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Abstract. In this paper, we investigate the stability of some essential spectra of a 3× 3 block
operator matrices with unbounded entries and with non diagonal domain by using the resol-
vent of this kind of matrix operator. Furthermore, we give an application from Three-Group
transport theory to illustrate the validity of the main results in the Banach space L1([−a,a]×
[−1,1];dxdv) , a > 0.

1. Introduction

In this work we are concerned with the essential spectra of operators defined by a
3×3 block operator matrices

A :=

⎛⎝ A B C
D E F
G H L

⎞⎠ (1.1)

where the entries of the matrix are in general unbounded operators. The operator (1.1)
is defined on a domain consist of vectors which satisfy certain relations between the
components that is:

D(A ) =

{(
f
g
h

)
∈ D(Am)×D(Em)×D(Lm) such that

φ1( f ) = ψ2(g) = ψ3(h)
φ2(g) = ψ1( f ) = ψ6(h)
φ3(h) = ψ4( f ) = ψ5(g)

}
,

for continuous linear operators φi and ψ j , i = 1,2,3 and j ∈ {1,2,3,4,5,6} .
Note that, the operator A need to be closed, so in view of the continuity assump-

tions on the φ ′ s and ψ ′ s the domain D(A ) is closed in D(Am)×D(Em)×D(Lm)
with respect to the graph norm. Hence (A ,D(A )) is a closed operator in the product
of Banach spaces.
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We need some standard notation from Fredholm theory. Let X and Y be two
Banach spaces. By an operator T from X into Y , we mean a linear operator with
domain D(T ) ⊂ X and range Im(T ) ⊂Y . By C (X ,Y ) we denote the set of all closed,
densely defined linear operators from X into Y , by L (X ,Y ) the Banach space of all
bounded linear operators from X into Y . If X =Y , the sets L (X ,Y ) and C (X ,Y ) are
replaced respectively by L (X) and C (X) .

If T ∈ C (X) then ρ(T ) denotes the resolvent set of T , α(T ) the dimension of
the ker(T ) and β (T ) the codimension of Im(T ) in Y . The classes of Fredholm, upper
semi-Fredholm and lower semi-Fredholm operators from X into Y are respectively
given by:

Φ(X ,Y ) = {T ∈C (X ,Y ) such that α(T ) < ∞, β (T ) < ∞ and Im(T ) is closed in Y},

Φ+(X ,Y ) = {T ∈ C (X ,Y ) such that α(T ) < ∞ and Im(T ) is closed in Y},
and

Φ−(X ,Y ) = {T ∈ C (X ,Y ) such that β (T ) < ∞ and Im(T ) is closed in Y}.

If X = Y , the sets Φ(X ,Y ) , Φ+(X ,Y ) and Φ−(X ,Y ) are respectively replaced by
Φ(X) , Φ+(X) and Φ−(X) .

An operator F ∈ L(X ,Y ) is called a Fredholm perturbation, upper semi-Fredholm
perturbation or lower semi-Fredholmperturbation, if T+F ∈Φ(X ,Y ) , T+F ∈Φ+(X ,Y )
or T +F ∈Φ−(X ,Y ) whenever T ∈ Φ(X ,Y ) , T ∈ Φ+(X ,Y ) or T ∈Φ−(X ,Y ) , respec-
tively. The sets of Fredholm, upper semi-Fredholm and lower semi-Fredholm perturba-
tions are denoted by F (X ,Y ) , F+(X ,Y ) and F−(X ,Y ) , respectively. These classes
of operators were introduced and investigated by Gohberg et al [9].

An operator T ∈ L(X ,Y ) is said to be weakly compact if T (M) is relatively
weakly compact in Y for every bounded subset M ⊂ X . The family of weakly compact
operators from X into Y is denoted by W (X ,Y ) (see [10]).

An operator T ∈ L (X ,Y ) is said to be strictly singular if the restriction of T to
any infinite-dimensional subspace of X is not a homeomorphism. the set of strictly
singular operators from X to Y is denoted by S (X ,Y ) (see [22]).

If X = Y , the sets W (X ,Y ) and S (X ,Y ) are replaced respectively by W (X) and
S (X) . Let T ∈ C (X) , various notions of essential spectra have been defined in the
literature. In this work, we are concerned with the following spectrum and the essential
spectra:

σ(T ) := {λ ∈ C : T −λ is not boundedly invertible},
σe4(T ) := {λ ∈ C : T −λ /∈ Φ(X)},
σe5(T ) := C\ρe5(T ),
σeap(T ) := C\ρeap(T ),
σeδ (T ) := C\ρeδ (T ),

σJ(T ) :=
⋂

K∈W∗(X)

σ(T +K)
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where W∗(X) stands for each one of sets W (X) and S (X) and

ρe5(T ) := {λ ∈ C : T −λ ∈ Φ(X ,Y ), i(T −λ ) = 0},
ρeap(T ) := {λ ∈ C : T −λ ∈ Φ+(X ,Y ), i(T −λ ) � 0},
ρeδ (T ) := {λ ∈ C : T −λ ∈ Φ−(X ,Y ), i(T −λ ) � 0}.

We call σJ , σeap , σeδ , σe5 and σe4 the Jeribi, Rakočević, Schmoeger, Schechter and
Wolf essential spectra, respectively (see for instance[3, 12, 15, 13, 14, 18, 27, 29]).

During the last years, e.g. the papers [2, 7, 8, 30] were devoted to the study of
the essential spectra of operators defined by a 2× 2 block operator matrix acts on the
product X ×Y of Banach spaces. An account of the research and a wide panorama of
methods to investigate some essential spectra of block operator matrices are presented
by Tretter in [31].

Systems of linear evolution equations as well as linear initial value problems with
more than one set of initial data lead, in a natural way, to an abstract Cauchy problem
involving an operator matrix defined on a product of n Banach spaces. In the theory
of unbounded block operator matrices, The Frobenuis-Schur factorization is a basic
tool to study the some essential spectra and various spectral properties. In fact, the
characterization and the investigation of some essential spectra of 3× 3 block oper-
ator matrices with diagonal domain case, have drawn the attention of several authors
involving the corresponding Schur complements. In [21, 32], A. Jeribi, N. Moalla, and
I. Walha treated a 3× 3 block operator matrix (1.1) on a product of Banach spaces.
They supposed that the entries of the kind matrix are generally unbounded operators.
The operator (1.1) is defined on

(
D(A)∩D(D)∩D(G)

)×(D(B)∩D(E)∩D(H)
)×(

D(C)∩D(F)∩D(L)
)
. Notice that this operator doesnt need to be closed. It was

shown that, under certain conditions, this block operator matrix defines a closable op-
erator and its essential spectra are determined. Recently in [4], Ben Amar, Jeribi and
Krichen and in [5], Ben Amar, Jeribi and Moalla have studied the spectral properties
of a 3× 3 block operator matrices (1.1) , with unbounded entries and the domain is
defined by additional relations of the form ΓXx = ΓY y = ΓZz between the three com-
ponents of its elements. They focused on the description of the Jeribi, Rakočević,
Schechter, Schmoeger and Wolf essential spectra of A .

In the present paper we extend these results to 3× 3 block operator matrix with
unbounded entries and with domain consisting of vectors which satisfy certain rela-
tions between their components in the product of Banach spaces (see the expression
(2.1)). Comparing with the papers [4, 21], we can determine the essential spectra of
the operator A using its resolvent. This was first recognized by Moalla et al [25] in
the case 2× 2. For this, to achieve this goal, we determine the expression of the re-
solvent (A −λ )−1 for some convenable λ . More precisely, the idea is to associate
to the pair (A , I) a pair (A0, I) , which is more easier to deal with and we prove
that σek(A ) = σek(A0) ∪ σek(E0) ∪ σek(L0), where A0 = Am|kerφ1 , E0 = Em|kerφ2 ,
L0 = Lm|kerφ3 and ek ∈ {J,e4,e5,eap,eδ} .(For more details see Theorems 2.8 and
2.9).

An outline of the paper is as follows. The first section consists of two subsections:
On the one hand, we establish a decomposition of the operator matrices (1.1) (see
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Lemma 2.2) and we give its resolvent as product between two operators matrices one
diagonal operator and the other consider an intermediary that one needs to use in the
sequel of the second subsection which we will characterize some essential spectra of
the kind operator matrices (1.1) .

In the last section, we use the notation of the first Section and we apply the main
results of Theorem 2.9 and 2.8 to describe the Wolf, Schechter, Rakočević, Schmoeger
and Jeribi essential spectra of a three-group transport operator acting in the Banach
space X1 ×X1 ×X1 where X1 := L1([−a,a]× [−1,1];dxdv) , a > 0. (See [11, 16, 17]
for more details on transport equations.)

2. Mains results

2.1. The virtual operator matrix A and its resolvent

Let X , Y and Z be three Banach spaces. We consider the block operator matrix
(1.1) in the space X ×Y ×Z , that is the linear operator A acts in X , E in Y and L in
Z . Further we will consider the following assumptions:

Am , Em and Lm are closed, densely defined operators with domains D(Am) in X ,
D(Em) in Y and D(Lm) in Z respectively.

Let X1,Y1 and Z1 be three Banach spaces (called “spaces of boundary condi-
tions”). Endow D(Am) , D(Em) and D(Lm) with the graph norm and define continuous
linear operators φ1, φ2, φ3, and ψi ; i = 1,2,3,4,5,6 as in the diagram:

X ⊃ D(Am)
φ1 ��

ψ1�����������������
X1

Y ⊃ D(Em)
φ2

��

ψ2
�����������������
Y1

X ⊃ D(Am)
φ1 ��

ψ4�����������������
X1

Z ⊃ D(Lm)
φ3

��

ψ3
�����������������
Z1

Y ⊃ D(Em)
φ2 ��

ψ5�����������������
Y1

Z ⊃ D(Lm)
φ3

��

ψ6
�����������������
Z1

In addition, we always assume that φ1 ,φ2 and φ3 are surjective.
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Under the above assumptions, let B from D(Em) to X , C from D(Lm) to X , etc.
Consider the operator matrix

A

⎛⎝ f
g
h

⎞⎠=

⎛⎝ Am f +Bg+Ch
D f +Emg+Fh
G f +Hg+Lmh

⎞⎠ , for

⎛⎝ f
g
h

⎞⎠ ∈ D(A ).

with domain D(A ) consisting of vectors which satisfy certain relations between their
components i.e:

D(A ) =

⎧⎨⎩
⎛⎝ f

g
h

⎞⎠ ∈ D(Am)×D(Em)×D(Lm) such that
φ1( f ) = ψ2(g) = ψ3(h)
φ2(g) = ψ1( f ) = ψ6(h)
φ3(h) = ψ4( f ) = ψ5(g)

⎫⎬⎭ . (2.1)

DEFINITION 2.1. Consider the restrictions A0 , E0 and L0 of Am , Em , Lm to
kerφ1 , kerφ2 and kerφ3 respectively. Then, A0 denotes the diagonal operator matrix⎛⎝A0 0 0

0 E0 0
0 0 L0

⎞⎠ with domain D(A0) := D(A0)×D(E0)×D(L0) .

It is now our aim, on the Banach space X ×Y × Z , to write a ’virtual’ operator
matrix, that is to establish the relation between A −λ and A0−λ .

LEMMA 2.2. [26, Definition 2.3, p.4]
(i) Let (C0,D(C0)) be a restriction of a closed operator (Cm,D(Cm)) on some

Banach space. For every λ ∈ ρ(C0) , the following decomposition holds:

D(Cm) = D(C0)⊕ker(Cm −λ )

(ii) For λ ∈ ρ(A0) , λ ∈ ρ(E0) and λ ∈ ρ(L0), we have that the operators

φ1λ := φ1|ker(Am−λ ), φ2λ := φ2|ker(Em−λ ) and φ3λ := φ3|ker(Lm−λ ).

are continuous bijections from ker(Am − λ ) onto X1 and from ker(Em − λ ) onto Y1

and from ker(Lm −λ ) onto Z1 respectively.

As a direct consequence of the above Lemma, for λ ∈ ρ(A0)∩ρ(E0)∩ρ(L0) , we
define the following operators{

Lλ : D(Am) −→ D(Em),
f �−→ Lλ ( f ) = φ−1

2λ ◦ψ1( f )

{
Nλ : D(Am) −→ D(Lm),

f �−→ Nλ ( f ) = φ−1
3λ ◦ψ4( f ){

Kλ : D(Em) −→ D(Am),
g �−→ Kλ (g) = φ−1

1λ ◦ψ2(g)

{
Pλ : D(Em) −→ D(Lm),

g �−→ Pλ (g) = φ−1
3λ ◦ψ5(g){

Mλ : D(Lm) −→ D(Am),
h �−→ Mλ (h) = φ−1

1λ ◦ψ3(h)

{
Qλ : D(Lm) −→ D(Em),

h �−→ Qλ (h) = φ−1
2λ ◦ψ6(h).
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Then, for all f ∈D(Am) , g ∈D(Em) and h∈D(Lm), the operators Kλ , Lλ , Mλ , Nλ ,
Pλ and Qλ are bounded and the following results are evident:

φ1(Kλ g) = ψ2(g), φ1(Mλ h) = ψ3(h) (2.2)

φ2(Lλ f ) = ψ1( f ), φ2(Qλ h) = ψ6(h) (2.3)

φ3(Nλ f ) = ψ4( f ), φ3(Pλ g) = ψ5(g). (2.4)

REMARK 2.3. For λ ∈ρ(A0)∩ρ(E0)∩ρ(L0) , we have {ImKλ , ImMλ}⊂ ker(Am

−λ ), {ImLλ , ImQλ} ⊂ ker(Em −λ ) and {ImNλ , ImPλ} ⊂ ker(Lm −λ ) .

LEMMA 2.4. Let λ ∈ ρ(A0)∩ρ(E0)∩ρ(L0) . Then, the ’virtual’ operator matrix
(A −λ ) is write by the decomposition as follows

(A −λ ) = (A0−λ )Qλ on D(A ). (2.5)

where

Qλ :=

⎛⎝ Id −Kλ +(A0−λ )−1B −Mλ +(A0−λ )−1C
−Lλ +(E0−λ )−1D Id −Qλ +(E0−λ )−1F
−Nλ +(L0−λ )−1G −Pλ +(L0−λ )−1H Id

⎞⎠
Proof. We decompose Qλ in the form

Qλ = Bλ +Cλ

with

Bλ :=

⎛⎝ Id −Kλ −Mλ
−Lλ Id −Qλ
−Nλ −Pλ Id

⎞⎠
and

Cλ :=

⎛⎝ 0 (A0−λ )−1B (A0−λ )−1C
(E0−λ )−1D 0 (E0 −λ )−1F
(L0 −λ )−1G (L0 −λ )−1H 0

⎞⎠
which the both defines a bounded operators on D(Am)×D(Em)×D(Lm) . Furthermore

D(Qλ ) = D(Am)×D(Dm)×D(Lm).

Denote by Θλ = (A0−λ )Qλ . So

D(Θλ ) =

⎧⎨⎩
⎛⎝ f

g
h

⎞⎠ ∈ D(Qλ ) such that Qλ

⎛⎝ f
g
h

⎞⎠ ∈ D(A0)

⎫⎬⎭
=

⎧⎨⎩
⎛⎝ f

g
h

⎞⎠ ∈ D(Am)×D(Em)×D(Lm) ;
φ1( f )−φ1(Kλ g)−φ1(Mλ h) = 0,
φ2(g)−φ2(Lλ f )−φ2(Qλ h) = 0,
φ3(h)−φ3(Nλ f )−φ3(Pλ g) = 0

⎫⎬⎭
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using (2.2) , (2.3) and (2.4)

D(Θλ ) =

⎧⎨⎩
⎛⎝ f

g
h

⎞⎠ ∈ D(Am)×D(Em)×D(Lm) such that
φ1( f ) = ψ2(g) = ψ3(h),
φ2(g) = ψ1( f ) = ψ6(h),
φ3(h) = ψ4( f ) = ψ5(g),

⎫⎬⎭
= D(A ).

We show that the expression (2.5) is verified. As a first step, for

⎛⎝ f
g
h

⎞⎠ ∈ D(A ), if

we take B = C = D = F = G = H = 0, we get the following property by analogy with
the case of a 2×2 operator matrix (see [26, Lemma 2.6]), we introduce the following
result:

(A0−λ )Bλ

⎛⎝ f
g
h

⎞⎠= (A −λ )

⎛⎝ f
g
h

⎞⎠ for

⎛⎝ f
g
h

⎞⎠ ∈ D(A ). (2.6)

Therefore, we can prove with this equalities

(A0−λ )Qλ

⎛⎝ f
g
h

⎞⎠= (A0−λ )Bλ

⎛⎝ f
g
h

⎞⎠+(A0−λ )Cλ

⎛⎝ f
g
h

⎞⎠
and according to the decomposition (2.6) and with a simple calculus, that

(A0−λ )Qλ

⎛⎝ f
g
h

⎞⎠= (A −λ )

⎛⎝ f
g
h

⎞⎠ . �

In addition, the following lemma consists of showing what are the conditions that
we impose on the operators entries of A −λ which make it to become invertible. For
this purpose, we need firstly to show the invertibility of the matrix operator Qλ . So,
by analogy with the case of a 2× 2 operator matrix (see [2, 31]), we start with the
following Frobenius Schur type factorization of Qλ :

Qλ =

⎛⎝ Id 0 0
F1(λ ) Id 0
F2(λ ) F3(λ ) Id

⎞⎠⎛⎝ Id 0 0
0 S1(λ ) 0
0 0 S2(λ )

⎞⎠⎛⎝ Id G1(λ ) G2(λ )
0 Id G3(λ )
0 0 Id

⎞⎠ (2.7)

where

F1(λ ) = −Lλ +(E0−λ )−1D,

F2(λ ) = −Nλ +(L0−λ )−1G,

G1(λ ) = −Kλ +(A0−λ )−1B,

G2(λ ) = −Mλ +(A0−λ )−1C,

S1(λ ) = Id−F1(λ )G1(λ ),
F3(λ ) = [θ1(λ )−F2(λ )G1(λ )]S−1

1 (λ ), with θ1(λ ) = −Pλ +(L0−λ )−1H.

G3(λ ) = S−1
1 (λ )[θ2(λ )−F1(λ )G2(λ )], with θ2(λ ) = −Qλ +(E0−λ )−1F.

S2(λ ) = Id−F2(λ )G2(λ )−F3(λ )S1(λ )G3(λ ).
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Then, we can easily derive the following result:

LEMMA 2.5. Let λ ∈ ρ(A0)∩ρ(E0)∩ρ(L0) ,
(i) Qλ is invertible in L (D(Am)×D(Em)×D(Zm)) if and only if S1(λ ) and

S2(λ ) are invertible respectively in L (D(Em)) and L (D(Lm)) .
(ii) If (Id−S1(λ )) ∈ PK (D(Em)) and if (Id−S2(λ )) ∈ PK (D(Lm)) , then

λ ∈ ρ(A ) ⇔ 0 ∈ ρ(S1(λ )) and 0 ∈ ρ(S2(λ )).

Proof. (i) follows from (2.7) . In order to show (ii) , for λ ∈ ρ(A0)∩ρ(E0)∩
ρ(L0) , using item (i) and if S1(λ ) and S2(λ ) are invertible respectively in L (D(Em))
and L (D(Lm)) then A −λ is invertible in L (X ×Y ×Z).

Conversely, assume that A −λ is invertible, then A −λ is injective. Therefore,
decomposition (2.5) revels that S1(λ ) and S2(λ ) are injective. Using Theorem (2.2)
in [19], under the assumption that (Id − S1(λ )) ∈ PK (D(Em)) and (Id − S2(λ )) ∈
PK (D(Lm)) , amounts that S1(λ ) and S2(λ ) are invertible. �

THEOREM 2.6. For λ ∈ ρ(A0)∩ρ(E0)∩ρ(L0) such that 0 ∈ ρ(S1(λ )) and 0 ∈
ρ(S2(λ )) , the resolvent of A is formally given by:

Rλ (A ) =

⎛⎝R1 R2 R3

R4 R5 R6

R7 R8 R9

⎞⎠
where:

R1 = [I +G1(λ )S−1
1 (λ )F1(λ )+ [G1(λ )G3(λ )−G2(λ )]S−1

2 (λ )[F1(λ )F3(λ )−F2(λ )]]
×Rλ (A0),

R2 = [−G1(λ )S−1
1 (λ )− [G1(λ )G3(λ )−G2(λ )]S−1

2 (λ )F3(λ )]Rλ (E0),

R3 = [G1(λ )G3(λ )−G2(λ )]S−1
2 (λ )Rλ (L0),

R4 = [−S−1
1 (λ )F1(λ )−G3(λ )[S−1

2 (λ )(F1(λ )F3(λ )−F2(λ ))]]Rλ (A0),

R5 = [S−1
1 (λ )+G3(λ )S−1

2 (λ )F3(λ )]Rλ (E0),

R6 = −G3(λ )S−1
2 (λ )Rλ (L0),

R7 = [S−1
2 (λ )(F1(λ )F3(λ )−F2(λ ))]Rλ (A0),

R8 = −S−1
2 (λ )F3(λ )Rλ (E0),

R9 = S−1
2 (λ )Rλ (L0).

REMARK 2.7. For λ ∈ ρ(A0)∩ρ(E0)∩ρ(L0) such that 0 ∈ ρ(S1(λ )) and 0 ∈
ρ(S2(λ )) , we obtain

S−1
1 (λ ) = I +S−1

1 (λ )F1(λ )G1(λ )

S−1
2 (λ ) = I +S−1

2 (λ )[F2(λ )G2(λ )

−[θ1(λ )−F2(λ )G1(λ )]S−1
1 (λ )[θ2(λ )−F1(λ )G2(λ )]].
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2.2. Jeribi, Rakočević, Schechter, Schmoeger and Wolf essential spectra of A
with non diagonal domain

Having obtained the resolvent Rλ (A ) of the operator A , in this subsection we
discuss its essential spectra. As a first step we prove the first result.

THEOREM 2.8. Suppose that 0 ∈ ρ(S1(λ ))∩ ∈ ρ(S2(λ )) are satisfied. If for
λ ∈ ρ(A0)∩ ρ(E0)∩ ρ(L0) , we have Rλ (A )−Rλ (A0) ∈ F (X ×Y × Z) , then the
following results are satisfied:

σe4(A ) = σe4(A0)∪σe4(E0)∪σe4(L0), (2.8)

σe5(A ) ⊆ σe5(A0)∪σe5(E0)∪σe5(L0). (2.9)

Moreover, if the sets C\σe4(A0) and C\σe4(E0) are connected, then

σe5(A ) = σe5(A0)∪σe5(E0)∪σe5(L0). (2.10)

In addition if X has no reflexive infinite dimensional subspaces, then we have

σJ(A ) = σJ(A0)∪σJ(E0)∪σJ(L0). (2.11)

Proof. As a consequence of Remark 2.7, we can easily drive a same expression
of the resolvent of operator matrices A will play a prominent role. If λ ∈ ρ(A0)∩
ρ(E0)∩ρ(L0) , the resolvent of A is given by:

Rλ (A ) = Rλ (A0)+M(λ ),

with

M(λ ) =

⎛⎝ I1 R2 R3

R4 I2 R6

R7 R8 I3

⎞⎠
where:

I1 = [G1(λ )S−1
1 (λ )F1(λ )+ [G1(λ )G3(λ )−G2(λ )]S−1

2 (λ )[F1(λ )F3(λ )−F2(λ )]]
×Rλ (A0),

I2 = [S−1
1 (λ )F1(λ )G1(λ )+G3(λ )S−1

2 (λ )F3(λ )]Rλ (E0),

I3 = [S−1
2 (λ )[F2(λ )G2(λ )− [θ1(λ )−F2(λ )G1(λ )]S−1

1 (λ )(θ2(λ )−F1(λ )G2(λ ))]]
×Rλ (L0).

Since M(λ ) is Fredholm perturbation. Hence, according to Theorem (3.2) (i) in [23],
one gets σe4(A ) = σe4(A0) . Which shows (2.8) . The second result stems from

i(A −λ ) = i(A0 −λ )+ i(E0−λ )+ i(L0−λ ). (2.12)

If i(A −λ ) �= 0, then one of the terms in (2.12) is non-zero, hence

σe5(A ) = σe5(A0) ⊆ σe5(A0)∪σe5(E0)∪σe5(L0).
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According to the second result (2.9) , it is sufficient to verify the opposite inclusion.
Since C\σe4(A0) is connected, by Theorem 2.1 in [1], σe4(A0) = σe5(A0) . Using the
same argument that C\σe4(E0) is connected, then σe4(E0) = σe5(E0) and i(E0−λ ) =
0 for each λ ∈ C\σe4(E0) . If λ ∈ C\σe5(A ) , then λ ∈ C\σe4(A0) , λ ∈C\σe4(E0)
and λ ∈C\σe4(L0) . Further, i(A −λ ) = i(L0−λ ) , hence λ ∈C\σe5(L0) and (2.10)
is proved.

From Remark 7.2.1 in [13], the Jeribi essential spectrum always satisfying the
inclusion σJ(A0) ⊆ σe5(A0) , σJ(E0) ⊆ σe5(E0) and σJ(L0) ⊆ σe5(L0) , furthermore if
the Banach space X has no reflexive infinite dimensional subspaces and according to
Theorem 3.3 in [3] we have σe4(A0) ⊂ σJ(A0) , then by Eq (2.10) we obtain

σe5(A0) = σe4(A0) ⊂ σJ(A0) ⊆ σe5(A0)

Hence σJ(A0) = σe5(A0) .
In the same way we have σJ(E0) = σe5(E0) and σJ(L0) = σe5(L0) . So,

σJ(A ) = σJ(A0)∪σJ(E0)∪σJ(L0). �

In the next result, we discuss the Rakočević and Schmoeger essential spectra of
unbounded operator matrix (1.1) with non diagonal domain.

THEOREM 2.9. Suppose that 0 ∈ ρ(S1(λ ))∩ρ(S2(λ )) are satisfied.
(i) If for λ ∈ ρ(A0)∩ρ(E0)∩ρ(L0) , we have M(λ ) ∈ F+(X ×Y ×Z) , then

σeap(A ) ⊆ σeap(A0)∪σeap(E0)∪σeap(L0).

Moreover, if the sets C\σe4(A0) , C\σe4(E0) , C\σe4(L0) and C\σe4(A ) are con-
nected, then

σeap(A ) = σeap(A0)∪σeap(E0)∪σeap(L0).

(ii) If for λ ∈ ρ(A0)∩ρ(E0)∩ρ(L0) , we have M(λ ) ∈ F−(X ×Y ×Z) , then

σeδ (A ) ⊆ σeδ (A0)∪σeδ (E0)∪σeδ (L0).

Moreover, if the sets C\σe4(A0) , C\σe4(E0) , C\σe4(L0) and C\σe4(A ) are con-
nected, then

σeδ (A ) = σeδ (A0)∪σeδ (E0)∪σeδ (L0).

Proof. (i) We infer by Lemma 2.5 that λ ∈ ρ(A )∩ρ(A0) . This together with
the fact that M(λ ) ∈ F+(X ,Y,Z) , leads from Theorem 3.3 (i) in [20] to σeap(A ) =
σeap(A0) .

As A0 is a diagonal operator matrices, and

i(A −λ ) = i(A0 −λ )+ i(E0−λ )+ i(L0−λ ), (2.13)

this shows that σeap(A0) = σeap(A0)∪σeap(E0)∪σeap(L0) .
Since C \σe4(A0) , C \σe4(E0) , C \σe4(L0) and C \σe4(A ) are connected, the

result follows [7, Proposition 2.3] together with [25, Theorem 3.2].
A same reasoning allows us to reach the result of item (ii) . �
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3. Application to a three-group transport theory

The work presented in this section concerns the application of Theorem 2.8 and
Theorem 2.9 to a three-group transport operator in an L1 -space. Let a > 0 and

X1 := L1((−a,a)× (−1,1);dxdv), X = Y = Z := X1.

We consider the operator matrix

A = T +K :=

⎛⎝Tm1 K12 K13

K21 Tm2 K23

K31 K32 Tm3

⎞⎠
where T is defined by

T

⎛⎝ f
g
h

⎞⎠ =

⎛⎜⎝−v ∂ f
∂x −σ1(v) f 0 0

0 −v ∂g
∂x −σ2(v)g 0

0 0 −v ∂h
∂x −σ3(v)h

⎞⎟⎠
:=

⎛⎝Tm1 0 0
0 Tm2 0
0 0 Tm3

⎞⎠⎛⎝ f
g
h

⎞⎠ .

For each operator Tmi , i = 1,2,3, is called streaming operator in X1 , defined by

Tmiϕ(x,v) = −v
∂ϕ
∂x

(x,v)−σi(v)ϕ(x,v), ϕ ∈ W1,

with W1 is the partial Sobolev space W1 := {ϕ ∈ X1 such that v ∂ϕ
∂x ∈ X1}, and K is

defined by

K =

⎛⎝ 0 K12 K13

K21 0 K23

K31 K32 0

⎞⎠
where Ki j, i, j = 1,2,3 i �= j , are bounded linear operators in X1 , defined by

Ki ju(x,v) =
∫ 1

−1
ki j(x,v,v′)u(x,v′)dv′, u ∈ X1; (3.1)

the kernels ki j : (a,a)× (−1,1)× (−1,1)→ R are assumed to be measurable.
We consider the boundary spaces

X1 = L1([−a,a]× [−1,1];dxdv),a > 0,

Xi
1 = L1({−a}× [−1,0]; |v|dv)×L1({a}× [0,1]; |v|dv).

Let λ ∗
j := inf

v∈[−1,1]
σ j(v), j = 1,2,3. We define the non diagonal domain of A by

D(A ) =

⎧⎨⎩
⎛⎝ f

g
h

⎞⎠ ∈ W1 ×W1 such that

⎛⎝ f
g
h

⎞⎠i

= H

⎛⎝ f
g
h

⎞⎠o⎫⎬⎭ ,
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where

⎛⎝ f
g
h

⎞⎠o

and

⎛⎝ f
g
h

⎞⎠i

represent respectively the outgoing and the incoming fluxes

related by the boundary operator H =

⎛⎝ 0 H12 H13

H21 0 H23

H31 H32 0

⎞⎠ .

Furthermore, by the identification with the last section, we introduce the boundary
operators φ1 , φ2 and φ3{

φ1 : X1 −→ Xi
1

f �−→ f i = H12g = H13h
,

{
φ2 : X1 −→ Xi

1

g �−→ gi = H21 f = H23h

and {
φ3 : X1 −→ Xi

1

h �−→ hi = H31 f = H32g

and its ψi , i = 1,2,3,4,5,6 as allows{
ψ1 : X1 −→ Xi

1

f �−→ H21 f o and,

{
ψ2 : X1 −→ Xi

1

g �−→ H12go,

{
ψ3 : X1 −→ Xi

1

h �−→ H13ho

{
ψ4 : X1 −→ Xi

1

f �−→ H31 f o,

{
ψ5 : X1 −→ Xi

1

g �−→ H32go and

{
ψ6 : X1 −→ Xi

1

h �−→ H23ho.

Let Ti i = 1,2,3 be the closed operator defined by D(Ti) :=
{
u ∈ W1 such that ui = 0

}
and Ti := Tmi |kerφi . Hence, we obtain the operator matrices A0 =

⎛⎝T1 0 0
0 T2 0
0 0 T3

⎞⎠ on

X1×X1×X1 with diagonal domain D(A0) = D(T1)×D(T2)×D(T3).
In order to express the operators Kλ , Lλ , Mλ , Nλ , Pλ and Qλ , we will determine

the solution of the equation

(Tmi −λ )ϕi = 0, for ϕi ∈ Wp and i = 1,2. (3.2)

LEMMA 3.1. Let λ ∈ ρ(T1)∩ ρ(T2)∩ ρ(T3), the solution of equation (3.2) is
given by

ϕi(x,v)= χ[−1,0[(v)ϕi(a,v)e−
(λ+σi(v))

|v| |a−x|+χ]0,1](v)ϕi(−a,v)e−
(λ+σi(v))

|v| |a+x|
, for i = 1,2.

Furthermore, the expression of the bounded operators Kλ , Lλ , Mλ , Nλ , Pλ , Qλ are:⎧⎪⎪⎨⎪⎪⎩
Kλ : W1 −→ ker(Tm1 −λ )

g �−→ Kλ g(x,v) = χ(−1,0)(v)H12g(−a,v)e−
(λ+σ1(v))

|v| |a−x|

+ χ(0,1)(v)H12g(a,v)e−
(λ+σ1(v))

|v| |x+a|
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Lλ : W1 −→ ker(Tm2 −λ )

f �−→ Lλ f (x,v) = χ(−1,0)(v)H21 f (−a,v)e−
(λ+σ2(v))

|v| |a−x|

+ χ(0,1)(v)H21 f (a,v)e−
(λ+σ2(v))

|v| |x+a|

⎧⎪⎪⎨⎪⎪⎩
Mλ : W1 −→ ker(Tm1 −λ )

h �−→ Mλ h(x,v) = χ(−1,0)(v)H13h(−a,v)e−
(λ+σ1(v))

|v| |a−x|

+ χ(0,1)(v)H13h(a,v)e−
(λ+σ1(v))

|v| |x+a|

⎧⎪⎪⎨⎪⎪⎩
Nλ : W1 −→ ker(Tm3 −λ )

f �−→ Nλ f (x,v) = χ(−1,0)(v)H31 f (−a,v)e−
(λ+σ3(v))

|v| |a−x|

+ χ(0,1)(v)H31 f (a,v)e−
(λ+σ3(v))

|v| |x+a|

⎧⎪⎪⎨⎪⎪⎩
Pλ : W1 −→ ker(Tm3 −λ )

g �−→ Pλ g(x,v) = χ(−1,0)(v)H32g(−a,v)e−
(λ+σ3(v))

|v| |a−x|

+ χ(0,1)(v)H32g(a,v)e−
(λ+σ3(v))

|v| |x+a|

and ⎧⎪⎪⎨⎪⎪⎩
Qλ : W1 −→ ker(Tm2 −λ )

h �−→ Qλ h(x,v) = χ(−1,0)(v)H23h(−a,v)e−
(λ+σ2(v))

|v| |a−x|

+ χ(0,1)(v)H23h(a,v)e−
(λ+σ2(v))

|v| |x+a|
.

Proof. The proof of the above lemma is the same proof in case 2×2 in the article
[6] �

In the sequel, our object is to determine the essential spectra of the transport oper-
ator (A −λ ) , it is enough to prove that the operator matrices obtain by the difference
between the resolvent as defined in Theorem 2.8 is weakly compact on X1×X1×X1 .

Moreover, by an identification

F̃1(λ ) = −Lλ +(T2−λ )−1K21,

F̃2(λ ) = −Nλ +(T3−λ )−1K31,

G̃1(λ ) = −Mλ +(T1−λ )−1K12,

G̃2(λ ) = −Kλ +(T1−λ )−1K13,

S̃1(λ ) = Id− F̃1(λ )G̃1(λ ),

F̃3(λ ) = [θ̃1(λ )− F̃2(λ )G̃1(λ )]S̃−1
1 (λ ), with θ̃1(λ ) = −Pλ +(T3−λ )−1K32.

G̃3(λ ) = S̃−1
1 (λ )[θ̃2(λ )− F̃1(λ )G̃2(λ )], with θ̃2(λ ) = −Qλ +(T2−λ )−1K23.

S̃2(λ ) = I− F̃2(λ )G̃2(λ )− F̃3(λ )S̃1(λ )G̃3(λ ).
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we obtain

M(λ ) =

⎛⎝ I1 R2 R3

R4 I2 R6

R7 R8 I3

⎞⎠
where

I1 = [G̃1(λ )S̃−1
1 (λ )F̃1(λ )+ [G̃1(λ )G̃3(λ )− G̃2(λ )]S̃−1

2 (λ )[F̃1(λ )F̃3(λ )− F̃2(λ )]]
×Rλ (T1),

R2 = [−G̃1(λ )S̃−1
1 (λ )− [G̃1(λ )G̃3(λ )− G̃2(λ )]S̃−1

2 (λ )F̃3(λ )]Rλ (T2),

R3 = [G̃1(λ )G̃3(λ )− G̃2(λ )]S̃−1
2 (λ )Rλ (T3),

R4 = [−S̃−1
1 (λ )F̃1(λ )− G̃3(λ )[S̃−1

2 (λ )(F̃1(λ )F̃3(λ )− F̃2(λ ))]]Rλ (T1),

I2 = [S̃−1
1 (λ )F̃1(λ )G̃1(λ )+ G̃3(λ )S̃−1

2 (λ )F̃3(λ )]Rλ (T2),

R6 = −G̃3(λ )S̃−1
2 (λ )Rλ (T3),

R7 = [S̃−1
2 (λ )(F̃1(λ )F̃3(λ )− F̃2(λ ))]Rλ (T1),

R8 = −S̃−1
2 (λ )F̃3(λ )Rλ (T2),

I3 = [S̃−1
2 (λ )[F̃2(λ )G̃2(λ )− [θ̃1(λ )− F̃2(λ )G̃1(λ )]S̃−1

1 (λ )(θ̃2(λ )− F̃1(λ )G̃2(λ ))]]
×Rλ (T3).

So, to prove that the operator Mλ is weakly compact on X1 ×X1 ×X1 , it is suffix to
prove that the operators F̃i(λ ) and G̃i(λ ), i = 1,2,3 are weakly compact.

DEFINITION 3.2. [24] A collision operator Ki j in the form (3.1) , is said to be
regular if it satisfies the following conditions:⎧⎪⎪⎪⎨⎪⎪⎪⎩

−the function Ki j(.) is mesurable,

−there exists a compact subset C ⊂ L (L1([−1,1],dv)) such that :

Ki j(x) ∈ C a.e on [−a,a],
−Ki j(x) ∈ K (L1([−1,1],dv)) a.e on [−a,a]

where K (L1([−1,1],dv)) is the set of compact operators on L1([−1,1],dv) .

It follows from [25, Lemma 4.3] the following result:

LEMMA 3.3. Let λ ∈ ρ(T1)∩ρ(T2)∩ρ(T3) .
(i) If K12 , K13 , K21 and K31 are regular operators, and if H12, H13, H21, H31 ∈

W (X1) , then for any λ ∈C satisfying Reλ >−λ ∗
1 the operators G̃1(λ ) , G̃2(λ ) , F̃1(λ )

and F̃2(λ ) , respectively, are weakly compact in X1 .
(ii) If K32 and K23 are regular operators, and if H23 and H32 are in W (X1) , then

for any λ ∈C satisfying Reλ >−λ ∗
1 the operators θ̃1(λ ) and θ̃2(λ ) , respectively, are

weakly compact in X1 . And therefore F̃3(λ ) and G̃3(λ ) are weakly compact in X1.
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Proof. (i)+ (ii) We deduce from Hi j ∈ W (X1) for i, j = 1,2,3 that the operator
Kλ (resp. Lλ , Mλ , Nλ , Pλ , Qλ ) is weakly compact on X1 . Following Lemma 4.2 in
[25], one has that (Ti −λ )−1Kjk with i, j,k = 1,2,3 and j �= k is weakly compact on
X1 .

So, the fact that the set W (X1) is a closed two sided ideal of L (X1) , allows us to
conclude the desired results. �

REMARK 3.4. For the remainder, we observe that if H13 is weakly compact on
X1 (resp. H13 ), K12 defines a regular operator (resp. H12 ), then (Id− F̃1(λ )G̃1(λ )) ∈
W (X1) (resp. (Id− F̃2(λ )G̃2(λ )) ∈ W (X1)). Hence, one has [F̃1(λ )G̃1(λ )]2 ∈ W (X1)
(resp. [F̃2(λ )G̃2(λ )]2 ∈ W (X1)) , we deduce that F̃1(λ )G̃1(λ ) ∈ PK (X) (resp.
F̃2(λ )G̃2(λ ) ∈ PK (X)).

Taking account from the last item and Theorem 2.2 in [19] we infer that the fol-
lowing properties are equivalent:

(1) 1 ∈ ρ(F̃1(λ )G̃1(λ )) .

(2) Id− F̃1(λ )G̃1(λ ) is invertible.

(3) Id− F̃1(λ )G̃1(λ ) is injective.

and

(a) 1 ∈ ρ(F̃2(λ )G̃2(λ )) .

(b) Id− F̃2(λ )G̃2(λ ) is invertible.

(c) Id− F̃2(λ )G̃2(λ ) is injective.

The following proposition makes precise the injectivity properties.

PROPOSITION 3.5. Let λ ∈ ρ(T1)∩ρ(T2)∩ρ(T3) , then the operators

Id− F̃1(λ )G̃1(λ ) and Id− F̃2(λ )G̃2(λ )

are injective.

Proof. Let λ ∈ ρ(T1)∩ρ(T2)∩ρ(T3), and h ∈ ker(Id− F̃1(λ )G̃1(λ )) . Then we
will solve the following equation:

(Id− F̃1(λ )G̃1(λ ))h = 0.

The explicit expression of F̃1(λ ) and G̃1(λ ) and their properties yield that to solve the
equation (

T2 −λ − k21(T1 −λ )−1k12
)
h = 0.

Since λ ∈ ρ(T1)∩ ρ(T2)∩ ρ(T3) and the use of Remark 3.1 in [21] assert that λ ∈
ρ(T1)∩ρ(T2)∩ρ(T3)∩ρ

(
T2−k21(T1−λ )−1k12

)
. That is T2−λ −k21(T1−λM1)−1k12

is injective and so h = 0. Hence, this argument yields the injectivity of the desert
operator.

A same reasoning allows us to reach the injectivity of I− F̃2(λ )G̃2(λ ). �
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REMARK 3.6. By Remark 3.4 and Proposition 3.5 we show that S̃1(λ ) and
S̃2(λ ) are invertible. Hence in addition with Lemma 2.5(ii) , allows us to deduce that
the matrix operator pencil (AH −λ ) is invertible with bounded inverse.

Now, we are in the position to establish the essential spectra of three-group trans-
port operators matrix with non diagonal domain.

THEOREM 3.7. For λ ∈ ρ(T1)∩ρ(T2)∩ρ(T3), if Ki j with i, j = 1,2,3 and i �= j
are non-negative regular operators on X1 , and Hkv with v,k = 1,2,3 and v �= k strictly
singular operators on X1 , then

σJ(A ) = σe4(A ) = σe5(A ) = σeap(A ) = σeδ (A )
= {λ ∈ C such that Reλ � −min(λ ∗

1 ,λ ∗
2 ,λ ∗

3 )}.

Proof. According to the previous Lemma, the hypothesis Mλ ∈W (X ×X ×X) is
verified. The results of Theorem can be applied for the operator A .

It is known (see. [25, Remark 4.3]), that the essential spectra of the operators
Tmi , i = 1,2,3,

σe4(Tmi) = σe5(Tmi) = σeap(Tmi) = σeδ (Tmi) = {λ ∈ C such that Reλ � −λ ∗
i }.

Applying Theorems 2.8 and 2.9 we get

σe4(A ) = σeap(A ) = {λ ∈ C such that Reλ � −min(λ ∗
1 ,λ ∗

2 ,λ ∗
3 )}.

The same reasoning implies the corresponding result for the essential spectra σe5(A )
and σeδ (A ) .

Using Theorem 7.2.1 in [13], it follows that

σJ(A ) = σe,5(A ) = {λ ∈ C such that Reλ � −min(λ ∗
1 ,λ ∗

2 ,λ ∗
3 )}. �
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474.

[18] A. JERIBI, M. MNIF, Fredholm operators, essential spectra and application to transport equation,
Acta. Appl. Math. 89, (2006), 155–176.

[19] A. JERIBI, N. MOALLA, Fredholm operators and Riesz theory for polynomially compact operators,
Acta. Appl. Math. 90, (2006), 227–245.

[20] A. JERIBI, N. MOALLA, A characterization of some subsets of Schechter’s essential spectrum and
Singular transport equation, J. Math. Anal. Appl. 358, (2009), 434–444.

[21] A. JERIBI, N. MOALLA, I. WALHA, Spectra of some block operator matrices and application to
transport operators, J. Math. Anal. Appl. 351, (2009), 315–325.

[22] T. KATO, Perturbation theory for linear operators, Springer-Verlag, New York (1996).

[23] K. LATRACH AND A. DEHICI,Fredholm, semi-Fredholm perturbations and essential spectra, J. Math.
Anal. Appl. 259, (2001), 227–301.

[24] M. MOKHTAR-KHARROUBI, Time asymptotic behaviour and compactness in neutron transport the-
ory, Euro. Jour. Mech., B Fluid, 11, (1992), 39–68.

[25] N. MOALLA, M. DAMMAK AND A. JERIBI, Essential spectra of some matrix operators and applica-
tion to two-goup Transport operators with general boundary condition, J. Math. Anal. Appl. 2, 323,
(2006), 1071–1090.

[26] R. NAGEL, The spectrum of unbounded operator matrices with non-diagonal domain, J. Funct. Anal.
89, (1990), 291–302.
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