A NOTE ON A SPECTRAL CONSTANT ASSOCIATED WITH AN ANNULUS

Georgios Tsikalas

(Communicated by G. Misra)

Abstract

Fix $R>1$ and let $A_{R}=\{1 / R \leqslant|z| \leqslant R\}$ be an annulus. Also, let $K(R)$ denote the smallest constant such that A_{R} is a $K(R)$-spectral set for the bounded linear operator $T \in \mathscr{B}(H)$ whenever $\|T\| \leqslant R$ and $\left\|T^{-1}\right\| \leqslant R$. We show that $K(R) \geqslant 2$, for all $R>1$. This improves on previous results by Badea, Beckermann and Crouzeix.

1. Background

Let X be a closed set in the complex plane and let $\mathscr{R}(X)$ denote the algebra of complex-valued bounded rational functions on X, equipped with the supremum norm

$$
\|f\|_{X}=\sup \{|f(x)|: x \in X\} .
$$

Suppose that T is a bounded linear operator acting on the (complex) Hilbert space H. Suppose also that the spectrum $\sigma(T)$ of T is contained in the closed set X. Let $f=p / q \in \mathscr{R}(X)$. As the poles of the rational function f are outside of X, the operator $f(T)$ is naturally defined as $f(T)=p(T) q(T)^{-1}$ or, equivalently, by the RieszDunford functional calculus (see e.g. [4] for a treatment of this topic).

Recall that for a fixed constant $K>0$, the set X is said to be a K-spectral set for T if $\sigma(T) \subseteq X$ and the inequality $\|f(T)\| \leqslant K\|f\|_{X}$ holds for every $f \in \mathscr{R}(X)$. The set X is a spectral set for T if it is a K-spectral set with $K=1$. Spectral sets were introduced and studied by von Neumann in [8], where he proved the celebrated result that an operator T is a contraction if and only if the closed unit disk is a spectral set for T (we refer the reader to the book [9] and the survey [2] for more detailed presentations and more information on K-spectral sets).

We will be concerned with the case where $X=A_{R}:=\{1 / R \leqslant|z| \leqslant R\}(R>1)$ is a closed annulus, the intersection of the two closed disks $D_{1}=\{|z| \leqslant R\}$ and $D_{2}=$ $\{|z| \geqslant 1 / R\}$. Now, the intersection of two spectral sets is not necessarily a spectral set; counterexamples for the annulus were presented in [7], [10] and [12]. However, the same question for K-spectral sets remains open (the counterexamples for spectral sets

[^0]show that the same constant cannot be used for the intersection). Regarding the annulus in particular, Shields proved that, given an invertible operator $T \in \mathscr{B}(H)$ with $\|T\| \leqslant R$ and $\left\|T^{-1}\right\| \leqslant R, A_{R}$ is a K-spectral set for T with $K=2+\sqrt{\left(R^{2}+1\right) /\left(R^{2}-1\right)}$, see [11, Proposition 23]. This bound is large if R is close to 1 . In this context, Shields raised the question of finding the smallest constant $K=K(R)$ such that A_{R} is $K(R)$ spectral, see [11, Question 7]. In particular, he asked whether this optimal constant $K(R)$ would remain bounded.

This question was answered positively by Badea, Beckermann and Crouzeix in [3, Theorem 1.2], where they obtained that (for every $R>1$)

$$
\frac{4}{3}<\gamma(R):=2\left(1-R^{-2}\right) \prod_{n=1}^{\infty}\left(\frac{1-R^{-8 n}}{1-R^{4-8 n}}\right)^{2} \leqslant K(R) \leqslant 2+\frac{R+1}{\sqrt{R^{2}+R+1}} \leqslant 2+\frac{2}{\sqrt{3}}
$$

It should be noted that the quantity $\gamma(R)$ was numerically shown to be greater than or equal to $\pi / 2$ (leading to the universal lower bound $\pi / 2$ for $K(R)$) and it also tends to 2 as R tends to infinity.

Two subsequent improvements were made to the upper bound for $K(R)$: the first one in [5, Lemma 2.1] by Crouzeix and the most recent one in [6, p. 7] by Crouzeix and Greenbaum, where it was proved that

$$
K(R) \leqslant 1+\sqrt{2}, \quad \forall R>1
$$

As for the lower bound, Badea obtained in [1, p. 242] the statement

$$
\frac{3}{2}<2 \frac{1+R^{2}+R}{1+R^{2}+2 R} \leqslant K(R), \quad \forall R>1
$$

where the quantity $2\left(1+R^{2}+R\right) /\left(1+R^{2}+2 R\right)$ again tends to 2 as R tends to infinity.
We improve the aforementioned estimates by showing that 2 is actually a universal lower bound for $K(R)$:

THEOREM 1.1. Put $A_{R}=\{1 / R \leqslant|z| \leqslant R\}$, for any $R>1$. Let $K(R)$ denote the smallest positive constant such that A_{R} is a $K(R)$-spectral set for the bounded linear operator $T \in \mathscr{B}(H)$ whenever $\|T\| \leqslant R$ and $\left\|T^{-1}\right\| \leqslant R$. Then,

$$
K(R) \geqslant 2, \quad \forall R>1
$$

2. Proof of Theorem 1.1

Proof. Fix $R>1$. For every $n \geqslant 2$, define

$$
g_{n}(z)=\frac{1}{R^{n}}\left(\frac{1}{z^{n}}+z^{n}\right) \in \mathscr{R}\left(A_{R}\right)
$$

It is easy to see that

$$
\begin{equation*}
\left\|g_{n}\right\|_{A_{R}}=g_{n}(R)=1+\frac{1}{R^{2 n}} \tag{1}
\end{equation*}
$$

To achieve the stated improvement, we will apply g_{n} to a bilateral shift operator S acting on a particular weighted sequence space $L^{2}(\beta)$. First, define the sequence $\{\beta(k)\}_{k \in \mathbb{Z}}$ of positive numbers (weights) as follows:

$$
\begin{gathered}
\beta(2 l n+q)=R^{q}, \quad \forall q \in\{0,1, \ldots, n\}, \forall l \in \mathbb{Z} \\
\beta((2 l+1) n+q)=R^{n-q}, \quad \forall q \in\{0,1, \ldots, n\}, \forall l \in \mathbb{Z} .
\end{gathered}
$$

Consider now the space of sequences $f=\{\hat{f}(k)\}_{k \in \mathbb{Z}}$ such that

$$
\|f\|_{\beta}^{2}:=\sum_{k \in \mathbb{Z}}|\hat{f}(k)|^{2}[\beta(k)]^{2}<\infty .
$$

We shall use the notation $f(z)=\sum_{k \in \mathbb{Z}} \hat{f}(k) z^{k}$ (formal Laurent series), whether or not the series converges for any (complex) values of z. Our weighted sequence space will be denoted by

$$
L^{2}(\beta):=\left\{f=\{\hat{f}(k)\}_{k \in \mathbb{Z}}:\|f\|_{\beta}^{2}<\infty\right\} .
$$

This is a Hilbert space with the inner product

$$
\langle f, g\rangle_{\beta}:=\sum_{k \in \mathbb{Z}} \hat{f}(k) \overline{\hat{g}(k)}[\beta(k)]^{2} .
$$

Consider also the linear transformation (bilateral shift) S of multiplication by z on $L^{2}(\beta)$:

$$
(S f)(z)=\sum_{k \in \mathbb{Z}} \hat{f}(k) z^{k+1}
$$

In other words, we have

$$
\widehat{(S f)}(k)=\hat{f}(k-1), \quad \forall k \in \mathbb{Z}
$$

Observe that

$$
\|S\|=\sup _{k \in \mathbb{Z}} \frac{\beta(k+1)}{\beta(k)}=R
$$

and

$$
\left\|S^{-1}\right\|=\sup _{k \in \mathbb{Z}} \frac{\beta(k)}{\beta(k+1)}=R .
$$

Now, let $m \geqslant 3$ and define $h=\{\hat{h}(k)\}_{k \in \mathbb{Z}} \in L^{2}(\beta)$ by putting:

$$
\begin{gathered}
\hat{h}(2 l n)=\frac{1}{m}, \quad \forall l \in\left\{0,1,2 \ldots, m^{2}\right\} \\
\hat{h}(k)=0, \quad \text { in all other cases }
\end{gathered}
$$

We calculate

$$
\|h\|_{\beta}^{2}=\sum_{l=0}^{m^{2}} \frac{1}{m^{2}}[\beta(2 l n)]^{2}=\sum_{l=0}^{m^{2}} \frac{1}{m^{2}} \cdot 1^{2}=\frac{m^{2}+1}{m^{2}},
$$

hence

$$
\begin{equation*}
\|h\|_{\beta}=\frac{\sqrt{m^{2}+1}}{m} . \tag{2}
\end{equation*}
$$

Also, put $f=\left(S^{-n}+S^{n}\right) h$ and notice that

$$
\begin{aligned}
\left\|\left(S^{-n}+S^{n}\right) h\right\|_{\beta}^{2} & =\|f\|_{\beta}^{2} \geqslant \sum_{l=1}^{m^{2}}|\hat{f}((2 l-1) n)|^{2}[\beta((2 l-1) n)]^{2} \\
& =\sum_{l=1}^{m^{2}}\left(\frac{2}{m}\right)^{2} R^{2 n}=4 R^{2 n} .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\left\|\left(S^{-n}+S^{n}\right) h\right\|_{\beta} \geqslant 2 R^{n} . \tag{3}
\end{equation*}
$$

Using (1), (2) and (3), we can now write

$$
\begin{aligned}
K(R) & \geqslant \frac{\left\|g_{n}(S)\right\|}{\left\|g_{n}\right\|_{A_{R}}}=\frac{1}{R^{n}} \cdot \frac{\left\|S^{-n}+S^{n}\right\|}{1+R^{-2 n}} \\
& \geqslant \frac{1}{R^{n}+R^{-n}} \cdot \frac{\left\|\left(S^{-n}+S^{n}\right) h\right\|_{\beta}}{\|h\|_{\beta}} \\
& \geqslant \frac{1}{R^{n}+R^{-n}} \cdot \frac{2 R^{n}}{\frac{\sqrt{m^{2}+1}}{m}}
\end{aligned}
$$

Letting $m \rightarrow \infty$, we obtain

$$
K(R) \geqslant \frac{1}{R^{n}+R^{-n}} \cdot \frac{2 R^{n}}{1}=\frac{2 R^{n}}{R^{n}+R^{-n}} \xrightarrow{n \rightarrow \infty} 2, \quad \text { as } R>1 .
$$

The proof is complete.

REFERENCES

[1] Catalin Badea, K-spectral sets: an asymptotic viewpoint, J. Appl. Funct. Anal. 9 (3-4) (2014), pp. 239-250.
[2] Catalin Badea and Bernhard Beckermann, Spectral Sets, Handbook of Linear Algebra, (L. Hogben, ed.), second edition, CRC Press, 2013.
[3] Catalin Badea, Bernhard Beckermann and Michel Crouzeix, Intersections of several disks of the Riemann sphere as K-spectral sets, Commun. Pure Appl. Anal. 8 (1) (2009), pp. 37-54.
[4] John B. Conway, A course in functional analysis, second vol. 96, Graduate Texts in Mathematics, Springer-Verlag, New York, 1990, pp. xvi+399.
[5] Michel Crouzeix, The annulus as a K-spectral set, Commun. Pure Appl. Anal. 11 (6) (2012), pp. 2291-2303.
[6] Michel Crouzeix and Anne Greenbaum, Spectral sets: numerical range and beyond, SIAM J. Matrix Anal. Appl. 40 (3) (2019), pp. 1087-1101.
[7] Misra Gadadhar, Curvature inequalities and extremal properties of bundle shifts, J. Operator Theory 11 (2) (1984), pp. 305-317.
[8] Johann von NEumann, Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachr. 4 (1951), pp. 258-281, ISSN: 0025-584X.
[9] Vern Paulsen, Completely bounded maps and operator algebras, vol. 78, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2002, pp. xii+300.
[10] VERN I. Paulsen, Toward a theory of K-spectral sets, Surveys of some recent results in operator theory, vol. I, 171, Pitman Res. Notes Math. Ser., Longman Sci. Tech., Harlow, 1988, pp. 221-240.
[11] Allen L. Shields, Weighted shift operators and analytic function theory, 1974, 49-128, Math. Surveys, no. 13.
[12] James P. Williams, Minimal spectral sets of compact operators, Acta Sci. Math. (Szeged) 28 (1967), pp. 93-106.
(Received June 1, 2021)

Georgios Tsikalas
Department of Mathematics and Statistics
Washington University in St. Louis
St. Louis, MO, 63136
e-mail: gtsikalas@wustl.edu

[^0]: Mathematics subject classification (2020): Primary 47A25; Secondary 47A10.
 Keywords and phrases: Spectral set, K-spectral set, intersection of spectral sets, weighted shift.
 I thank Professor John E. McCarthy, my thesis advisor, for his invaluable advice during the preparation of this work. I also thank the Onassis Foundation for providing financial support for my PhD studies.

