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A NOTE ON A SPECTRAL CONSTANT

ASSOCIATED WITH AN ANNULUS

GEORGIOS TSIKALAS

(Communicated by G. Misra)

Abstract. Fix R > 1 and let AR = {1/R � |z| � R} be an annulus. Also, let K(R) denote the
smallest constant such that AR is a K(R) -spectral set for the bounded linear operator T ∈B(H)
whenever ||T || � R and ||T−1|| � R. We show that K(R) � 2 , for all R > 1. This improves on
previous results by Badea, Beckermann and Crouzeix.

1. Background

Let X be a closed set in the complex plane and let R(X) denote the algebra of
complex-valued bounded rational functions on X , equipped with the supremum norm

|| f ||X = sup{| f (x)| : x ∈ X}.

Suppose that T is a bounded linear operator acting on the (complex) Hilbert space
H . Suppose also that the spectrum σ(T ) of T is contained in the closed set X . Let
f = p/q ∈ R(X) . As the poles of the rational function f are outside of X , the oper-
ator f (T ) is naturally defined as f (T ) = p(T )q(T )−1 or, equivalently, by the Riesz-
Dunford functional calculus (see e.g. [4] for a treatment of this topic).

Recall that for a fixed constant K > 0, the set X is said to be a K -spectral set for
T if σ(T ) ⊆ X and the inequality || f (T )|| � K|| f ||X holds for every f ∈ R(X). The
set X is a spectral set for T if it is a K -spectral set with K = 1. Spectral sets were
introduced and studied by von Neumann in [8], where he proved the celebrated result
that an operator T is a contraction if and only if the closed unit disk is a spectral set for
T (we refer the reader to the book [9] and the survey [2] for more detailed presentations
and more information on K -spectral sets).

We will be concerned with the case where X = AR := {1/R � |z| � R} (R > 1)
is a closed annulus, the intersection of the two closed disks D1 = {|z| � R} and D2 =
{|z| � 1/R} . Now, the intersection of two spectral sets is not necessarily a spectral set;
counterexamples for the annulus were presented in [7], [10] and [12]. However, the
same question for K -spectral sets remains open (the counterexamples for spectral sets
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show that the same constant cannot be used for the intersection). Regarding the annulus
in particular, Shields proved that, given an invertible operator T ∈B(H) with ||T ||� R
and ||T−1|| � R, AR is a K -spectral set for T with K = 2+

√
(R2 +1)/(R2−1) , see

[11, Proposition 23]. This bound is large if R is close to 1. In this context, Shields
raised the question of finding the smallest constant K = K(R) such that AR is K(R)-
spectral, see [11, Question 7]. In particular, he asked whether this optimal constant
K(R) would remain bounded.

This question was answered positively by Badea, Beckermann and Crouzeix in [3,
Theorem 1.2], where they obtained that (for every R > 1)

4
3

< γ(R) := 2(1−R−2)
∞

∏
n=1

( 1−R−8n

1−R4−8n

)2
� K(R) � 2+

R+1√
R2 +R+1

� 2+
2√
3
.

It should be noted that the quantity γ(R) was numerically shown to be greater than
or equal to π/2 (leading to the universal lower bound π/2 for K(R)) and it also tends
to 2 as R tends to infinity.

Two subsequent improvements were made to the upper bound for K(R) : the first
one in [5, Lemma 2.1] by Crouzeix and the most recent one in [6, p. 7] by Crouzeix
and Greenbaum, where it was proved that

K(R) � 1+
√

2, ∀R > 1.

As for the lower bound, Badea obtained in [1, p. 242] the statement

3

2
< 2

1+R2 +R
1+R2 +2R

� K(R), ∀R > 1,

where the quantity 2(1+R2 +R)/(1+R2 +2R) again tends to 2 as R tends to infinity.
We improve the aforementioned estimates by showing that 2 is actually a universal

lower bound for K(R) :

THEOREM 1.1. Put AR = {1/R � |z| � R} , for any R > 1 . Let K(R) denote the
smallest positive constant such that AR is a K(R)-spectral set for the bounded linear
operator T ∈ B(H) whenever ||T || � R and ||T−1|| � R. Then,

K(R) � 2, ∀R > 1.

2. Proof of Theorem 1.1

Proof. Fix R > 1. For every n � 2, define

gn(z) =
1
Rn

(
1
zn + zn

)
∈ R(AR).

It is easy to see that

||gn||AR = gn(R) = 1+
1

R2n . (1)
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To achieve the stated improvement, we will apply gn to a bilateral shift operator S
acting on a particular weighted sequence space L2(β ) . First, define the sequence
{β (k)}k∈Z of positive numbers (weights) as follows:

β (2ln+q) = Rq, ∀q ∈ {0,1, . . . ,n},∀l ∈ Z;

β ((2l +1)n+q) = Rn−q, ∀q ∈ {0,1, . . . ,n},∀l ∈ Z.

Consider now the space of sequences f = { f̂ (k)}k∈Z such that

|| f ||2β := ∑
k∈Z

| f̂ (k)|2[β (k)]2 < ∞.

We shall use the notation f (z) = ∑k∈Z f̂ (k)zk (formal Laurent series), whether or not
the series converges for any (complex) values of z . Our weighted sequence space will
be denoted by

L2(β ) := { f = { f̂ (k)}k∈Z : || f ||2β < ∞}.
This is a Hilbert space with the inner product

〈 f ,g〉β := ∑
k∈Z

f̂ (k)ĝ(k)[β (k)]2.

Consider also the linear transformation (bilateral shift) S of multiplication by z on
L2(β ) :

(S f )(z) = ∑
k∈Z

f̂ (k)zk+1.

In other words, we have

(̂S f )(k) = f̂ (k−1), ∀k ∈ Z.

Observe that

||S|| = sup
k∈Z

β (k+1)
β (k)

= R

and

||S−1|| = sup
k∈Z

β (k)
β (k+1)

= R.

Now, let m � 3 and define h = {ĥ(k)}k∈Z ∈ L2(β ) by putting:

ĥ(2ln) =
1
m

, ∀l ∈ {0,1,2 . . . ,m2};

ĥ(k) = 0, in all other cases.

We calculate

||h||2β =
m2

∑
l=0

1
m2 [β (2ln)]2 =

m2

∑
l=0

1
m2 ·12 =

m2 +1
m2 ,
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hence

||h||β =

√
m2 +1
m

. (2)

Also, put f = (S−n +Sn)h and notice that

||(S−n +Sn)h||2β = || f ||2β �
m2

∑
l=1

| f̂ ((2l−1)n)|2[β ((2l−1)n)]2

=
m2

∑
l=1

(
2
m

)2

R2n = 4R2n.

Thus,
||(S−n +Sn)h||β � 2Rn. (3)

Using (1), (2) and (3), we can now write

K(R) � ||gn(S)||
||gn||AR

=
1

Rn ·
||S−n +Sn||
1+R−2n

�
1

Rn +R−n ·
||(S−n +Sn)h||β

||h||β
�

1

Rn +R−n ·
2Rn

√
m2+1
m

.

Letting m → ∞, we obtain

K(R) �
1

Rn +R−n ·
2Rn

1
=

2Rn

Rn +R−n
n→∞−−−→ 2, as R > 1.

The proof is complete. �
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