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Abstract. In this paper we focus on the spectrum of Toeplitz operators Tφ on the Hardy space H2

of the unit disk D when φ is not continuous and especially when Tφ is a complex symmetric
operator. Moreover, we show a necessary condition for Tφ to be complex symmetric, for φ
belongs to subalgebra H∞ +C (T) of L∞ and we present a case of the continuity of the spectral
function restricted to the space of Toeplitz operators.

1. Introduction

A conjugation C on a separable complex Hilbert space H is an antilinear op-
erator C : H → H such that C is involutive and isometric, that is, C2 = I and
〈C f ,Cg〉 = 〈g, f 〉 , forall f ,g ∈ H . A bounded linear operator T ∈ L (H ) is said to
be complex symmetric if there exists a conjugation C on H such that CT = T ∗C . In
this case we say that T is an operator C -symmetric. The concept of complex symmet-
ric operators on separable Hilbert spaces is a natural generalization of complex sym-
metric matrices, and their general study was initiated by Garcia, Putinar, and Wogen
[5, 6, 7, 8]. The class of complex symmetric operators includes other basic classes of
operators such as normal, Hankel, compressed Toeplitz, and some Volterra operators.

Let L2 be the Hilbert space of square-integrable functions on the unit circle T ,
L∞ the space of essentially bounded functions on T and C (T) the space of continuous
functions on T . For each φ ∈ L∞ , the Toeplitz operator Tφ : H2 → H2 , with symbol
φ , is defined by

Tφ f = P(φ f ) ,

for all f ∈ H2, where P : L2 → H2 is the orthogonal projection.
The concept of Toeplitz operators generalizes the concept of Toeplitz matrices and

their general algebraic properties were studied by Brown and Halmos first addressed
by [2]. The study of complex symmetric Toeplitz operators is relatively recent and
provides deep and important connections in several problems in quantum mechanics
[1, 9]. One of the first examples of complex symmetric Toeplitz operator is due to Guo
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and Zhu [10]. In this work, Guo and Zhu raised the question of characterizing complex
symmetric Toeplitz operators on the Hardy space H2 .

In an attempt to resolve the question of Guo and Zhu, Ko and Lee [13] considered
the family of conjugations Cλ on H2 defined by

Cλ f (z) = f (λ z)

for λ ∈ T and proved the following:

THEOREM 1. If φ(z) = ∑∞
n=−∞ φ̂(n)zn ∈ L∞ , then Tφ is Cλ -symmetric if, and only

if, φ̂(−n) = λ nφ̂ (n) , for all n ∈ Z , with λ ∈ T .

If γ : T → C is a continuous function and z is a point that is not in the range of γ ,
then the index of the z with respect to γ is defined as

Indγ(z) =
1
2π

∫
γ

dξ
ξ − z

.

We will often say that Indγ(z) is the winding number of γ about z . Recently, Noor
[16] studied the complex symmetry of Toeplitz operators with continuous symbols.
Noor considered nowhere winding curves that are closed curves γ : T → C such that
Indγ (z) = 0, for all z out of the range of γ , and proved that:

THEOREM 2. If φ ∈ C (T) and Tφ is complex symmetric, then φ is a nowhere
winding curve.

The plan of this paper is to obtain characterizations for nowhere winding curves
and then generalize the Theorem 2. Then, we determine the spectrum of complex
symmetric Toeplitz operators for general cases and as a consequence we obtain a case
of continuity of the spectral function σ : I →K , that maps each Toeplitz operator Tφ
to its spectrum σ(Tφ ) .

2. Preliminaries

2.1. The Hardy space H2

The Hardy space H2 consists of the all holomorphic functions f on the unit disk
D such that

‖ f‖ = sup
0<r<1

(
1
2π

∫ 2π

0
| f (reiθ )|2dθ

)1/2

< ∞.

The Hardy space is a Hilbert space with inner product

〈 f ,g〉 =
∞

∑
n=0

anbn,

where

f (z) =
∞

∑
n=0

anz
n and g(z) =

∞

∑
n=0

bnz
n.
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For each α ∈ D , let kα denote the reproducing kernel for H2 given by

kα(z) =
1

1−αz
,

which satisfies f (α) = 〈 f ,kα 〉 , for all f in H2 .

2.2. Complex symmetric Toeplitz operators

The spectrum of a Toeplitz operator with continuous symbol is well known. If
fact, if φ ∈ C (T) then

σ(Tφ ) = Ran(φ)∪{
λ ∈ C : Indγ(λ ) 	= 0

}
, (1)

where γ = Ran(φ) is the range of φ .
In particular, if φ ∈ C (T) is a nowhere winding curve, then

σ(Tφ ) = Ran(φ) . (2)

An operator T ∈ L (H ) is called a Fredholm operator if the range of the T is
closed and dimKerT and dimKerT ∗ are finite. In this case, the classical index of T is
given by

j(T ) = dimKerT −dimKerT ∗.

The essential spectrum of T is defined by

σe(T ) = {λ ∈ C : T −λ is not a Fredholm operator}

and evidently σe(T ) ⊆ σ(T ) .
Now note that if T is a complex symmetric operator with conjugation C , then the

natural map C : KerT →KerT ∗ is an antilinear isometric isomorphism and so we have:

REMARK 1. If T ∈ L (H ) is a complex symmetric Fredholm operator, then
j(T ) = 0.

Now notice that, if φ is non-constant and Tφ is C -symmetric, then for all α,β ∈C

we have

CTαφ+β = C(αTφ + β ) = (αT ∗
φ + β)C = T ∗

αφ+βC (3)

and therefore Tαφ+β is also C -symmetric.
The Coburn Alternative ([3, Proposition 7.24]) states that if φ is a function in L∞

other than 0, then at least one of Tφ and T ∗
φ is injective. As a consequence, we have

the following invertibility criteria for Toeplitz operators:

PROPOSITION 1. ([3, Corollary 7.25]) If φ is a function in L∞ such that Tφ is a
Fredholm operator, then Tφ is invertible if, and only if, j(Tφ ) = 0 .
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We end this section with the important characterization for Fredholm’s Toeplitz
operator:

THEOREM 3. ([3, Theorem 7.26]) If φ is a continuous function on T , then Tφ
is a Fredholm operator if, and only if, φ does not vanish and in this case j(Tφ ) =
− Indγ (0) , where γ = Ran(φ) .

3. Nowhere winding curves and Toeplitz operators

The main goal of this section is to obtain operator theoretic conditions general-
izations for nowhere winding curves. We begin with two characterizations of nowhere
winding curves.

PROPOSITION 2. Let φ ∈ C (T) . The following statements are equivalent:

(i) φ is a nowhere winding curve.

(ii) Tφ−λ and T ∗
φ−λ are injective, for all λ /∈ Ran(φ) .

(iii) σ(Tφ ) = σe(Tφ ) .

Proof. (i)⇒ (ii) Since φ is a nowhere winding curve, we have by (2) that σ(Tφ )=
Ran(φ) . Thus if λ /∈ Ran(φ) , then Tφ−λ is invertible and therefore T ∗

φ−λ is injective.
(ii) ⇒ (iii) If λ /∈ σe(Tφ ) = Ran(φ) , then by Theorem 3 Tφ−λ is a Fredholm opera-
tor and moreover Tφ−λ and T ∗

φ−λ are injective. Thus Tφ−λ is surjective and therefore
λ /∈ σ(Tφ ) . (iii) ⇒ (i) Let λ /∈ Ran(φ) . Once σ(Tφ ) = Ran(φ) , we have

j
(
Tφ−λ

)
= dimKer

(
Tφ−λ

)−dimKer
(
T ∗

φ−λ

)
= 0.

Now since
j
(
Tφ−λ

)
= − Indφ−λ (0) = − Indφ (λ ),

follows that Indφ (λ ) = 0, and so φ is a nowhere winding curve. �
Now we present a generalization of Theorem 2. Before, we need a definition. For

φ(eit) = ∑∞
n=−∞ φ̂ (n)eint ∈ L∞ and 0 < r < 1, let φ̃ the harmonic extension of φ on D

given by

φ̃ (z) =
∞

∑
n=−∞

φ̂ (n)r|n|eint .

Then we can define the continuous function φr : T → C given by

φr(eit) = φ̃(reit).

DEFINITION 1. Let φ ∈H∞ +C (T) . We say that φ is a nowhere winding symbol
if there exists δ > 0 such that for each 1− δ < r < 1, holds Indφr(λ ) = 0 for all
λ /∈ Ran(φr) .
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THEOREM 4. Let φ ∈ H∞ + C (T) . If Tφ is complex symmetric, then φ is a
nowhere winding symbol.

Proof. Let λ /∈ Ran(φr) with 0 < r < 1. Since φr −λ ∈ C (T) ⊆ H∞ +C (T) is
invertible, there exist δ ,ε > 0 (see [3, Theorem 6.45]) such that∣∣∣ ˜(φr −λ )(reit)

∣∣∣ � ε, 1− δ < r < 1.

Thus Tφ−λ is a Fredholm operator (see [3, Theorem 7.36]) and

Indφr(λ ) = Indφr−λ (0) = Indφ̃−λ (0) = − j(Tφ−λ ).

Now, since Tφ−λ is complex symmetric follows that j(Tφ−λ ) = 0, whence Indφr(λ ) =
0. �

4. The spectrum of complex symmetric Toeplitz operators

We already know that if φ ∈ C (T) is a nowhere winding curve, then σ(Tφ ) =
σe(Tφ ) . In the following, we provide a sufficient condition to have this equality without
requiring at least that φ be continuous.

PROPOSITION 3. Let φ ∈ L∞ . If Tφ is complex symmetric, then σ(Tφ ) = σe(Tφ ) .

Proof. It is sufficient to show the inclusion σ(Tφ )⊆ σe(Tφ ) . In fact, if λ /∈σe(Tφ )
then Tφ−λ is a Fredholm operator. Thus, since Tφ−λ is complex symmetric it follows
by Remark 1 that j(Tφ−λ ) = 0 and therefore by Proposition 1 we have that Tφ−λ is
invertible, that is, λ /∈ σ(Tφ ) . �

Obviously if φ is continuous, the Proposition 3 states that σ(Tφ ) = Ran(φ) , ac-
cording to [16, Corollary 7].

Denote by essran(φ) the essential range of φ ∈ L∞ . We can now describe the
spectrum of Tφ more generally.

THEOREM 5. Let φ ∈ L∞ . If Tφ−λ is a Fredholm operator for all λ /∈ essran(φ) ,
then

σ(Tφ ) = essran(φ)∪{
λ ∈ C : j(Tφ−λ ) 	= 0

}
.

Proof. By spectral inclusion theorem (see [3, Corollary 7.7]) we have essran(φ)⊆
σ(Tφ ) . Note that if α /∈ essran(φ) , then Tφ−α is a Fredholm operator. Hence if
j(Tφ−α) 	= 0, follows of the Proposition 1 that Tφ−α is not invertible and so we have

essran(φ)∪{
λ ∈ C : j(Tφ−λ ) 	= 0

} ⊆ σ(Tφ ).

Let now β ∈ σ(Tφ ) . If β /∈ essran(φ) , since Tφ−β is a Fredholm operator, we have
j(Tφ−β ) 	= 0 and therefore β ∈ {

λ ∈ C : j(Tφ−λ ) 	= 0
}

. On the other hand, if β /∈
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λ ∈ C : j(Tφ−λ ) 	= 0

}
, since β ∈ σ(Tφ ) , we have Tφ−β is not a Fredholm operator.

Thus, by hypothesis, β ∈ essran(φ) and so

σ(Tφ ) ⊆ essran(φ)∪{
λ ∈ C : j(Tφ−λ ) 	= 0

}
,

as desired. �
Although it seems that we are demanding a lot in the previous theorem, in fact this

hypothesis is reasonable. Indeed, if φ is continuous, we have essran(φ) = Ran(φ) and
so λ /∈ essran(φ) if, and only if, Tφ−λ is a Fredholm operator. Thus, Theorem 5 is a
good generalization for (1).

We will now obtain generalizations for Theorems 2 and 4. First, we will say that
φ ∈ L∞ is a spectral symbol if σ(Tφ ) = essran(φ) .

Note that if φ is a continuous spectral symbol, then φ is a nowhere winding curve.
If fact, if φ is a spectral symbol and φ ∈ C (T) we have by Theorem 3 that

σ(Tφ ) = essran(φ) = Ran(φ) = σe(Tφ )

and therefore by Proposition 2 have that φ is a nowhere winding curve.

EXAMPLE 1. Let φ ∈ L∞ . If essran(φ) is convex, then φ is a spectral symbol
(see [14, Corollary 3.3.7] for more details).

COROLLARY 1. Let φ ∈L∞ . If Tφ is complex symmetric and σe(Tφ )= essran(φ) ,
then φ is a spectral symbol.

Proof. It follows directly from Proposition 3 and the previous theorem. �
In the next section, we will show that if φ is a spectral symbol then the function

σ : I → K is continuous at Tφ .

5. A case of spectral function continuity

In this section, we partially resolve a question concerning the continuity of the
spectral function restricted to the space of the Toeplitz operators.

Consider K the set of all compact subsets of C , equipped with the Hausdorff
metric dH given by

dH (X ,Y ) = max

{
sup
z∈X

d(x,Y ),sup
y∈Y

d(y,X)

}
,

for all X ,Y ⊆ K . Then we can consider the spectrum function σ : L (H ) → K ,
mapping each operator T ∈ L (H ) to its spectrum σ(T ) .

It is well known that the function σ is upper semicontinuous ([15, Theorem 1])
and that in noncommutative subalgebras of L (H ) , σ does have points of disconti-
nuity. We are interested in the class C of operators for which σ becomes continuous
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when restricted to C . Moreover, due to a Newburgh argument in ([11, Solution 104]),
we know that σ is continuous when restricted to the set of normal operators.

Considering I the subspace of L (H2) consisting of all Toeplitz operators, in [4]
the authors propose the following question:

QUESTION 1. Is the restriction of σ to the space I continuous?

Using part of the argument used in the proof of [12, Theorem 10], we obtain
the continuity of σ for Toeplitz operators with spectral symbol. First, we need the
following lemma:

LEMMA 1. Let Tn,T ∈ L (H ), with n ∈ N . If Tn → T , then

lim infσ(Tn) ⊆ σ(T ).

Proof. In fact, if λ ∈ lim infσ(Tn) , then there exist a sequence {λn} such that
λn ∈ σ(Tn) , for all n ∈ N , and λn → λ . Thus, (Tn−λn) → (T −λ ) .

Now, since the set of invertible elements in L (H ) is open and each Tn −λn is
not invertible, follows that T −λ is not invertible, that is λ ∈ σ(T ) . �

THEOREM 6. Let φ ∈ L∞ . If φ is a spectral symbol, then σ : I → K is contin-
uous at Tφ .

Proof. By hypothesis we have σ(Tφ ) = essran(φ) . Let φn,φ ∈ L∞ such that∥∥Tφn −Tφ
∥∥ → 0.

By Lemma 1, lim infσ(Tφn) ⊆ σ(Tφ ) .
Hence is suffices to show that σ(Tφ ) ⊆ lim infσ(Tφn) .
Suppose that λ /∈ lim infσ(Tφn) . Then there exist a subsequence

{
φnk

}
of {φn}

such that for some ε > 0 we have

dist
(

λ ,σ(Tφnk
)
)

> ε for all k.

Now, once essran(φnk)⊆σ(Tφnk
) follows that dist (λ ,essran(φnk))> ε for all k . Lastly,

since
∥∥Tφn −Tφ

∥∥ → 0 implies ‖φn−φ‖∞ → 0, we have

dist(λ ,essran(φ)) � ε.

Thus dist(λ ,essran(φ)) > 0 and so λ /∈ σ(Tφ ) . �
In particular, we have the continuity of σ : I → K when Tφ is complex sym-

metric.

COROLLARY 2. Let φ ∈L∞ . If Tφ is complex symmetric and σe(Tφ )= essran(φ) ,
then σ is continuous at Tφ .

Proof. It follows directly from Corollary 1 and the previous theorem. �
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[1] C. BENDER, A. FRING, U. GÜNTHER, H. JONES, Quantum physics with non-Hermitian operators,
J. Phys. A: Math. Theor. 45 (2012) 440301.

[2] A. BROWN, P. R. HALMOS, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213
(1963–1964) 89–102.

[3] R. G. DOUGLAS, Banach algebra techniques in operator theory, second ed., Graduate Texts in Math-
ematics, vol. 179, Springer-Verlag, New York, 1998.

[4] D. R. FARENICK, W. Y. LEE, Hyponormality and spectra of Toeplitz operators, Trans. Amer. Math.
Soc. 348 (1996) 4153–4173.

[5] S. R. GARCIA, M. PUTINAR, Complex symmetric operators and applications, Trans. Amer. Math.
Soc. 358 (2006) 1285–1315.

[6] S. R. GARCIA, M. PUTINAR, Complex symmetric operators and applications II, Trans. Amer. Math.
Soc. 359 (2007) 3913–3931.

[7] S. R. GARCIA, W. R. WOGEN, Complex symmetric partial isometries, J. Funct. Anal. 257 (2009)
1251–1260.

[8] S. R. GARCIA, W. R. WOGEN, Some new classes of complex symmetric operators, Trans. Amer.
Math. Soc. 362 (2010) 6065–6077.

[9] S. R. GARCIA, E. PRODAN, M. PUTINAR, Mathematical and physical aspects of complex symmetric
operators, J. Phys. A 47 (2014) 1–51.

[10] K. GUO, S. ZHU, A canonical decomposition of complex symmetric operators, J. Operator Theory, 72
(2014) 529–547.

[11] P. R. HALMOS, A Hilbert space problem book, Springer, New York, 1982.
[12] I. S. HWANG, W. Y. LEE, On the continuity of spectra of Toeplitz operators, Arch. Math. 70 (1998)

66–73.
[13] E. KO, J. E. LEE, On complex symmetric Toeplitz operators, J. Math. Anal. Appl. 434 (2016), 20–34.
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