∣∣∣∣∣∣∣∣∣

αi+1 αi+2 . . . . . . αn

ai+1,i+1 ai+1,i+2−X . . . . . . ai+1,n
...

. . .
...

0 . . . 0 an−1,n−1 an−1,n−X

∣∣∣∣∣∣∣∣∣
) . . .). (1)

We have

χB(X) = (X −α1)

∣∣∣∣∣∣∣∣∣

X −a1,2 . . . . . . −a1,n

−a2,2 X −a2,3 . . . −a2,n
. . .

...
0 . . . −an−1,n−1 X −an−1,n

∣∣∣∣∣∣∣∣∣

+(−1)n−1a1,1

∣∣∣∣∣∣∣∣∣

α2 α3 . . . . . . αn

a2,2 a2,3−X . . . . . . a2,n
...

. . .
...

0 . . . 0 an−1,n−1 an−1,n−X

∣∣∣∣∣∣∣∣∣
.

We set P1(X) =

∣∣∣∣∣∣∣∣∣

X −a1,2 . . . . . . −a1,n

−a2,2 X −a2,3 . . . −a2,n
. . .

...
0 . . . −an−1,n−1 X −an−1,n

∣∣∣∣∣∣∣∣∣
. P1 is the characteristic

polynomial of the matrix

⎛
⎜⎜⎜⎝

a1,2 . . . . . . a1,n

a2,2 a2,3 . . . a2,n
. . .

...
0 . . . an−1,n−1 an−1,n

⎞
⎟⎟⎟⎠ . Hence, P1 is a monic poly-

nomial of degree n−1 whose coefficients only depend of the coefficients ak,l .
Suppose it exists i such that (1) is true.

Δi = (−1)n−iai,i

∣∣∣∣∣∣∣∣∣

αi+1 αi+2 . . . . . . αn

ai+1,i+1 ai+1,i+2−X . . . . . . ai+1,n
...

. . .
...

0 . . . 0 an−1,n−1 an−1,n−X

∣∣∣∣∣∣∣∣∣
= (−1)n−iai,iαi+1

∣∣∣∣∣∣∣
ai+1,i+2−X . . . . . . . . . ai+1,n

...
. . .

...
0 . . . 0 an−1,n−1 an−1,n−X

∣∣∣∣∣∣∣

+(−1)n−i−1ai+1,i+1ai,i

∣∣∣∣∣∣∣∣∣

αi+2 . . . . . . . . . αn

ai+2,i+2 . . . . . . . . . ai+2,n
...

. . .
...

0 . . . 0 an−1,n−1 an−1,n−X

∣∣∣∣∣∣∣∣∣
.
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We set Pi+1(X) =

∣∣∣∣∣∣∣
X −ai+1,i+2 . . . . . . . . . −ai+1,n

...
. . .

...
0 . . . 0 −an−1,n−1 X −an−1,n

∣∣∣∣∣∣∣ . Pi+1 is the character-

istic polynomial of the matrix

⎛
⎜⎝

ai+1,i+2 . . . . . . . . . ai+1,n
...

. . .
...

0 . . . 0 an−1,n−1 an−1,n

⎞
⎟⎠ . Hence, Pi+1 is a

monic polynomial of degree n− i− 1 whose coefficients only depend of the coeffi-
cients ak,l . If we replace in formula (1) the determinant by the preceeding equality we
have proved that formula (1) is true for i+1.

Hence, formula (1) is proved by induction. Let P(X) = ∑n
i=0 βiX i , βn = 1. We set

the coefficients αi by induction.
Thanks to formula (1), we see that the coefficient of χB(X) of the term of degree

n−1 is equal to −α1−∑n−1
i=1 ai,i+1 . We set α1 = −βn−1−∑n−1

i=1 ai,i+1 .
Suppose it exists i such that we have defined α1, . . .αi−1 . Since the determinant

in formula (1) is a polynomial of degree n− i−1, the coefficient of χB(X) of the term
of degree n− i is equal to the coefficient of the term of degree n− i of

Qi = (X −α1)P1 +a1,1(−α2P2 +a2,2(−α3P3 + . . .+ai−1,i−1(−αiPi) . . .).

Hence, the coefficient of χB(X) of the term of degree n− i is equal to −αi ∏i−1
j=1 a j, j +

f (α1, . . . ,αi−1,ak,l) where f (α1, . . . ,αi−1,ak,l) is the coefficient of Qi−∏i−1
j=1 a j, j(−αiPi)

of the term of degree n− i . We set

αi =
−βn−i + f (α1, . . . ,αi−1,ak,l)

∏i−1
j=1 a j, j

(
i−1

∏
j=1

a j, j �= 0 since a j, j �= 0).

By induction, we have defined α1, . . .αn . This choice implies that χB(X) = P(X)
and the lemma is proved. �

2.2. Proof of Theorem 2

Let K be an algebraically closed field. We proceed by induction on n .
If n = 1 then A = (0) = (0)× (1) and the result is true.
Suppose it exists n � 1 such that any square matrix of size n satisfying the condi-

tions of Theorem 2 is the product of a nilpotent matrix and a unipotent matrix.
Let A ∈ Mn+1(K) satisfying the conditions of the theorem. A is triangularizable

and A is not invertible. Hence, ∃P ∈ GLn(K) , ∃T ∈ Mn(K) and ∃C ∈ Mn,1(K) such
that

A = P

(
T C

01,n 0

)
P−1 and T triangular.

We have two possibilities:
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• T is not invertible. In this case, T is the product of a nilpotent matrix N and a
unipotent matrix U (by induction assumption). One has

A =

(
T C

01,n 0

)
=

(
NU C

01,n 0

)
=

(
N C

01,n 0

)(
U 0n,1

01,n 1

)
.

(
N C

01,n 0

)
is nilpotent and

(
U 0n,1

01,n 1

)
is unipotent. Hence, A is the product of

a nilpotent and a unipotent matrix.

• T is invertible. In this case, the diagonal coefficients of T are different from
0. Hence, we can apply lemma 1 that is to say it exists (α1, . . . ,αn+1) such

that the characteristic polynomial of B =

(
α1 . . .αn αn+1

T C

)
is (X −1)n+1 . B is

unipotent (since its characteristic polynomial is (X −1)n+1 ) and one has

(
T C

01,n 0

)
=

⎛
⎜⎜⎜⎜⎜⎝

0 1
0 1

. . .
. . .
0 1

0

⎞
⎟⎟⎟⎟⎟⎠B.

Hence, A is the product of a nilpotent and a unipotent matrix.

By induction, Theorem 2 is proved. �

2.3. Some concluding remarks

In fact the same proof show that on an arbitrary field a triangularizable matrix
which is not invertible is the product of a nilpotent matrix and a unipotent matrix.

We conclude this note by the two following remarks:

• In general the decomposition A = NU with N nilpotent and U unipotent is not
unique. For example,(

0 1

0 0

)(
1 0

0 1

)
=

(
0 1

0 0

)
=

(
0 1

0 0

)(
1 1

0 1

)
.

• If A = NU with N nilpotent and U unipotent then N and U don’t commute in
general. For instance, (

1 0

0 0

)
=

(
0 1

0 0

)(
2 −1

1 0

)
(

0 2

0 1

)
=

(
2 −1

1 0

)(
0 1

0 0

)
.
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