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GENERALIZATION OF WOLFF’S IDEAL THEOREM ON H∞
K(B)(D)

D. P. BANJADE AND M. EPHREM

(Communicated by R. Curto)

Abstract. We consider an open question proposed in [2] when generalizing Wolff’s Ideal Theo-
rem on uniformly closed subalgebras of H∞(D). In this paper, we are able to resolve the open
question; in addition, we look at some cases where Wolff’s Ideal Theorem holds without the
additional condition of F0 �= 0.

1. Introduction

The famous Corona Theorem (1962), by Carleson [3], characterizes when a finitely
generated ideal of H∞(D) is all of H∞(D). Let I be the ideal generated by a finite set
of functions { fi}n

i=1 ⊂ H∞(D). Then I is the entire space H∞(D) provided that there
exists δ > 0 that satisfies(

n

∑
i=1

| fi(z)|2
) 1

2

� δ for all z ∈ D. (1)

Wolff [18] later attempted to generalize the corona theorem by replacing 1 by any
arbitrary H∞ function as follows: Does the condition(

n

∑
i=1

| fi(z)|2
) 1

2

� |h(z)| for all z ∈ D and f j,h ∈ H∞(D) (2)

imply hp ∈ I ? Rao provided an example (see Garnett [5], p. 369, Ex-3) to show that
the condition (2) is not sufficient for p = 1, and Treil showed that the condition (2) is
not sufficient for p = 2 as well [16]. Wolff proved the following theorem for all p � 3.

THEOREM 1.1. (Wolff’s Theorem) If f j ∈ H∞(D), j = 1,2, . . . ,n, h ∈ H∞(D)
and (

n

∑
j=1

| f j(z)|2
) 1

2

� |h(z)| for all z ∈ D,

then
hp ∈ I ({ f j}n

j=1), p � 3.

(See Garnett [5], p. 319, Theorem 2.3.)
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The Corona Theorem and Wolff’s Theorem have been extended to various subal-
gebras of H∞(D) , for example the subalgebra C+BH∞(D) given by

C+BH∞(D) = {α +Bg : α ∈ C,g ∈ H∞(D)},
where B is a fixed Blaschke product. In [7], Mortini, Sasane, and Wick proved the
Corona Theorem for a finite number of generators, whereas the infinite version is due
to Ryle and Trent [12, 13]. A similar result was obtained in [1] for the subalgebra
H∞

I (D) = { f ∈ H∞(D) : f = c + φ , c ∈ C and φ ∈ I}, where I is a proper ideal of
H∞(D).

We will use f and fi to represent complex-valued scalar functions, and F to de-
note a vector-valued function. For { f j}∞

j=1 ⊂H∞(D) , if we let F(z)= ( f1(z), f2(z), . . .) ,
we will use F(z)∗ to denote the adjoint of F(z). We use H∞

l2 (D) to denote the Hilbert
space of bounded analytic functions that map D to l2 . That is, an element F ∈ H∞

l2 (D)
is an infinite-dimensional row vector whose entries consist of functions fi ∈ H∞(D)
such that

‖F‖2
∞ =

∞

∑
i=1

sup
z∈D

| fi(z)|2 < ∞.

Similarly, we use the notation H∞
n (D) for

H∞
n (D) = {{ f j}n

j=1 : f j ∈ H∞(D) for j = 1,2, . . . ,n}.
The subalgebra, H∞

K(B)(D), we consider for this paper is as follows: for a (finite)
subset K = {k1,k2, . . . ,kp} of Z+ , define

H∞
K (D) = { f ∈ H∞(D) : f ( j)(0) = 0 for all j ∈ K},

where f ( j) is the jth derivative of f .
We consider those sets K for which H∞

K (D) is a subalgebra of H∞(D) under the
usual product of functions.

Next, fix a Blashke product B and define

H∞
K(B)(D) =

⎧⎨
⎩ ∑

j/∈K, 0� j<kp

a jB
j +Bkp+1g : g ∈ H∞(D) and a j ∈ C

⎫⎬
⎭ .

Later on we will see that H∞
K(B)(D) is an algebra when H∞

K (D) is.
We define algebras comprised of vectors with entries in H∞

K(B)(D) as follows:

H ∞
K(B),n(D) = {{ f j}n

j=1 : f j ∈ H∞
K(B)(D) for j = 1,2, . . . ,n and sup

z∈D

n

∑
j=1

| f j(z)|2 < ∞}.

Multiplication here is entrywise, and n can be either a positive integer or ∞ . We write
the elements of H ∞

K(B),n(D) as row vectors F and denoted as

F(z) = ∑
j/∈K

0� j<kp

B j(z)Fj +Bkp+1(z)Fkp+1(z),
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where F ′
j s, 0 � j < kp, are constants and Fkp+1(z) ∈ H∞

n (D). Notice that the constant
term is no longer F(0) . In fact, the constant term is F0 = F(c) , where c is a zero of
the Blashke product B . These algebras were introduced and function problems were
considered in J. Solazzo [14], M. Ragupathi [9], and Davidson, Paulsen, Ragupathi, and
Singh [4]. Note that the algebra C+BH∞(D) is a special case of the type of algebra
H∞

K(B)(D) , where the set K is just the empty set.
Just as in the H∞ case, condition (2) is not sufficient to guarantee ideal member-

ship of the function h in these algebras, as can be shown by simple modification of
Rao’s counterexample [11]. While extending Wollf’s Theorem to various subalgebras
of H∞(D) , the authors in [2] have proved the following theorem with an additional
condition that F0 �= 0 as follows:

THEOREM 1.2. (Banjade-Holloway-Trent) Suppose F(z) = ( f1(z), f2(z), . . .) ∈
H ∞

K(B),n(D) and let h(z) ∈H∞
K(B)(D) , with 1 � [F(z)F(z)∗]

1
2 � |h(z)| ∀ z ∈ D . Suppose

also that F0 �= 0 . Then there exists V (z) = (v1(z),v2(z), . . .) ∈ H ∞
K(B),n(D) such that

F(z)V (z)T = h3(z) ∀ z ∈ D.

The extra condition F0 �= 0 was required in Theorem 1.2 whereas this condition
was not necessary for H∞(D) or even for C+BH∞(D). In [2], the authors proposed the
question if Wolff’s Theorem can be fully extended to the subalgebra H∞

K(B)(D) without
the additional assumption that F0 �= 0. The main purpose of this paper is to provide the
answer to that question. We will prove that the answer is negative. In addition, we will
also discuss subalgebras on which the assumption F0 �= 0 may be removed and still
establish Wolff’s Theorem. Before presenting our main result, we first provide some
basic properties of H∞

K(B)(D) in the following section.

2. The subalgebra H∞
K(B)(D)

It is clear that H∞
K (D) is not an algebra for every subset K of Z+ ; for example

when K = {2} , the set H∞
K (D) is not an algebra.

Though there is not a complete characterization of the set K for which H∞
K (D) is

an algebra, Ryle and Trent [12] have given certain criteria that the set K must meet.

LEMMA 2.1. (Ryle-Trent) Let K ⊆ N such that H∞
K (D) is an algebra. Then

(i) k0 /∈ K if and only if zk0 ∈ H∞
K (D).

(ii) If j,k /∈ K, then j + k /∈ K.

(iii) Suppose k0 ∈ K. If 1 < j < k0 satisfies j /∈ K, then k0− j ∈ K.
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LEMMA 2.2. Let K ⊆ Z+. If H∞
K (D) is an algebra, then H∞

K(B)(D) is also an
algebra.

Proof. Let f and g be functions in H∞
K(B)(D) .

Then f = ∑
j/∈K, 0� j<kp

a jB
j +Bkp+1 f1 and g= ∑

j/∈K, 0� j<kp

b jB
j +Bkp+1g1 , for some

f1,g1 ∈ H∞(D) . So

f g = ∑∑
i, j/∈K, 0�i, j<kp

aib jB
iB j + ∑

j/∈K, 0� j<kp

a jB
jBkp+1g1

+ ∑
j/∈K, 0� j<kp

b jB
jBkp+1 f1 +Bkp+1Bkp+1 f1g1

= ∑∑
i, j/∈K, 0�i+ j<kp

aib jB
i+ j + ∑∑

i, j/∈K, i+ j�kp

aib jB
i+ j

+ ∑
j/∈K, 0� j<kp

a jB
jBkp+1g1 + ∑

j/∈K, 0� j<kp

b jB
jBkp+1 f1 +Bkp+1Bkp+1 f1g1.

However, since kp ∈ K , we have i+ j �= kp whenever i, j /∈ K . Thus, this gives us:

f g = ∑∑
i, j/∈K, 0�i+ j<kp

aib jB
i+ j + ∑∑

i, j/∈K, i+ j�kp+1

aib jB
i+ j

+ ∑
j/∈K, 0� j<kp

a jB
jBkp+1g1 + ∑

j/∈K, 0� j<kp

b jB
jBkp+1 f1 +Bkp+1Bkp+1 f1g1

= ∑∑
i, j/∈K, 0�i+ j<kp

aib jB
i+ j +Bkp+1

⎡
⎣ ∑∑

i, j/∈K, i+ j�kp

aib jB
i+ j−(kp+1)

⎤
⎦

+Bkp+1

⎡
⎣ ∑

j/∈K, 0� j<kp

a jB
jg1 + ∑

j/∈K, 0� j<kp

b jB
j f1 +Bkp+1 f1g1

⎤
⎦

= ∑∑
i, j/∈K, 0�i+ j<kp

aib jB
i+ j +Bkp+1h,

where

h = ∑∑
i, j/∈K, i+ j�kp+1

aib jB
i+ j−(kp+1) + ∑

j/∈K, 0� j<kp

a jB
jg1

+ ∑
j/∈K, 0� j<kp

b jB
j f1 +Bkp+1 f1g1 ∈ H∞(D).

Moreover, i+ j /∈ K whenever i, j /∈ K . Therefore, f g ∈ H∞
K(B)(D) . �

Now, we are ready to present our main results.
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3. Main results

PROPOSITION 3.1. Let F = ( f1, f2, . . .) ∈ H ∞
K(B),n(D) and h ∈ H∞

K(B)(D) with

1 �
√

F(z)F(z)∗ � |h(z)| ∀ z ∈ D . If F0 = 0 then the existence of V = (v1,v2, . . .) ∈
H ∞

K(B),n(D) such that

F(z)V (z)T = h3(z) ∀ z ∈ D

cannot be guaranteed.

Proof. We proceed by counterexample. If we consider the set K = {1,2,3,6,7,11},
then there exists f ,h ∈ H∞

K(B)(D) such that

|h(z)| � | f (z)| for all z ∈ D.

But, as we see below there is not necessarily a g in H∞
K(B)(D) such that h3 = f g.

We first show that H∞
K(B)(D) is an algebra. For this, by Lemma 2.2, it is enough to

show that H∞
K (D) is an algebra. We know that

( f g)(k)(0) =
k

∑
j=0

(
k
j

)
f ( j)(0)g(k− j)(0).

For any f ,g ∈ H∞
K (D) , if j ∈ K, then f ( j)(0) = 0. Otherwise, we can see in the set K

that k− j ∈ K and so g(k− j)(0) = 0. Hence, f g ∈ H∞
K (D). That means, H∞

K (D) is an
algebra and so is H∞

K(B)(D).
Also, any element f in H∞

K(B)(D) is of the form f (z) = c0 +c4B
4 +c5B

5 +c8B
8 +

c9B
9 + c10B

10 +B12φ , where φ ∈ H∞(D) and ci ∈ C .
If we take h(z) = B4 and f (z) = 2B4 +B5 , then we see that h, f ∈ H∞

K(B)(D).
Also,

|2B4 +B5| = |B4||2+B|� |B4|(2−|B|) � |B4|.
That means, |h(z)| � | f (z)| for all z ∈ D [notice here that c0 = 0].

If there was a g ∈ H∞
K(B)(D) such that h3 = f g , then we would have

B12 = (2B4 +B5)g = B4(2+B)g.

This implies that g must satisfy (2+B)g = B8 . Also, we know that g is of the
form g(z) = d0 +d4B

4 +d5B
5 +d8B

8 +d9B
9 +d10B

10 +B12ψ , where ψ ∈H∞(D) and
di ∈ C.

That means,

B8 = (2+B)(d0 +d4B
4 +d5B

5 +d8B
8 +d9B

9

+d10B
10 +B12ψ).

Multiplying and collecting terms we get:

B8 = 2d0 +d0B+2d4B
4 +(2d5 +d4)B5 +d5B

6 +2d8B
8

+(2d9 +d8)B9 +(2d10 +d9)B10 +d10B
11 +(2B12 +B13)ψ .
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This is true for all z ∈ D . Hence, each coefficient of the right side should equal zero
except for the coefficient of B8 which equals 1. That is, 0 = d0 = d4 = 2d5 + d4 =
d5 = . . . . What are relevant for our discussion are that 2d8 = 1, i.e., d8 = 1/2, and
2d9 +d8 = 2d10 +d9 = d10 = 0 which implies that d10 = 0 ⇒ d9 = 0 ⇒ d8 = 0. This
creates a contradiction. Thus there is no g in H∞

K(B) such that h3 = f g . �

This proves that the answer to the question asked in [2] is no. However, there are
some algebras for which Theorem 1.2 holds true without the additional condition that
F0 �= 0.

We saw in the proposition that Wolff’s theorem does not necessarily hold if the
constant term F0 is equal to 0 in F(z) = ∑

j/∈K
0� j<kp

B j(z)Fj +Bkp+1(z)Fkp+1(z). However,

in [2] (see the second part of the proof of Theorem 1.1), they made the observation that
if Fj = 0 for all j ∈ K, then the result holds true. We can demonstrate that with the
following example.

EXAMPLE 3.2. Let K = {1,2,3}. We see that H∞
K (D) is an algebra and so is

H∞
K(B)(D). Take

f (z) = B4g, g ∈ H∞(D).

It’s clear that f ∈H∞
K(B)(D). Also, f j = 0 for all j. Let h∈H∞

K(B)(D) such that |h(z)|�
| f (z)| . We know that the general form of h looks like h(z) = h0 + B4 hB(z), hB ∈
H∞(D). However, |h(z)| � | f (z)| implies that h0 = 0. This implies |hB(z)| � |g(z)|.
Hence, by Wolff’s theorem there exists u ∈ H∞(D) such that g(z)u(z) = h3

B(z). Thus,

h3(z) = (B4hB)3 = (B4g(z))(B8u(z)) = f (z)v(z),

where v(z) = B4(B4u(z)) ∈ H∞
K(B)(D).

Note that, for the example above, one may take any set K of the first n natural numbers.
We can actually make an improvement on this result. If there exists kp/2 < j1 <

kp , j1 /∈ K such that Fj = 0 for all j < j1 then Wolff’s theorem holds.

THEOREM 3.3. Let F(z) = ( f1(z), f2(z), . . .)∈H ∞
K(B),n(D) and h(z)∈H∞

K(B)(D) ,

with 1 �
√

(F(z)F(z)∗) � |h(z)| for all z ∈ D . Suppose there exists j1 /∈ K, kp/2 <
j1 < kp such that Fj = 0 whenever j < j1 . Then there exists V (z) = (v1(z),v2(z), . . .)∈
H ∞

K(B),n(D) such that

F(z)V (z)T = h3(z) for all z ∈ D

and

‖V‖∞ �
(

1+
1

‖F(α)‖l2

)(
1+4

√
e+8

√
2e+72e

3
2

)
,

where α is a zero of B(z).
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Proof. Let h(z)= ∑
j/∈K

0� j<kp

B j(z)h j +Bkp+1(z)hkp+1(z), h j ∈C, and hkp+1(z)∈H∞(D) .

Since Fj = 0 for each j < j1 ,

F(z) = ∑
j/∈K

j1� j<kp

B j(z)Fj +Bkp+1(z)Fkp+1(z)

= Bj1(z)

⎡
⎢⎢⎣ ∑

j/∈K
j1� j<kp

B j− j1(z)Fj +Bkp+1− j1(z)Fkp+1(z)

⎤
⎥⎥⎦

= Bj1(z)

⎡
⎢⎢⎣Fj1 +B(z)

⎛
⎜⎜⎝ ∑

j/∈K
j1< j<kp

B j− j1−1(z)Fj +Bkp− j1(z)Fkp+1(z)

⎞
⎟⎟⎠
⎤
⎥⎥⎦ ,

Fj ∈ C
n, Fkp+1(z) ∈ H∞

n (D).

That is,

F(z) = Bj1(z) [Fj1 +B(z)Φ(z)] ,

where Φ(z) = ∑
j/∈K

j1< j<kp

B j− j1−1(z)Fj +Bkp− j1(z)Fkp+1(z) ∈ H∞
n (D).

Thus we have√
(Bj1(z) [Fj1 +B(z)Φ(z)]) (Bj1(z) [Fj1 +B(z)Φ(z)])� � |h(z)|

for all z ∈ D.

That means,

|B(z)| j1
√

(Fj1 +B(z)Φ(z)) (Fj1 +B(z)Φ(z))� � |h(z)|.

Implying h j = 0 for all j < j1 , and this gives us

|B(z)| j1
√

(Fj1 +B(z)Φ(z)) (Fj1 +B(z)Φ(z))�

�

∣∣∣∣∣∣∣∣ ∑
j/∈K

j1� j<kp

B j(z)h j +Bkp+1(z)hkp+1(z)

∣∣∣∣∣∣∣∣
=
∣∣Bj1(z)

∣∣
∣∣∣∣∣∣∣∣ ∑

j/∈K
j1� j<kp

B j− j1(z)h j +Bkp+1− j1(z)hkp+1(z)

∣∣∣∣∣∣∣∣
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=
∣∣Bj1(z)

∣∣
∣∣∣∣∣∣∣∣
h j1 +B(z)

⎡
⎢⎢⎣ ∑

j/∈K
j1< j<kp

B j− j1−1(z)h j +Bkp− j1(z)hkp+1(z)

⎤
⎥⎥⎦
∣∣∣∣∣∣∣∣
.

This implies√
(Fj1 +B(z)Φ(z)) (Fj1 +B(z)Φ(z))�

�

∣∣∣∣∣∣∣∣
h j1 +B(z)

⎡
⎢⎢⎣ ∑

j/∈K
j1< j<kp

B j− j1−1(z)h j +Bkp− j1(z)hkp+1(z)

⎤
⎥⎥⎦
∣∣∣∣∣∣∣∣
.

However, h j1 + B(z)

⎡
⎢⎢⎣ ∑

j/∈K
j1< j<kp

B j− j1−1(z)h j +Bkp− j1(z)hkp+1(z)

⎤
⎥⎥⎦ = h j1 + B(z)ψ(z) is

an element of C+BH∞(D) , where ψ(z) = ∑
j/∈K

j1< j<kp

B j− j1−1(z)h j +Bkp− j1(z)hkp+1(z) .

Also Fj1 +B(z)Φ(z) ∈ C
n +BH∞

n (D) .
By Wolff’s Theorem for C+BH∞(D) , there exists G in C

n +BH∞
n (D) such that

(Fj1 +B(z)Φ(z))G(z)T = (h j1 +B(z)ψ(z))3.

Also, from Theorem 1.1 of [2], we can see that

‖G‖∞ �
(

1+
1

‖F(α)‖l2

)(
1+4

√
e+8

√
2e+72e

3
2

)
,

where α is a zero of B(z).
Multiplying both sides by B3 j1 we get

B3 j1(z)(h j1 +B(z)ψ(z))3 = Bj1(z)(Fj1 +B(z)Φ(z))(B2 j1(z)G(z))T .

Hence,
h3(z) =

[
Bj1(z)(h j1 +B(z)ψ(z))

]3 = F(z)V (z)T ,

where V (z) = B2 j1(z)G(z) ∈ H ∞
K(B),n(D) as it can be expressed as

V (z) = Bkp+1(z)B2 j1−kp−1(z)G(z) ∈ H∞
K(B),n(D),

this is because 2 j1 > np . Moreover, since |B(z)| � 1 on D ,

‖V‖∞ � ‖G‖∞ �
(

1+
1

‖F(α)‖l2

)(
1+4

√
e+8

√
2e+72e

3
2

)
,

where α is a zero of B(z). �
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There are other cases where the conclusions of Wolff’s theorem hold true even
when F0 = 0. To see one of them, let h∈H∞

K(B)(D) such that [F(z)F(z)∗]
1
2 � |h(z)| ∀ z∈

D. Let r be the smallest element of K such that Fr �= 0 . That means, F(z) and h(z)
can be written as F(z) = BrFH(z) and h(z) = BrH(z),FH(z) and H(z) ∈ H∞

K (B)(D),
where

K = {k− r : k ∈ K and k− r > 0}.

The following theorem, due to [2] provides us a case where the Wolff’s theorem
holds true even when F0 = 0 .

THEOREM 3.4. [2, Theorem 1.4] Let F = ( f1, f2, . . .) ∈ H ∞
K(B),n(D) and h ∈

H∞
K(B)(D) , with 1 �

√
F(z)F(z)∗ � |h(z)| ∀ z ∈ D . If H∞

K (D) is a subalgebra of
H∞(D) , then there exists V = (v1,v2, . . .) ∈ H ∞

K(B),n(D) such that

F(z)V (z)T = h3(z) ∀ z ∈ D

EXAMPLE 3.5. We can demonstrate this theorem with the following example. Let
K = {1,3,5, . . . ,2n−1} . Then, H∞

K(B)(D) is an algebra and the elements of H∞
K(B)(D)

are of the form

f = C0 +C2B
2 +C4B

4 · · ·+C2n−2B
2n−2 +B2nΦ

If f0 = 0, then f (z) = B2(C2 +C4B
2 +C6B

4 + · · ·+B2n−2)Φ.

So, the set K associated to K is again going to be the set containing the first
n consecutive odd numbers, i. e., K = {1,3,5, · · ·+ 2n− 3}. That means, the result
holds true for H∞

K(B)(D) without the condition f0 �= 0.

We note that not all subsets K form a subalgebra H∞
K (B)(D). For example, if we

take K = {1,2,5}, H∞
K(B)(D) is an algebra whose elements are of the form f (z) =

c0 + c3B
3 + c4B

4 +B6φ , φ ∈ H∞(D).
If c0 = 0, then f (z) = B3(c3 + c4B+B3φ) . So, the subset K corresponding to

this algebra is f̃ = c3 + c4B+B3φ is K = {2} . As we discussed above, H∞
K (D) is

not an algebra for K = {2} , neither is H∞
K (B)(D) . That means Theorem 3.4 can not

be applied on the subalgebra H∞
K(B)(D) . However, in this particular case, we observe

that j1 = 3 > kp/2, therefore Theorem 3.3 can be applied to get the result we need.
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