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ON THE SIMILARITY OF COMPLEX SYMMETRIC OPERATORS TO
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Abstract. In this paper we consider a problem of the similarity of complex symmetric operators
to perturbations of restrictions of normal operators. For a subclass of cyclic complex symmetric
operators in a finite-dimensional Hilbert space we prove the similarity to rank-one perturbations
of restrictions of normal operators. The main tools are a truncated moment problem in C , and
some objects similar to objects from the theory of spectral problems for Jacobi matrices.

1. Introduction

During past 15 years an increasing interest was devoted to complex symmetric
operators and other types of operators related to a conjugation in a separable Hilbert
space H , see [7], [10], [24], [18] and papers cited therein. The conjugation J is an
antilinear operator in H such that J2x = x , x ∈ H , and

(Jx,Jy)H = (y,x)H , x,y ∈ H.

Denote
[x,y]J := (x,Jy)H , x,y ∈ H, (1)

where (·, ·)H is the inner product in a Hilbert space H . Recall that a linear operator A
in H is said to be J -symmetric if

[Ax,y]J = [x,Ay]J, x,y ∈ D(A). (2)

Observe that for a bounded linear operator A condition (2) is equivalent to the following
condition:

JAJ = A∗. (3)

If a linear bounded operator A on a whole Hilbert space H is J -symmetric for some
conjugation J in H , then A is said to be complex symmetric. The latter notion was
introduced by Garcia and Putinar in 2006 in [8]. It should be noticed that J -symmetric
operators appeared much earlier, namely, in a paper of Glazman in 1957 [9]. A brief
survey of the history of such operators can be found in the introduction of a paper [20].
Garcia and Putinar in [8] did not explain their reasons for their notion. Probably, they
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intended to have a class of operators which preserve unitary equivalent operators inside
the class.

Let d be a fixed integer greater than 1. We shall say that a matrix M = (mk,l)d−1
k,l=0 ,

mk,l ∈ C , belongs to the class M+
d;3 , if and only if the following conditions hold:

mk,l = 0, k, l ∈ Z0,d−1 : |k− l|> 1; (4)

mk,l = ml,k, k, l ∈ Z0,d−1; (5)

mk,k+1 �= 0, k ∈ Z0,d−2. (6)

Let A be a linear operator in a finite-dimensional Hilbert space H of dimension
d . We shall say that A belongs to the class C+ = C+(H) if and only if there exists an
orthonormal basis {uk}d−1

k=0 in H such that the matrix

M = ((Aul ,uk))d−1
k,l=0, (7)

belongs to M+
d;3 . The above notions of classes M+

d;3 and C+ = C+(H) are similar
to notions for complex symmetric operators in an infinite-dimensional Hilbert space
from [21]. Thus, C+(H) consists of operators in H having a three-diagonal com-
plex symmetric matrix, with non-zero entries on the first sub-diagonal, with respect to
an orthonormal basis of H . We shall characterize these operators below (see Theo-
rem 1). They form a subclass of cyclic complex symmetric operators in H . Recall that
a bounded linear operator A in a Hilbert space H is said to be cyclic if there exists a
vector x0 ∈ H (cyclic vector) such that

Lin{Akx0, k ∈ Z+} = H.

The theory of real Jacobi matrices is classical and well understood, see, e.g.,
Akhiezer’s book [1]. Probably, for the first time complex Jacobi matrices or J-matrices
appeared in 1948, in Wall’s book [17]. They appeared in a context of J-fractions. Since
continued fractions were not very popular in the operator theory community in the
second half of 20-th century, maybe it was the reason that this theory developed very
slowly. An important work was done by Beckermann, who collected and arranged in a
nice form the known and new basic facts and achievements on complex Jacobi matrices,
see [2]. Since the time of Beckermann’s paper, this domain became essentially more
active. Various directions have been investigated: perturbations and spectral analysis
(see [16] and references therein); quadrature rules ([14]); eigenvalue problems ([12]);
determinacy questions ([3]). Two-sided Jacobi matrices are also studied intensively:
for the real case we refer to the classical book of Berezanskii [4], and for recent devel-
opments see papers [15], [6] and references therein.

In this paper complex Jacobi matrices will appear as a tool only. We shall need
some basic constructions for them. Our results are more related to finite size complex
Jacobi matrices. It is surprising that there are few papers on this subject. We can refer
to papers of Guseinov (see [11] and papers cited there), and [5].
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The main objective of this paper is to show that operators from C+(H) are similar
to rank-one perturbations of restrictions of normal operators (notice that such restric-
tions need not to be subnormal operators). For this purpose we shall use the following
moment problem: find a (non-negative) measure μ on B(C) such that∫

C

zkdμ(z) = sk, k ∈ Z0,ρ . (8)

Here {sk}k∈Z0,ρ is a prescribed set of complex numbers (moments); ρ ∈ N . A more
general problem was recently considered in [23] (here we shall not need any results
from [23]). We shall present a transparent construction of atomic solutions for a solv-
able moment problem (8), which have arbitrarily big number of atoms. We shall also
need some objects and results similar to those objects and results from the theory of
spectral problems for Jacobi matrices. It is interesting that for these results the complex
symmetry was crucial. Finally, we state some open problems which appear in a natural
way from our discussion.

NOTATIONS. Throughout the whole paper d means a fixed integer greater than
1. As usual, we denote by R,C,N,Z,Z+ the sets of real numbers, complex numbers,
positive integers, integers and non-negative integers, respectively; T = {z ∈ C : |z| =
1} . By Zk,l we mean all integers r , which satisfy the following inequality: k � r � l .
By P we mean a set of all complex polynomials. By Pn we denote a set of all complex
polynomials, which have degrees less than or equal to n , n ∈ Z+ . By B(M) we
denote the set of all Borel subsets of M ⊆ C . For a measure μ on B(M) we denote
by L2

μ = L2
μ(M) the usual space of all (classes of equivalence of) Borel measurable

complex-valued functions f on M , such that
∫
M | f |2dμ < +∞ .

If H is a Hilbert space then (·, ·)H and ‖ · ‖H mean the scalar product and the
norm in H , respectively. Indices may be omitted in obvious cases. All Hilbert spaces
appearing in this paper are assumed to be separable. For a linear operator A in H , we
denote by D(A) its domain, by R(A) its range, and A∗ means the adjoint operator if
it exists. If A is invertible then A−1 means its inverse. A means the closure of the
operator, if the operator is closable. If A is bounded then ‖A‖ denotes its norm. For a
set M ⊆ H we denote by M the closure of M in the norm of H . By LinM we mean
the set of all linear combinations of elements from M , and spanM := LinM . By EH

we denote the identity operator in H , i.e. EHx = x , x ∈ H . In obvious cases we may
omit the index H . If H1 is a subspace of H , then PH1 = PH

H1
denotes the orthogonal

projection of H onto H1 .

2. Truncated moment problems on C and the similarity

At first we shall characterize those linear operators on a finite-dimensional Hilbert
space H , which belong to the class C+(H) . We denote by Γ(y0,y1, . . . ,yn) , the deter-
minant of the Gram matrix of vectors y0, . . . ,yn ∈ H , n ∈ Z+ :

Γ(y0,y1, . . . ,yn) = det((yk,yl)H)n
k,l=0 .

The following theorem is an analog of Theorem 1 in [21].
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THEOREM 1. Let A be a linear operator in a d -dimensional Hilbert space H ,
d > 1 . The operator A belongs to C+(H) if and only if the following conditions hold:

(i) A is a cyclic complex symmetric operator in H ;

(ii) there exists a cyclic vector x0 of A such that

Γ(x0,x1, . . . ,xn,x
∗
n) = 0, n ∈ Z1,d−1, (9)

where
xk = Akx0, x∗k = (A∗)kx0,

and Jx0 = x0 , for a conjugation J in H , such that JAJ = A∗ .

Proof. The proof goes along the same lines as the proof of Theorem 1 in [21], with
some necessary modifications. For convenience of the reader, we shall briefly present
the arguments.

Necessity. Let {uk}d−1
k=0 be an orthonormal basis in H such that M = ((Aul,uk))d−1

k,l=0

∈ M+
d;3 . Observe that

Auk = mk−1,kuk−1 +mk,kuk +mk+1,kuk+1, k ∈ Z0,d−1,

where m−1,0 = md,d−1 := 0. Using this relation and the induction argument we get

ur ∈ Lin{u0,Au0, . . . ,A
ru0} , r ∈ Z0,d−1. (10)

Therefore H = Lin{Aku0}d−1
k=0 , and u0 is a cyclic vector of A . Consider the following

conjugation in H :

J
d−1

∑
k=0

ξkuk =
d−1

∑
k=0

ξkuk, ξk ∈ C.

Since M is complex symmetric, then A is a J -symmetric operator. Denote Hr =
Lin{Aku0}r

k=0 , r ∈ Z0,d−1 . By (10) we see that u0, . . . ,ur ∈ Hr , therefore they form an
orthonormal basis in Hr . Since Juk = uk , we get JHr ⊆ Hr . Then

(A∗)ru0 = (JAJ)ru0 = JArJu0 = JAru0 ∈ Hr.

Vectors u0,Au0, . . . ,Aru0,(A∗)ru0 , are linearly dependent, and we obtain relation (9).
Sufficiency. For a given cyclic vector x0 we denote Hr = Lin{Akx0}r

k=0 , r ∈
Z0,d−1 . Notice that

Ar+1x0 /∈ Hr, r ∈ Z0,d−2. (11)

In fact, suppose to the contrary that Ar+ jx0 ∈ Hr , 1 � j � k , for some r ∈ Z0,d−2 ,
k ∈ N . Then

Ar+k+1x0 = AAr+kx0 = A
r

∑
t=0

αr,k;tA
tx0 =

r

∑
t=0

αr,k;tA
t+1x0 ∈ Hr, (αr,k;t ∈ C).
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Repeating this trick we get Ar+1x0,Ar+2x0, . . . . , all belong to Hr . Therefore H = Hr ,
a contradiction. Applying the Gram-Schmidt orthogonalization process to

x0,Ax0, . . . ,A
d−1x0,

we get an orthonormal basis {g j}d−1
j=0 in H . It also follows by the construction that

{g j}r
j=0 is an orthonormal basis in Hr . By (9) we may write:

JAnx0 = JAnJx0 = (A∗)nx0 ∈ Hn, n ∈ Z1,d−1.

Therefore JHr ⊆ Hr . Let

Jgr =
r

∑
j=0

βr, jg j, βr, j ∈ C, r ∈ Z0,d−1.

Since βr,k = (Jgr,gk) = (gr,Jgk) = 0, for k ∈ Z0,r−1 , then Jgr = βr,rgr . Since ‖Jgr‖=
‖gr‖ = 1, then βr,r = eiϕr , ϕr ∈ [0,2π) . We set ur := e

1
2 ϕr igr , r ∈ Z0,d−1 . Then

Jur = ur .
Let us check that the matrix M = (mk,l)d−1

k,l=0 = ((Aul,uk))d−1
k,l=0 , belongs to M+

d;3 .
The complex symmetry of M follows from the complex symmetry of A . If l > k+1,
then

mk,l = (Aul ,uk) = (ul ,JAuk) = 0,

since JAuk ∈ Hk+1 . Notice that Aur ∈ Hr+1 , r ∈ Z0,d−2 , since ur ∈ Hr . Observe that
Aur /∈ Hr , r ∈ Z0,d−2 . In the opposite case we would get AHr ⊆ Hr . Then Akx0 ⊆ Hr ,
k ∈ Z+ , and H = Hr , a contradiction. Therefore for r ∈ Z0,d−2 , we may write:

Aur =
r+1

∑
j=0

γr, ju j, γr, j ∈ C, γr,r+1 �= 0,

and mr+1,r = γr,r+1 �= 0. �

We shall now turn to the study of the moment problem (8). Let {sk}k∈Z0,ρ be a
prescribed set of complex numbers, such that s0 > 0, (ρ ∈ N). If ρ = 1, it is seen that
a 1-atomic measure with an atom at s1

s0
, having a mass s0 , is a solution of the moment

problem (8). Thus, we shall assume that ρ � 2.

LEMMA 1. Let the moment problem (8) be given, with ρ � 2 , and the following
moments:

s0 = 1, sρ = c, sk = 0, k ∈ Z1,ρ−1,

where c is an arbitrary complex number. Then the moment problem (8) has a finitely
atomic solution with atoms, situated on the circle Tr := {z ∈ C : |z| = r} , where r is
an arbitrary positive number, greater than ρ

√|c| .
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Proof. Denote c̃ := c
rρ . Notice that |c̃| < 1. Observe that the determinant of the

following Toeplitz matrix of size (ρ +1)× (ρ +1) :

Tρ =

⎛⎜⎜⎜⎜⎜⎝
1 0 . . . 0 c̃
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
c̃ 0 . . . 0 1

⎞⎟⎟⎟⎟⎟⎠ ,

is equal to 1− |c̃|2 > 0. Therefore the truncated trigonometric moment problem with
moments (see, e.g., [13]):

s′0 = 1, s′ρ = c̃, s′k = 0, k ∈ Z1,ρ−1,

has a finitely atomic solution:

∑
j

zk
jm j = s′k =

sk

rk , k ∈ Z0,ρ ,

where z j ∈ T , mj > 0. Then

∑
j

uk
jm j = sk, k ∈ Z0,ρ ,

where u j := rz j ∈ Tr . �
Thus, we can construct finitely atomic solutions of the moment problem (8), with

ρ = 1, s0 > 0, and with ρ � 2, when s0 > 0, sρ ∈ C , sk = 0, k ∈ Z1,ρ−1 . In fact,
one can divide the moments by s0 and apply Lemma 1. We are ready to present an
algorithm for the moment problem (8).

ALGORITHM 1.
Input data. ρ ∈ Z : ρ � 2. Moments s0 > 0, sk ∈ C , k ∈ Z1,ρ .
Step 1. Construct a solution μ1 to the moment problem (8), with the following

moments:
s0(μ1) =

s0

ρ
, s1(μ1) = s1,

see considerations before Lemma 1.
Step n, n = 2, . . . ,ρ . Construct a solution μn to the moment problem (8), with the

following moments:

s0(μn) =
s0

ρ
, sn(μn) = sn −

n−1

∑
l=1

sn(μl), s j(μn) = 0, j ∈ Z1,n−1,

see the proof of Lemma 1.
Step ρ +1 . Set

μ =
ρ

∑
l=1

μl .

Output. A finitely atomic solution μ of the moment problem (8).
Let us illustrate the above algorithm by a numerical example.
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EXAMPLE 1. Consider the moment problem (8), with the following moments:

s0 = 1, s1 = 1+ i, s2 = 3i.

Step 1. We need a solution μ1 of the moment problem (8), with the following
moments:

s0(μ1) =
1
2
, s1(μ1) = 1+ i.

One can choose μ1 to be a 1-atomic measure with an atom at 2+2i , with a mass 1
2 .

Step 2. We now need a solution μ2 of the moment problem (8), with the following
moments:

s0(μ2) =
1
2
, s1(μ2) = 0, s2(μ2) = s2− s2(μ1) = −i. (12)

Let us construct a solution to the moment problem (8), with the normalized moments:

ŝ0 = 1, ŝ1 = 0, ŝ2 = −2i. (13)

According to Lemma 1, we choose r = 2. Following the construction in the proof of
Lemma 1, we set c̃ = − i

2 . Then the corresponding truncated trigonometric moment
problem with moments

s′0 = 1, s′1 = 0, s′2 = − i
2
, (14)

is solvable. In order to construct a solution we may use known descriptions. For ex-
ample, one can use an operator description from [22]. We obtain that the truncated
trigonometric moment problem (14) has a 3-atomic solution with atoms at

z0 =
1√
2
(1+ i), z1,2 =

1

4
√

2

(
−1∓

√
15+ i(−1±

√
15)
)

,

and masses m0 = 1
5 , m1 = m2 = 2

5 . Then the moment problem (8) with the normalized
moments (13) has a 3-atomic solution with atoms at 2z j , and masses mj . Conse-
quently, we can choose μ2 to be a 3-atomic solution with atoms at 2z j , and masses
1
2mj , j = 0,1,2.

Step 3. We set μ = μ1 + μ2 . Thus, μ is a 4-atomic solution with an atom at
2+2i , with a mass 1

2 , and atoms at 2z j , and masses 1
2mj , j = 0,1,2.

REMARK 1. It would be of interest to adapt Algorithm 1 for the full moment
problem consisting of finding a measure μ on B(C) such that relation (8) holds for
k ∈ Z+ , with a set {sk}k∈Z+ of given complex numbers. One can consider similar steps
but with s0(μn) = 1

2n+1 s0 , n = 1,2, . . . . However, it is not clear whether ∑∞
n=0 μn has

absolutely convergent moments.

We can now state the main result.

THEOREM 2. Let A be a linear operator in a d -dimensional Hilbert space H ,
d > 1 . If the operator A belongs to C+(H) , then it is similar to a rank-one perturbation
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of a restriction of a normal operator. Namely, there exists a finitely atomic measure μ
on B(C) , and an invertible linear operator T , which maps H into L2

μ , such that:

TAT−1 = Z0 +a(z)(·,b)L2
μ
, (15)

where Z0 is the operator of the multiplication by an independent variable in L2
μ , re-

stricted to a linear set of all complex polynomials with degrees less than or equal to
d−1 ; a(z) and b(z) are some complex polynomials of z and z, respectively.

Proof. Since the given operator A belongs to C+(H) , then there exists an or-
thonormal basis {uk}d−1

k=0 in H such that the matrix M from (7) belongs to M+
d;3 . Thus

M = (mk.l)d−1
k.l=0 is a three-diagonal complex symmetric matrix, with non-zero entries

on the first sub-diagonal. Let us extend M to a semi-infinite matrix J = (mk.l)∞
k.l=0 ,

setting
mk+1,k = mk,k+1 = 1, k = d−1,d, . . . ,

ant setting mk,l = 0, for the rest of new entries. Then J is a three-diagonal semi-infinite
complex symmetric matrix. Denote

ak := mk,k+1, bk := mk,k, k ∈ Z+.

According to the procedure in [19], we define a sequence of polynomials {pn(λ )}∞
n=0 ,

p0(λ ) = 1, by the following recurrence relations:

b0p0(λ )+a0p1(λ ) = λ p0(λ ),

an−1pn−1(λ )+bnpn(λ )+anpn+1(λ ) = λ pn(λ ), n ∈ N. (16)

Then we define a linear with respect to both arguments functional σ(u,v) , u,v ∈ P ,
(the spectral function) by the following relation:

σ(pn(λ ), pm(λ )) = δm,n, m,n ∈ Z+, (17)

and extending by the linearity. This functional obeys the following property (see for-
mula (10) in [19]):

σ(λu(λ ),v(λ )) = σ(u(λ ),λv(λ )), u,v ∈ P. (18)

Define a linear functional S(u) , u ∈ P , in the following way:

S(u(λ )) = σ(u(λ ),1), u ∈ P.

By (18) it is seen that

S(u(λ )v(λ )) = σ(u(λ ),v(λ )), u,v ∈ P. (19)

Denote
sk = S(λ k), k ∈ Z0,ρ , ρ ∈ Z : ρ > 2d. (20)
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Notice that s0 = σ(p0p0) = 1. By Algorithm 1 we can construct a finitely atomic
solution μ to the moment problem (8) with moments (20):∫

C

zkdμ = sk, k ∈ Z0,ρ .

By (19),(17) we obtain that∫
C

pn(λ )pm(λ )dμ = δm,n, m,n ∈ Z0,d . (21)

Let us check that
uk = pk(A)u0, k ∈ Z0,d−1. (22)

Notice that similar formulas are known for real and complex Jacobi matrices (see [1],
[2]). We shall proceed by the induction argument. If k = 0, then relation (22) holds.
Suppose that relation (22) holds for k ∈ Z0,n , with some n ∈ Z0,d−2 . We need to check
it for k = n+1. By (16) we may write:

pn+1(A) =
1
an

(Apn(A)−an−1pn−1(A)−bnpn(A)),

where p−1 := 0, a−1 := 0. Applying both sides to u0 we get:

pn+1(A)u0 =
1
an

(Apn(A)u0−an−1pn−1(A)u0−bnpn(A)u0) =

=
1
an

(Aun −an−1un−1−bnun) = un,

since Aun = mn−1,nun−1 + mn,nun + mn+1,nun+1 = an−1un−1 + bnun + anun+1 . Thus,
relation (22) holds true. Here the complex symmetry of M played an essential role,
since the polynomial pn was defined by the coefficients in the n -th row of J (as usual, a
vector of polynomials forms a generalized eigenvalue of J ), while Aun used coefficients
from the n -th column of M . Define the following linear operator T , which maps H
into L2

μ :

T
d−1

∑
k=0

ξkuk =
d−1

∑
k=0

ξk pk(z), ξk ∈ C. (23)

Observe that in the k -th step of Algorithm 1 one constructs a measure μk , with atoms
on a circle Tr . This circle can be chosen to have an arbitrarily big radius r . Thus, we
can assume that all these circles on different steps do not intersect. Since there is at
least one atom on each circle, then the number of atoms is bigger than or equal to ρ .
Consequently, in the case of the moments (20), we can assume that we have a solution
μ with more then 2d atoms. The latter fact implies that the operator T is invertible. In
fact, suppose that

Tu = 0, u =
d−1

∑
k=0

ξkuk ∈ H, ξk ∈ C.
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Then

0 =

∥∥∥∥∥d−1

∑
k=0

ξk pk(z)

∥∥∥∥∥
2

L2
μ

=
∫

C

∣∣∣∣∣d−1

∑
k=0

ξk pk(z)

∣∣∣∣∣
2

dμ .

Therefore the polynomial ∑d−1
k=0 ξk pk(z) , of degree less that or equal to d − 1, should

vanish at 2d points. Thus, we get ∑d−1
k=0 ξk pk(z) = 0. Since deg pk = k , it follows that

all ξk are zero, and u = 0.
Denote by L0 a linear set in L2

μ of all (classes of the equivalence containing)

complex polynomials with degrees less that d . Observe that polynomials {pk(z)}d−1
k=0

are linearly independent and they form a linear basis in L0 . Let u(z) be an arbitrary
element of L0 :

u(z) =
d−2

∑
j=0

α j p j(z)+ cpd−1(z), α j,c ∈ C.

By (16),(21) we may write

TAT−1u(z) = TA

(
d−2

∑
j=0

α ju j + cud−1

)
=

= T

(
d−2

∑
j=0

α j(a j−1u j−1 +b ju j +a ju j+1)+ c(ad−2ud−2 +bd−1ud−1)

)
=

=
d−2

∑
j=0

α j(a j−1p j−1(z)+b jp j(z)+a j p j+1(z))+ c(ad−2pd−2(z)+bd−1pd−1(z)) =

= z

(
d−2

∑
j=0

α j p j(z)+ cpd−1(z)

)
−ad−1cpd(z) =

= Z0u(z)−ad−1pd(z)(u(z), pd−1(z))L2
μ
,

and relation (15) is proved. �

The following open problems seem to be interesting for further investigations:

PROBLEM 1. Describe those complex symmetric operators which are similar to
normal operators.

PROBLEM 2. Describe those complex symmetric operators which are similar to
self-adjoint / unitary operators.

PROBLEM 3. Describe those complex symmetric operators which are similar to
finite-rank perturbations of normal operators.

PROBLEM 4. Solve the full moment problem from Remark 1.

We hope that all these questions will be solved in the near future.
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