PRODUCT OF A NILPOTENT AND A UNIPOTENT MATRIX OVER AN ALGEBRAICALLY CLOSED FIELD

FLAVIEN MABILAT

(Communicated by R. A. Brualdi)

Abstract. In this note, we give a proof that a matrix of determinant 0 on any algebraically closed field is the product of a nilpotent matrix and a unipotent matrix which only uses elementary facts.

"Nous sommes toujours étonnés que les autres ignorent ce que nous savons depuis cinq minutes." Marie Valyère, Nuances Morales

1. Introduction

In this note, all fields considered are commutative. Let \mathbb{K} be an arbitrary field. $0_{k,l}$ denotes the zero matrix of $M_{k,l}(\mathbb{K})$. If $A \in M_n(\mathbb{K})$ we denote $\chi_A(X) = \det(XI_n - A)$ the characteristic polynomial of A (with this definition $\chi_A(X)$ is a monic polynomial).

The multiplicative form of the well-known theorem of Jordan-Chevalley states that an invertible and triangularizable matrix over \mathbb{K} can be written in a unique way as the product of a diagonalizable matrix and a unipotent matrix (for a proof of this classical result see for example [2] Theorem 21.24). Here, we want to find a similar decomposition in the case of a non invertible matrix. We have the following results which can help us to express a matrix into a product of two matrices with prescribed eigenvalues:

THEOREM 1. (A. R. Sourour, K.Tang, [3] Theorem 1) Let A be an $n \times n$ singular matrix over an arbitrary commutative field \mathbb{F} and let β_j and γ_j $(1 \leq j \leq n)$ be elements of \mathbb{F} . If A is not a nonzero 2×2 nilpotent matrix, then A can be factored as a product BC where the eigenvalues of B and C are β_1, \ldots, β_n and $\gamma_1, \ldots, \gamma_n$ respectively, if and only if the number of zeros m among $\beta_1, \ldots, \beta_n, \gamma_1, \ldots, \gamma_n$ is not less than the dimension of the null space of A. If A is a nonzero 2×2 nilpotent matrix then A can be factored as above if and only if $1 \leq m \leq 3$.

Keywords and phrases: Unipotent matrix, nilpotent matrix, characteristic polynomial.

Mathematics subject classification (2020): 15A23.

In particular, an easy corollary of this theorem is that on an arbitrary commutative field a non invertible matrix is the product of a nilpotent matrix and a unipotent matrix. However, the proof of theorem 1 is quite dificult and uses the nilpotent factorization theorem (see [4] for the complex case and [1] Theorem 4 for the general result). Here, we want to give a proof of this result in the case of an algebraically closed field which only uses elementary facts. Hence, we prove the following result:

THEOREM 2. Let \mathbb{K} be an algebraically closed field and $A \in M_n(\mathbb{K})$ such that A is not invertible. A is the product of a nilpotent matrix and a unipotent matrix.

Unfortunately this decomposition is not unique and we give an example at the end of this note of an non-invertible matrix which has two decompositions of this type.

2. Proof of the result

2.1. Preliminary lemma

In this subpart, $\mathbb K$ is an arbitrary commutative field. We need the following preliminary result:

LEMMA 1. Let
$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} & \dots & a_{1,n} \\ 0 & a_{2,2} & a_{2,3} & \dots & a_{2,n} \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & a_{n-1,n-1} & a_{n-1,n} \\ 0 & \dots & 0 & 0 \end{pmatrix} \in M_n(\mathbb{K}) \text{ with } a_{i,i} \neq 0 \text{ and}$$

 $P \in \mathbb{K}[X] \text{ a monic polynomial of degree } n. \text{ It exists } (\alpha_1, \dots, \alpha_n) \in \mathbb{K}^n \text{ such that the}$

characteristic polynomial of the matrix
$$B = \begin{pmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_n \\ a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ 0 & a_{2,2} & \dots & a_{2,n} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & a_{n-1,n-1} & a_{n-1,n} \end{pmatrix}$$
 is equal

to P.

Proof. The characteristic polynomial of *B* is

$$\chi_B(X) = \begin{vmatrix} X - \alpha_1 & -\alpha_2 & \dots & -\alpha_n \\ -a_{1,1} & X - a_{1,2} & \dots & -a_{1,n} \\ 0 & -a_{2,2} & \dots & -a_{2,n} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & -a_{n-1,n-1} & X - a_{n-1,n} \end{vmatrix}$$

We will prove that it exists $(P_1, ..., P_i) \in \mathbb{K}[X]^i$ such that P_i is a monic polynomial of degree n - i whose coefficients depend only of the coefficients $a_{k,l}$ and such that $\chi_B(X)$

satisfy the following equality:

$$\chi_B(X) = (X - \alpha_1)P_1 + a_{1,1}(-\alpha_2 P_2 + a_{2,2}(-\alpha_3 P_3 + a_{3,3}(\dots + (-1)^{n-i}a_{i,i} \begin{vmatrix} \alpha_{i+1} & \alpha_{i+2} & \dots & \dots & \alpha_n \\ a_{i+1,i+1} & a_{i+1,i+2} - X & \dots & a_{i+1,n} \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 & a_{n-1,n-1} & a_{n-1,n} - X \end{vmatrix})\dots).$$
 (1)

We have

$$\chi_{B}(X) = (X - \alpha_{1}) \begin{vmatrix} X - a_{1,2} & \dots & -a_{1,n} \\ -a_{2,2} & X - a_{2,3} & \dots & -a_{2,n} \\ & \ddots & & \vdots \\ 0 & \dots & -a_{n-1,n-1} X - a_{n-1,n} \end{vmatrix} \\ + (-1)^{n-1} a_{1,1} \begin{vmatrix} \alpha_{2} & \alpha_{3} & \dots & \alpha_{n} \\ a_{2,2} & a_{2,3} - X & \dots & a_{2,n} \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 & a_{n-1,n-1} a_{n-1,n} - X \end{vmatrix} .$$

We set
$$P_1(X) = \begin{vmatrix} x - a_{1,2} & \dots & -a_{1,n} \\ -a_{2,2} & X - a_{2,3} & \dots & -a_{2,n} \\ & \ddots & & \vdots \\ 0 & \dots & -a_{n-1,n-1} X - a_{n-1,n} \end{vmatrix}$$
. P_1 is the characteristic $\begin{pmatrix} a_{1,2} & \dots & a_{1,n} \\ a_{2,2} & a_{2,3} & \dots & a_{2,n} \\ \ddots & & \vdots \\ 0 & & & & a_{n-1,n-1} \end{pmatrix}$. Hence, P_1 is a monic poly-

 $0 \dots a_{n-1,n-1} a_{n-1,n}$ nomial of degree n-1 whose coefficients only depend of the coefficients $a_{k,l}$. Suppose it exists *i* such that (1) is true.

$$\Delta_{i} = (-1)^{n-i} a_{i,i} \begin{vmatrix} \alpha_{i+1} & \alpha_{i+2} & \dots & \alpha_{n} \\ a_{i+1,i+1} & a_{i+1,i+2} - X & \dots & a_{i+1,n} \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 & a_{n-1,n-1} & a_{n-1,n} - X \end{vmatrix}$$
$$= (-1)^{n-i} a_{i,i} \alpha_{i+1} \begin{vmatrix} a_{i+1,i+2} - X & \dots & \dots & a_{i+1,n} \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 & a_{n-1,n-1} & a_{n-1,n} - X \end{vmatrix}$$
$$+ (-1)^{n-i-1} a_{i+1,i+1} a_{i,i} \begin{vmatrix} \alpha_{i+2} & \dots & \dots & \alpha_{n} \\ a_{i+2,i+2} & \dots & \dots & \alpha_{n} \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 & a_{n-1,n-1} & a_{n-1,n} - X \end{vmatrix}$$

We set $P_{i+1}(X) = \begin{vmatrix} X - a_{i+1,i+2} & \dots & -a_{i+1,n} \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 & -a_{n-1,n-1} & X - a_{n-1,n} \end{vmatrix}$. P_{i+1} is the characteristic polynomial of the matrix $\begin{pmatrix} a_{i+1,i+2} & \dots & a_{i+1,n} \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 & a_{n-1,n-1} & a_{n-1,n} \end{pmatrix}$. Hence, P_{i+1} is a monic polynomial of degree x = i = 1 = 1 = 1 = 1 = 1 = 1.

monic polynomial of degree n - i - 1 whose coefficients only depend of the coefficients $a_{k,l}$. If we replace in formula (1) the determinant by the preceding equality we have proved that formula (1) is true for i + 1.

Hence, formula (1) is proved by induction. Let $P(X) = \sum_{i=0}^{n} \beta_i X^i$, $\beta_n = 1$. We set the coefficients α_i by induction.

Thanks to formula (1), we see that the coefficient of $\chi_B(X)$ of the term of degree n-1 is equal to $-\alpha_1 - \sum_{i=1}^{n-1} a_{i,i+1}$. We set $\alpha_1 = -\beta_{n-1} - \sum_{i=1}^{n-1} a_{i,i+1}$.

Suppose it exists *i* such that we have defined $\alpha_1, \ldots, \alpha_{i-1}$. Since the determinant in formula (1) is a polynomial of degree n - i - 1, the coefficient of $\chi_B(X)$ of the term of degree n - i is equal to the coefficient of the term of degree n - i of

 $Q_i = (X - \alpha_1)P_1 + a_{1,1}(-\alpha_2P_2 + a_{2,2}(-\alpha_3P_3 + \ldots + a_{i-1,i-1}(-\alpha_iP_i)\ldots).$

Hence, the coefficient of $\chi_B(X)$ of the term of degree n - i is equal to $-\alpha_i \prod_{j=1}^{i-1} a_{j,j} + f(\alpha_1, \ldots, \alpha_{i-1}, a_{k,l})$ where $f(\alpha_1, \ldots, \alpha_{i-1}, a_{k,l})$ is the coefficient of $Q_i - \prod_{j=1}^{i-1} a_{j,j}(-\alpha_i P_i)$ of the term of degree n - i. We set

$$\alpha_{i} = \frac{-\beta_{n-i} + f(\alpha_{1}, \dots, \alpha_{i-1}, a_{k,l})}{\prod_{j=1}^{i-1} a_{j,j}} \quad (\prod_{j=1}^{i-1} a_{j,j} \neq 0 \text{ since } a_{j,j} \neq 0)$$

By induction, we have defined $\alpha_1, \ldots, \alpha_n$. This choice implies that $\chi_B(X) = P(X)$ and the lemma is proved. \Box

2.2. Proof of Theorem 2

Let \mathbb{K} be an algebraically closed field. We proceed by induction on n.

If n = 1 then $A = (0) = (0) \times (1)$ and the result is true.

Suppose it exists $n \ge 1$ such that any square matrix of size *n* satisfying the conditions of Theorem 2 is the product of a nilpotent matrix and a unipotent matrix.

Let $A \in M_{n+1}(\mathbb{K})$ satisfying the conditions of the theorem. A is triangularizable and A is not invertible. Hence, $\exists P \in GL_n(\mathbb{K})$, $\exists T \in M_n(\mathbb{K})$ and $\exists C \in M_{n,1}(\mathbb{K})$ such that

$$A = P \begin{pmatrix} T & C \\ 0_{1,n} & 0 \end{pmatrix} P^{-1}$$
 and T triangular.

We have two possibilities:

• *T* is not invertible. In this case, *T* is the product of a nilpotent matrix *N* and a unipotent matrix *U* (by induction assumption). One has

$$A = \begin{pmatrix} T & C \\ 0_{1,n} & 0 \end{pmatrix} = \begin{pmatrix} NU & C \\ 0_{1,n} & 0 \end{pmatrix} = \begin{pmatrix} N & C \\ 0_{1,n} & 0 \end{pmatrix} \begin{pmatrix} U & 0_{n,1} \\ 0_{1,n} & 1 \end{pmatrix}$$

 $\begin{pmatrix} N & C \\ 0_{1,n} & 0 \end{pmatrix}$ is nilpotent and $\begin{pmatrix} U & 0_{n,1} \\ 0_{1,n} & 1 \end{pmatrix}$ is unipotent. Hence, *A* is the product of a nilpotent and a unipotent matrix.

• *T* is invertible. In this case, the diagonal coefficients of *T* are different from 0. Hence, we can apply lemma 1 that is to say it exists $(\alpha_1, \ldots, \alpha_{n+1})$ such that the characteristic polynomial of $B = \begin{pmatrix} \alpha_1 \ldots \alpha_n & \alpha_{n+1} \\ T & C \end{pmatrix}$ is $(X-1)^{n+1}$. *B* is unipotent (since its characteristic polynomial is $(X-1)^{n+1}$) and one has

$$\begin{pmatrix} T & C \\ 0_{1,n} & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & & \\ 0 & 1 & & \\ & \ddots & \ddots & \\ & & 0 & 1 \\ & & & 0 \end{pmatrix} B$$

Hence, A is the product of a nilpotent and a unipotent matrix.

By induction, Theorem 2 is proved. \Box

2.3. Some concluding remarks

In fact the same proof show that on an arbitrary field a triangularizable matrix which is not invertible is the product of a nilpotent matrix and a unipotent matrix.

We conclude this note by the two following remarks:

• In general the decomposition A = NU with N nilpotent and U unipotent is not unique. For example,

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

• If A = NU with N nilpotent and U unipotent then N and U don't commute in general. For instance,

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

F. MABILAT

REFERENCES

- [1] CHRISTIAAN HATTINGH, A note on Products of Nilpotent Matrices, arXiv:1608.04666
- [2] JEAN-ÉTIENNE ROMBALDI, Mathématiques pour l'Agréation: Algèbre & géométrie, De Boeck Supérieur, 2017.
- [3] A. R. SOUROUR AND K. TANG, Factorization of singular matrices, Proceedings of the American Mathematical Society, 116, 3 (1992), 629–634.
- [4] P. Y. WU, Products of Nilpotent Matrices, Linear Algebra and its applications, 96, 1987, 227-232.

(Received April 26, 2021)

Flavien Mabilat Laboratoire de Mathématiques de Reims UMR9008 CNRS et Université de Reims Champagne-Ardenne U.F.R. Sciences Exactes et Naturelles Moulin de la Housse – BP 1039, 51687 Reims cedex 2, France e-mail: flavien.mabilat@univ-reims.fr