(n,k)-QUASI CLASS Q AND (n,k)-QUASI CLASS Q^* WEIGHTED COMPOSITION OPERATORS

NAIM L. BRAHA, ILMI HOXHA AND USEF ESTAREMI

(Communicated by R. Curto)

Abstract. Let T be a bounded linear operator on a complex Hilbert space H. An operator T is called (n,k)-quasi class Q if it satisfies

$$\|T(T^k x)\|^2 \leq \frac{1}{n+1} \left(\|T^{1+n}(T^k x)\|^2 + n\|T^k x\|^2 \right),$$

and (n,k)-quasi class Q^* if it satisfies

$$||T^*(T^kx)||^2 \leq \frac{1}{n+1} \left(||T^{1+n}(T^kx)||^2 + n||T^kx||^2 \right),$$

for all $x \in H$ and for some nonnegative integers n and k.

In this paper, we will be studying the conditions under which composition operators and weighted composition operators on $L^2(\mu)$ spaces become (n,k)-quasi class Q operators and (n,k)-quasi class Q^* operators have been obtained in terms of Radon-Nikodym derivative h_m . Some necessary and sufficient conditions for a composition operator C_{ϕ} on Fock Spaces to be a (n,k)-quasi class Q operators and (n,k)-quasi class Q^* operators and (n,k)-quasi class Q operators.

1. Introduction

Throughout this paper, let H be a complex Hilbert space with inner product $\langle \cdot, \cdot \rangle$. Let L(H) denote the C^* algebra of all bounded operators on H. For $T \in L(H)$, we denote by ker(T) the null space and by T(H) the range of T. The null operator and the identity on H will be denoted by O and I, respectively. If T is an operator, then T^* is its adjoint.

We shall denote the set of all complex numbers by \mathbb{C} , the set of all positive integers by \mathbb{N} and the complex conjugate of a complex number λ by $\overline{\lambda}$. The closure of a set M will be denoted by \overline{M} . An operator $T \in L(H)$ is a positive operator, $T \ge O$, if $\langle Tx, x \rangle \ge 0$ for all $x \in H$.

An operator $T \in L(H)$, is said to be paranormal [9], if $||Tx||^2 \leq ||T^2x||$ for any unit vector x in H. An operator $T \in L(H)$, is said to be *-paranormal [2], if $||T^*x||^2 \leq ||T^2x||$ for any unit vector x in H.

© CENN, Zagreb Paper OaM-16-15

Mathematics subject classification (2020): Primary 47B20; Secondary 47A80, 47B37.

Keywords and phrases: (n,k)-quasi class Q, (n,k)-quasi class Q^* , composition operators, weighted composition, Fock spaces.

Mecheri, [18] introduced a new class of operators called k-quasi paranormal operators. An operator T is called k-quasi paranormal if

$$||T^{k+1}x||^2 \le ||T^{k+2}x|| ||T^kx||,$$

for all $x \in H$, where k is a nonnegative integer number. Hoxha and Braha, [10] introduced a new class of operators called k-quasi-*-paranormal operators. An operator T is called k-quasi-*-paranormal if

$$||T^*T^kx||^2 \le ||T^{k+2}x|| ||T^kx||,$$

for all $x \in H$, where k is a nonnegative integer number.

DEFINITION 1.1. [11] An operator T is said to be of the (n,k)-quasi class Q if

$$||T(T^{k}x)||^{2} \leq \frac{1}{n+1} \left(||T^{1+n}(T^{k}x)||^{2} + n||T^{k}x||^{2} \right),$$

for all $x \in H$ and for some nonnegative integers n and k.

A (1,k)-quasi class Q operator is a k-quasi class Q operator, [13]:

$$||T^{k+1}x||^2 \leq \frac{1}{2} \left(||T^{k+2}x||^2 + ||T^kx||^2 \right);$$

(1,1)-quasi class Q operator is a quasi class Q operator: $||T^2x||^2 \leq \frac{1}{2}(||T^3x||^2 + ||Tx||^2)$; (1,0)-quasi class Q operator is a class Q operator, [7]: $||Tx||^2 \leq \frac{1}{2}(||T^2x||^2 + ||x||^2)$; (n,0)-quasi class Q operator is a *n*-class Q operator, [20]:

$$||Tx||^2 \leq \frac{1}{n+1}(||T^{1+n}x||^2 + n||x||^2).$$

THEOREM 1.2. [11] An operator $T \in L(H)$ is of the (n,k)-quasi class Q, if and only if

$$T^{*k}\left(T^{*(n+1)}T^{n+1} - (n+1)T^*T + nI\right)T^k \ge O_{2}$$

where k and n are nonnegative integer numbers.

An operator $T \in L(H)$ is said to be (n,k)-quasi paranormal operators if

$$||T(T^{k}x)|| \leq ||T^{1+n}(T^{k}x)||^{\frac{1}{1+n}} ||T^{k}x||^{\frac{n}{n+1}},$$

for all $x \in H$, [21].

In [11] the authors have proved the following Lemma:

LEMMA 1.3. If T is an (n,k)-quasi paranormal operator, then T is an (n,k)-quasi class Q operator.

DEFINITION 1.4. [12] An operator $T \in L(H)$ is said to be (n,k)-quasi class Q^* if

$$||T^*(T^kx)||^2 \leq \frac{1}{n+1} \left(||T^{n+1}(T^kx)||^2 + n||T^kx||^2 \right),$$

for all $x \in H$ and for some nonnegative integer numbers n and k.

A (1,k)-quasi class Q^* operator is a k-quasi class Q^* operator, [14]:

$$||T^*(T^kx)||^2 \leq \frac{1}{2} \left(||T^{k+2}x||^2 + ||T^kx||^2 \right);$$

a (1,1)-quasi class Q^* operator is a quasi class Q^* operator: $||T^*(Tx)||^2 \leq \frac{1}{2}(||T^3x||^2 + ||Tx||^2)$; a (1,0)-quasi class Q^* operator is a class Q^* operator: $||T^*x||^2 \leq \frac{1}{2}(||T^2x||^2 + ||x||^2)$; an (n,0)-quasi class Q^* operator is an *n*-class Q^* operator, [20]:

$$||T^*x||^2 \leq \frac{1}{n+1}(||T^{n+1}x||^2 + n||x||^2).$$

THEOREM 1.5. [12] An operator $T \in L(H)$ is of the (n,k)-quasi class Q^* , if and only if

$$T^{*k}\left(T^{*(n+1)}T^{n+1}-(n+1)TT^*+nI\right)T^k \ge O,$$

where k and n are nonnegative integer numbers.

An operator $T \in L(H)$ is said to be (n,k)-quasi-*-paranormal operators if

$$||T^*(T^kx)|| \leq ||T^{n+1}(T^kx)||^{\frac{1}{n+1}} ||T^kx||^{\frac{n}{n+1}}$$

for all $x \in H$ and for some nonnegative integers *n* and *k*, [22].

In [12] the authors have proved the following Lemma:

LEMMA 1.6. If T is an (n,k)-quasi-*-paranormal operator, then T is an (n,k)-quasi class Q^* operator.

Let (X, \mathscr{A}, μ) be a σ -finite measure space. The space $L^2(X, \mathscr{A}, \mu) := L^2(\mu)$ is defined as

$$L^{2}(\mu) = \{f: X \to \mathbb{C} : f \text{ is a measurable function and } \int_{X} |f|^{2} d\mu < \infty \}.$$

A transformation $T: X \to X$ is said to be measurable if $T^{-1}(B) \in \mathscr{A}$ for $B \in \mathscr{A}$. If *T* is a measurable transformation, then T^m is also a measurable transformation for all natural numbers *m*. A measurable transformation *T* is said to be non-singular if $\mu(T^{-1}(B)) = 0$ whenever $\mu(B) = 0$ for every $B \in \mathscr{A}$. Let *T* be a measurable transformation on *X*. The composition operator $C_T: L^2(\mu) \to L^2(\mu)$ is given by $C_T f = f \circ T$ for $f \in L^2(\mu)$. For $m \in \mathbb{N}$ we have

$$C_T^m f = f \circ T^m$$
 for $f \in L^2(\mu)$.

If T is non-singular, then we say that $\mu \circ T^{-1}$ is absolutely continuous with respect to μ . Hence by the Radon-Nikodym theorem exists a unique non-negative essentially bounded measurable function h such that

$$\mu \circ T^{-1}(B) = \int_B h d\mu$$
 for $B \in \mathscr{A}$.

The function *h* is called the Radon-Nikodym derivative and we have $h = h_1 := \frac{d\mu \circ T^{-1}}{d\mu}$. In addition, we assume that *h* is almost everywhere finite valued or equivalently $T^{-1}(\mathscr{A}) \subset \mathscr{A}$ is a sub-sigma finite algebra.

The Radom-Nikodym derivative of the measure $\mu \circ (T^{-1})^m$ with respect to μ is denoted by h_m and we have

$$\mu \circ (T^{-1})^m(B) = \int_B h_m d\mu \text{ for } B \in \mathscr{A} \text{ and } h_m := \frac{d\mu \circ (T^{-1})^m}{d\mu}.$$

It can be seen that

$$h_m = h \cdot h \circ T^{-1} \cdot h \circ T^{-2} \cdot \ldots \cdot h \circ T^{-(m-1)}$$
 and $h_m = h_{m-1} \cdot h \circ T^{-(m-1)}$.

From [4, 16, Lemma 1] we have

$$C_T^* C_T f = hf \text{ and } C_T C_T^* f = (h \circ T) Pf \text{ for all } f \in L^2(\mu),$$
(1.1)

where *P* is the projection from $L^2(\mu)$ onto the closure of the range of the composition operator C_T ,

$$\overline{C_T(L^2(\mu))} = \{ f \in L^2(\mu) : f \text{ is } T^{-1}(\mathscr{A}) \text{ measurable} \}.$$

If $T^{-1}(\mathscr{A}) \subset \mathscr{A}$, there exists an operator $E: L^p(\mathscr{A}) \to L^p(T^{-1}(\mathscr{A}))$ which is called conditional expectation operator. The conditional expectation operator $E(f|T^{-1}(\mathscr{A})) = E(f)$ is defined for each nonnegative function f in $L^p(1 \leq p < \infty)$ and is uniquely determined by the following set of conditions: E(f) is $T^{-1}(\mathscr{A})$ measurable and if B is any $T^{-1}(\mathscr{A})$ measurable set for which $\int_B f d\mu$ converges, then we have

$$\int_B f d\mu = \int_B E(f) d\mu$$

For $m \ge 2$ let $E_m = E(f|T^{-m}(\mathscr{A}))$. The conditional expectation operator E has the following properties:

- 1. E(g) = g if and only if g is $T^{-1}(\mathscr{A})$ measurable, [17].
- 2. If g is $T^{-1}(\mathscr{A})$ measurable, then E(fg) = E(f)g.

3.
$$E(f \cdot g \circ T) = (E(f))(g \circ T)$$
 and $E(E(f)g) = E(f)E(g)$ for $f, g \in L^2(\mu)$

- 4. If $f \leq g$ a.e., then $E(f) \leq E(g)$ a.e., for $f, g \in L^2(\mu)$.
- 5. E(1) = 1, and E is the identity operator in $L^2(\mu)$ if and only if $T^{-1}(\mathscr{A}) = \mathscr{A}$.

- 6. E(f) has the form $E(f) = g \circ T$ for exactly one \mathscr{A} -measurable function g provided that the support of g lies in the support of h which is given by $\sigma(h) = \{x : h(x) \neq 0\}$.
- 7. *E* is the projection operator from $L^2(\mu)$ onto $\overline{C_T(L^2(\mu))}$. So, as an operator on $L^2(\mu)$, *E* is the projection *P* used in relation (1.1), [4].

A detailed discussion and verification of most of these properties may be found in [19].

The adjoint C_T^* of C_T is given by $C_T^* f = hE(f) \circ T^{-1}$, [4]. For $m \in \mathbb{N}$ and for $f \in L^2(\mu)$, we have

$$C_T^{*m}f = h_m E(f) \circ T^{-m}.$$

2. On (n,k)-quasi class Q and (n,k)-quasi class Q^* composition operators on $L^2(\mu)$ space

THEOREM 2.1. Let C_T be the composition operator induced by T on $L^2(\mu)$. Then, the following statements are equivalent:

1. The operator C_T is of (n,k)-quasi class Q

2.

$$h_{n+k+1} - (n+1)h_{k+1} + nh_k \ge 0.$$
(2.1)

Proof. Let C_T be the composition operator induced by T on $L^2(\mu)$. By Theorem 1.2, the operator C_T is of (n,k)-quasi class Q if and only if

$$\left\langle C_T^{*(n+k+1)} C_T^{n+k+1} f - (n+1) C_T^{*(k+1)} C_T^{k+1} f + n C_T^{*k} C_T^k f, f \right\rangle \ge 0.$$
 (2.2)

For every $f \in L^2(\mu)$, we have

$$C_T^{*(n+k+1)}C_T^{n+k+1}f = C_T^{*(n+k+1)}(f \circ T^{n+k+1})$$

= $h_{n+k+1}E(f \circ T^{n+k+1}) \circ T^{-(n+k+1)} = h_{n+k+1}f.$ (2.3)

From above relation and relation (2.2) we have

 $\langle h_{n+k+1}f-(n+1)h_{k+1}f+nh_kf,f\rangle \geqslant O.$

Hence, relation (2.1) is proved. \Box

THEOREM 2.2. Let C_T be the composition operator induced by T on $L^2(\mu)$. Then, the following statement are uquivalent:

1. Operator C_T^* is of (n,k)-quasi class Q

2.

$$h_{n+k+1} \circ T^{(n+k+1)} - (n+1)h_{k+1} \circ T^{(k+1)} + nh_k \circ T^k \ge 0.$$
(2.4)

Proof. Let C_T be the composition operator induced by T on $L^2(\mu)$. By Theorem 1.2, the operator C_T^* is of (n,k)-quasi class Q if and only if

$$\left\langle C_T^{n+k+1}C_T^{*(n+k+1)}f - (n+1)C_T^{k+1}C_T^{*(k+1)}f + nC_T^kC_T^{*k}f, f \right\rangle \ge 0.$$
 (2.5)

For every $f \in L^2(\mu)$, we have

$$C_T^{n+k+1}C_T^{*(n+k+1)}f = C_T^{n+k+1}\left(h_{n+k+1}E(f) \circ T^{-(n+k+1)}\right)$$
(2.6)

$$= \left(h_{n+k+1} \circ T^{(n+k+1)} E(f) \circ T^{-(n+k+1)}\right) \circ T^{n+k+1}$$
 (2.7)

$$= h_{n+k+1} \cdot \circ T^{(n+k+1)} E(f).$$
(2.8)

Let $u_{h,T} = h_{n+k+1} \circ T^{n+k+1} - (n+1)h_{k+1} \circ T^{k+1} + nh_k \circ T^k$. Since $u_{h,T}$ is a $T^{-1}(\Sigma)$ -measurable function, then *E* commutes with $M_{u_{h,T}}$. Also, we know that *E* is a positive operator. By these observations and the relation (2.5) we have

$$\langle u_{h,T}.f,f\rangle \ge O_{f}$$

and we have proved relation (2.4). \Box

THEOREM 2.3. Let C_T be the composition operator induced by T on $L^2(\mu)$. Then, the following statement are equivalent:

1. Operator C_T is of (n,k)-quasi class Q^*

2.

$$h_{n+k+1} - (n+1)h_k \cdot h \circ T^{1-k} + nh_k \ge 0.$$
(2.9)

Proof. By Theorem 1.5, the operator C_T is of (n,k)-quasi class Q^* if and only if

$$\left\langle C_T^{*(n+k+1)} C_T^{n+k+1} f - (n+1) C_T^{*k} (C_T C_T^*) C_T^k f + n C_T^{*k} C_T^k f, f \right\rangle \ge 0.$$
 (2.10)

For every $f \in L^2(\mu)$, we have

$$C_T^{*k}(C_T C_T^*) C_T^k f = C_T^{*k}(C_T C_T^*) (f \circ T^k) = C_T^{*k}(h \circ T) E(f \circ T^k)$$
$$= h_k E\left((h \circ T) E(f \circ T^k)\right) \circ T^{-k}$$
$$= h_k E(h \circ T) \circ T^{-k} f$$
$$= h_k \cdot h \circ T^{1-k} \cdot f.$$

From above relation and relation (2.3) we get

$$\left\langle h_{n+k+1}f - (n+1)h_k \cdot h \circ T^{1-k} \cdot f + n \cdot h_k f, f \right\rangle \ge O.$$

This proves relation (2.9). \Box

THEOREM 2.4. Let C_T be the composition operator induced by T on $L^2(\mu)$. Then, the following statement are equivalent:

1. Operator C_T^* is of (n,k)-quasi class Q^*

2.

$$h_{n+k+1} \circ T^{n+k+1} - (n+1)h \circ T^k \cdot h_k \circ T^k + nh_k \circ T^k \ge 0.$$
 (2.11)

Proof. The operator C_T^* is of (n,k)-quasi class Q^* if and only if

$$\left\langle C_T^{n+k+1} C_T^{*(n+k+1)} f - (n+1) C_T^k (C_T^* C_T) C_T^{*k} f + n C_T^k C_T^{*k} f, f \right\rangle \ge 0.$$
 (2.12)

For every $f \in L^2(\mu)$, we have

$$C_T^k (C_T^* C_T) C_T^{*k} f = C_T^k (C_T^* C_T) \left(h_k E(f) \circ T^{-k} \right)$$
$$= C_T^k (h \cdot h_k E(f) \circ T^{-k})$$
$$= h \circ T^k \cdot h_k \circ T^k \cdot E(f).$$

By the same reasons that we mentioned in the proof of Theorem 2.2 and the relation (2.8) we obtain

$$\left\langle h_{n+k+1} \circ T^{n+k+1} \cdot f - (n+1)h \circ T^k \cdot h_k \circ T^k \cdot f + nh_k \circ T^k \cdot f, f \right\rangle \ge O. \quad \Box$$

3. On (n,k)-quasi class Q and (n,k)-quasi class Q^* weighted composition operators on $L^2(\mu)$ space

Let (X, \mathscr{A}, μ) be a σ -finite measure space and let u be a complex-valued measurable function. Then the weighted composition operator $W_{u,T}$ on the space $L^2(\mu)$ induced by u and a measurable transformation T is given by

$$W_{u,T}f = Wf = u \cdot f \circ T$$
 for $f \in L^2(\mu)$,

and we have $W^m f = u_m \cdot f \circ T^m$ where *m* is any number natural and

$$u_m = u \cdot u \circ T \cdot u \circ T^2 \cdot \ldots \cdot u \circ T^{(m-1)}$$
 and $u_m = u_{m-1} \cdot u \circ T^{(m-1)}$.

The adjoint W^* of W is given by $W^*f = h \cdot E(\overline{u} \cdot f) \circ T^{-1}$, and $f \in L^2(\mu)$, we have

- 1. $W^{*m}f = h_m E(u_m f) \circ T^{-m};$
- 2. $(W^*W)f = W^*(Wf) = W^*(uf \circ T) = hE(\overline{u}u \cdot f \circ T) \circ T^{-1} = hE(|u|^2) \circ T^{-1}f = Jf;$
- 3. $(WW^*)f = W(hE(\overline{u} \cdot f) \circ T^{-1}) = (uh \cdot E(\overline{u}f) \circ T^{-1}) \circ T = u(h \circ T)E(\overline{u}f);$
- 4. $W^{*m}W^mf = h_m E(|u_m|^2) \circ T^{-m}f;$
- 5. $W^m W^{*m} f = u_m (h_m \circ T^m) E(u_m f);$

where $J_m = h_m E(|u_m|^2) \circ T^{-m}$ ($J_1 = J$) and *m* is a natural number, (see [5], [8], [15]).

THEOREM 3.1. Let W be a weighted composition operator on $L^2(\mu)$. Then, W is an (n,k)-quasi class Q operator if and only if

$$J_{n+k+1} \cdot f - (n+1)J_{k+1} \cdot f + n \cdot J_k \cdot f \ge 0.$$

$$(3.1)$$

Proof. By Theorem 1.2, the operator W is of (n,k)-quasi class Q if and only if

$$\langle (W^{*(n+k+1)}W^{n+k+1} - (n+1)W^{*(k+1)}W^{k+1} + nW^{*k}W^k)f, f \rangle \ge 0.$$
(3.2)

For every $f \in L^2(\mu)$ we have

$$W^{*(n+k+1)}W^{n+k+1}f = J_{n+k+1} \cdot f.$$
(3.3)

From relations (3.1) and (3.2) we get

$$\langle J_{n+k+1} \cdot f - (n+1)J_{k+1} \cdot f + n \cdot J_k \cdot f, f \rangle \ge O.$$

Hence, it is proved relation (3.1).

THEOREM 3.2. Let W be a weighted composition operator on $L^2(\mu)$. Then, W^{*} is an (n,k)-quasi class Q operator if and only if

$$\langle u_{n+k+1}h_{n+k+1} \circ T^{n+k+1}E(u_{n+k+1}f) - (n+1)u_{k+1}h_{k+1} \circ T^{k+1}E(u_{k+1}f) + nu_kh_k \circ T^kE(u_kf), f \rangle \ge O.$$
(3.4)

Proof. By Theorem 1.2, the operator W^* is of (n,k)-quasi class Q if and only if

$$\langle (W^{n+k+1}W^{*(n+k+1)} - (n+1)W^{k+1}W^{*(k+1)} + nW^kW^{*k})f, f \rangle \ge O.$$
(3.5)

For every $f \in L^2(\mu)$ we have

$$W^{n+k+1}W^{*(n+k+1)}f = u_{n+k+1} \cdot h_{n+k+1} \circ T^{n+k+1} \cdot E(u_{n+k+1} \cdot f)$$
(3.6)

From relations (3.6) and (3.5) we obtain

$$\langle u_{n+k+1}h_{n+k+1} \circ T^{n+k+1}E(u_{n+k+1}f) - (n+1)u_{k+1}h_{k+1} \circ T^{k+1}E(u_{k+1}f) \\ + nu_kh_k \circ T^kE(u_kf), f \rangle \ge O,$$

and this proves relation (3.2).

THEOREM 3.3. Let W be a weighted composition operator on $L^2(\mu)$. Then, W is an (n,k)-quasi class Q^* operator if and only if

$$\langle J_{n+k+1} \cdot f - (n+1)h_k \cdot |E(\bar{u}u_k)|^2 \circ T^{-k} \cdot h \circ T^{1-k}f + n \cdot J_k \cdot f, f \rangle \ge 0.$$
(3.7)

Proof. The operator W is of (n,k)-quasi class Q^* if and only if

$$\langle (W^{*(n+k+1)}W^{n+k+1} - (n+1)W^{*k}(WW^*)W^k + nW^{*k}W^k)f, f \rangle \ge O.$$
(3.8)

For every $f \in L^2(\mu)$ we have

$$W^{*k}(WW^*)W^k f = W^{*k}(WW^*)(u_k \cdot f \circ T^k)$$

= $W^{*k}(u(h \circ T)E(\overline{u} \cdot u_k \cdot f \circ T^k))$
= $h_k \cdot |E(\overline{u}u_k)|^2 \circ T^{-k} \cdot h \circ T^{1-k}f.$ (3.9)

Now our result follows from relations (3.8) and relation (3.9).

THEOREM 3.4. Let W be a weighted composition operator on $L^2(\mu)$. Then, W^{*} is an (n,k)-quasi class Q^* operator if and only if

$$\langle u_{n+k+1} \cdot h_{n+k+1} \circ T^{n+k+1} E(\overline{u}_{n+k+1}.f) - (n+1)u_k J \circ T^k h_k \circ T^k E(\overline{u}_k.f) + nu_k \cdot h_k \circ T^k E(\overline{u}_k.f), f \rangle \ge O.$$

$$(3.10)$$

Proof. The operator W^* is of (n,k)-quasi class Q^* if and only if

$$\langle (W^{n+k+1}W^{*(n+k+1)} - (n+1)W^k(W^*W)W^{*k} + nW^kW^{*k})f, f \rangle \ge O.$$
(3.11)

For every $f \in L^2(\mu)$ we have

$$W^{k}(W^{*}W)W^{*k}f = W^{k}(W^{*}W)\left(h_{k}E(u_{k}f)\circ T^{-k}\right)$$

= $W^{k}(Jh_{k}E(u_{k}f)\circ T^{-k})$
= $u_{k}J\circ T^{k}h_{k}\circ T^{k}E(\bar{u}_{k}.f).$ (3.12)

From relations (3.6) and relation (3.12) we get

$$\langle u_{n+k+1} \cdot h_{n+k+1} \circ T^{n+k+1} E(\overline{u}_{n+k+1}.f) - (n+1)u_k J \circ T^k h_k \circ T^k E(\overline{u}_k.f) + nu_k \cdot h_k \circ T^k E(\overline{u}_k.f), f \rangle \ge O. \quad \Box$$

In what follows we will give a necessary and sufficient condition for operator *W* to be an (n,k)-quasi class *Q* operator, using into consideration support of the measurable function *u*, which we denote by $\sigma(u) = \{x \in X : u(x) \neq 0\}$ and expectation. As it is known, for every $f \in L^2$, $\int_X |E(f)|^2 d\mu \leq \int_X |f|^2 d\mu$ and $\sigma(f) \subseteq \sigma(|f|)$.

LEMMA 3.5. (see [3]) Let α and β be non-negative functions. Then the following condition are equivalent:

1. For every $f \in L^2(\mu)$,

$$\int\limits_X \alpha |f|^2 d\mu \geqslant \int\limits_X |E(\beta f)|^2 d\mu;$$

2.
$$\sigma(\beta) \subset \sigma(\alpha)$$
 and $E\left(\frac{\beta^2}{\alpha}\chi_{\sigma(\alpha)}\right) \leq 1$ almost everywhere.

THEOREM 3.6. Let W be a weighted composition operator on $L^2(\mu)$. If W is an (n,k)-quasi class Q operator, then

$$\sigma\left(J_{k+1}^{\frac{1}{2}}\right) \subset \sigma\left(J_{n+k+1}+nJ_{k}\right)$$

and

$$E\left(\frac{J_{k+1}}{J_{n+k+1}+nJ_k}\chi_{J_{n+k+1}+nJ_k}\right)\leqslant 1.$$

Proof. For every $f \in L^2(\mu)$, W is an (n,k)-quasi class Q operator if

$$\langle (W^{*(n+k+1)}W^{n+k+1} - (n+1)W^{*(k+1)}W^{k+1} + nW^{*k}W^k)f, f \rangle \ge O.$$

Respectively

$$\langle (W^{*(n+k+1)}W^{n+k+1} + nW^{*k}W^k)f, f \rangle \ge \langle (n+1)W^{*(k+1)}W^{k+1}f, f \rangle.$$

By definition we get

$$\langle W^{*(n+k+1)}W^{n+k+1}f,f\rangle = \int_X J_{n+k+1}|f|^2 d\mu.$$
 (3.13)

On the other hand

$$\langle (n+1)W^{*(k+1)}W^{k+1}f, f \rangle = (n+1)\int_{X} J_{k+1}|f|^{2}d\mu$$

$$\geq \int_{X} J_{k+1}|E(f)|^{2}d\mu = \int_{X} |E(J_{k+1}^{\frac{1}{2}}f)|^{2}d\mu.$$
(3.14)

From relations (3.13), (3.14) and Lemma 3.5, we obtain that if W is an (n,k)-quasi class Q operator, then

$$\sigma\left(J_{k+1}^{\frac{1}{2}}\right) \subset \sigma\left(J_{n+k+1}+nJ_{k}\right)$$

and

$$E\left(\frac{J_{k+1}}{J_{n+k+1}+nJ_k}\chi_{J_{n+k+1}+nJ_k}\right)\leqslant 1.$$

THEOREM 3.7. Let W be a weighted composition operator on $L^2(\mu)$. If W is an (n,k)-quasi class Q^* operator, then

$$\sigma\left(s_k^{\frac{1}{2}}h^{\frac{1}{2}}\circ T^{1-k}\right)\subset\sigma\left(J_{n+k+1}+nJ_k\right)$$

and $E\left(\frac{s_kh\circ T^{1-k}}{J_{n+k+1}+nJ_k}\chi_{J_{n+k+1}+nJ_k}\right) \leqslant 1.$

Proof. For every $f \in L^2(\mu)$, *W* is an (n,k)-quasi class Q^* operator if and only if

$$\langle (W^{*(n+k+1)}W^{n+k+1} - (n+1)W^{*k}(WW^{*})W^{k} + nW^{*k}W^{k})f, f \rangle \ge O.$$
(3.15)

Respectively

$$\langle (W^{*(n+k+1)}W^{n+k+1} + nW^{*k}W^k)f, f \rangle \geqslant \langle (n+1)W^{*k}(WW^*)W^kf, f \rangle$$

By definition we get

$$\langle W^{*(n+k+1)}W^{n+k+1}f,f\rangle = \int_X h_{n+k+1} \cdot u_{n+k+1}^2 |f|^2 d\mu.$$
 (3.16)

On the other hand

$$\begin{split} \langle (n+1)W^{*k}(WW^*)W^k f, f \rangle &= (n+1)\int_X h_k \cdot |E(\bar{u}u_k)|^2 \circ T^{-k} \cdot h \circ T^{1-k} f \overline{f} d\mu \\ &\geqslant (n+1)\int_X |E(s_k^{\frac{1}{2}}h^{\frac{1}{2}} \circ T^{1-k} f)|^2 d\mu \\ &\geqslant \int_X |E(s_k^{\frac{1}{2}}h^{\frac{1}{2}} \circ T^{1-k} f)|^2 d\mu, \end{split}$$

in which $s_k = h_k \cdot |E(\bar{u}u_k)|^2 \circ T^{-k}$. By these observations we get that if W is an (n,k)-quasi class Q^* operator, then

$$\sigma\left(s_k^{\frac{1}{2}}h^{\frac{1}{2}}\circ T^{1-k}\right)\subset\sigma\left(J_{n+k+1}+nJ_k\right)$$

and $E\left(\frac{s_kh\circ T^{1-k}}{J_{n+k+1}+nJ_k}\chi_{J_{n+k+1}+nJ_k}\right) \leqslant 1.$

Recall that the Althuge transformation of operator $A \in L(h)$, is the operator \widetilde{A} defined as follows: $\widetilde{A} = |A|^{\frac{1}{2}}U|A|^{\frac{1}{2}}$. And for $0 < r \leq 1$, it is defined $\widetilde{A}_r = |A|^r U|A|^{1-r}$. In the next result we describe the (n,k)-quasi class Q operators via Althuge transformation.

THEOREM 3.8. Let T = U|T| be the polar decomposition of the operator T, and $\widetilde{T} = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$. If $|\widetilde{T}| \ge |T|$, then T is an (n,k)-quasi class Q operator.

Proof. From given conditions and Theorem 2.2 in [1] it follows that T is an paranormal operator. Every paranormal operator is n-paranormal operator and it is (n,k)-quasiparanormal operator ([21]). From Lemma 1.3 it follows that T is an (n,k)-quasi class Q operator. \Box

THEOREM 3.9. Let T = U|T| be the polar decomposition of the operator T, and $\widetilde{T} = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$. If $\|\widetilde{T}^{\frac{1}{2}}|T|^{\frac{1}{2}}x\| \ge |||T|x||^2 \cdot ||T^*x||^2$, then T is an (n,k)-quasi class Q^* operator.

Proof. First we prove that under given condition operator T is *-paranormal. For this we start from

$$||T^{2}x|| = |||T||Tx|| \ge |||T|^{\frac{1}{2}}Tx||^{2} \cdot ||Tx||^{-1}; \text{ from Lemma 2.1 in [1]}$$

$$= ||\widetilde{T}||T|^{\frac{1}{2}}x||^{2} \cdot ||Tx||^{-1}$$

$$= |||\widetilde{T}||T|^{\frac{1}{2}}x||^{2} \cdot ||T||^{-1}$$

$$\ge |||\widetilde{T}|^{\frac{1}{2}}|T|^{\frac{1}{2}}x||^{2} \cdot |||T||x||^{-1} \cdot ||Tx||^{-1}$$

$$\ge |||T||^{2} \cdot ||T^{*}x||^{2} \cdot |||T||x||^{-1} \cdot ||Tx||^{-1}$$

$$= ||T^{*}x||^{2}.$$

Every *-paranormal operator is n-*-paranormal operator and it is (n,k)-*-quasiparanormal operator ([22]). From Lemma 1.6 it follows that T is an (n,k)-quasi class Q^* operator. \Box

In [3], are described the properties of the composition operators via Althuge transformation.

LEMMA 3.10. For a weighted composition operator W we have the following entities:

$$W_r f = \omega_r \cdot f \circ T, |W_r| f = \sqrt{h[E(\omega_r^2)] \circ T^{-1} f}$$

and

$$|W_r^*|f = P_{v_r}f = v_r E(v_r f),$$

where $\omega_r = u \left(\frac{J_{\chi_{\sigma(E(u))}}}{h \circ TE(u^2)} \right)^{\frac{r}{2}}$, and $v_r = \frac{\omega_r \sqrt{h \circ T}}{\sqrt[4]{E([\omega_r \sqrt{h \circ T}]^2)}}$.

The next results characterized that W_r is an (n,k)-quasi class Q operator, via Althuge transformation.

THEOREM 3.11. Let W be a weighted composition operator in $L^2(\mu)$. Then $|W_r| \ge |W|$ if and only if $E(\omega_r^2) \ge E(u^2)$.

Proof. Proof of the Theorem follows directly from the above facts. \Box

OPEN PROBLEM. The authors didn't know how to describe the weighted composition operator W_r , to be an (n,k)-quasi class Q^* operator, via Althuge transformation.

4. Examples

EXAMPLE 4.1. Let $X = [0, \pi]$, $d\mu = dx$ and Σ be the Lebesgue sets. Define the non-singular transformation $\varphi : X \to X$ by

$$\varphi(x) = \begin{cases} 2x & x \in [0, \frac{\pi}{2}];\\ 2x - 1 & x \in (\frac{\pi}{2}, 1], \end{cases}$$

Easily we get that h(x) = 1 and so $h_m(x) = 1$, for each m > 0. Thus C_{φ} is a bounded composition operator on $L^2(\Sigma)$. And so by Theorems 2.1, 2.2, 2.3 and 2.4 we get that C_{φ} and C_{φ}^* are of (n,k)-quasi class Q and (n,k)-quasi class Q^* , for all $n, k \in \mathbb{N}$.

Moreover, for each $0 \leq a < b \leq 1$ and $f \in L^2(\Sigma)$ we have

$$\int_{\varphi_1^{-1}(a,b)} f(x)dx = \int_{\frac{a}{2}}^{\frac{b}{2}} f(x)dx + \int_{\frac{a+1}{2}}^{\frac{b+1}{2}} f(x)dx$$
$$= \int_{(a,b)} \frac{1}{2} \left\{ f\left(\frac{x}{2}\right) + f\left(\frac{1+x}{2}\right) \right\} dx.$$

Hence

$$(E(f)\circ\varphi_1^{-1})(x) = \frac{1}{2}\left\{f\left(\frac{x}{2}\right) + f\left(\frac{1+x}{2}\right)\right\},\$$

It follows that

$$E(f)(x) = \frac{1}{2} \left\{ f(x) + f\left(\frac{1+2x}{2}\right) \right\} \chi_{[0,\frac{\pi}{2}]} + \frac{1}{2} \left\{ f\left(\frac{2x-1}{2}\right) + f(x) \right\} \chi_{[\frac{\pi}{2},1]}.$$

Let

$$u(x) = \begin{cases} \sin(x) & x \in [0, \frac{\pi}{2}];\\ \sin(x - \frac{\pi}{2}) & x \in (\frac{\pi}{2}, 1], \end{cases}$$

Direct computations show that u is $\varphi^{-1}(\Sigma)$ -measurable. Since h = 1, then we have $h_m = 1$. Consequently, we get that $J_m(x) = u_m^2 \circ T^{-m}$. Therefore by Theorem 3.1, we have that $W = uC_{\varphi}$ is an (n,k)-quasi class Q operator if and only if

$$u_{n+k+1}^2 \circ T^{-(n+k+1)} \cdot f - (n+1)u_{k+1}^2 \circ T^{-(k+1)} \cdot f + n \cdot u_k^2 \circ T^{-k} \cdot f \geqslant O.$$

Also, by Theorem 3.3 we get that W is an (n,k)-quasi class Q^* operator if and only if

$$\langle u_{n+k+1}^2 \circ T^{-(n+k+1)} \cdot f - (n+1) \cdot |u|^2 \circ T^{-k} \cdot |u_k|^2 \circ T^{-k} \cdot f + n \cdot u_k^2 \circ T^{-k} \cdot f, f \rangle \ge O.$$

EXAMPLE 4.2. Let X = [0,1], $d\mu = dx$ and Σ be the Lebesgue sets. Define the non-singular transformation $\varphi : X \to X$ by

$$\varphi(x) = \begin{cases} 1 - 2x \ x \in [0, \frac{1}{2}];\\ 2x - 1 \ x \in (\frac{1}{2}, 1]. \end{cases}$$

It is easy to see that h(x) = 1 and similar to example 4.1 we get that

$$\int_{\varphi^{-1}(a,b)} f(x)dx = \int_{\frac{1-b}{2}}^{\frac{1-a}{2}} f(x)dx + \int_{\frac{a+1}{2}}^{\frac{b+1}{2}} f(x)dx = \int_{(a,b)} \frac{1}{2} \left\{ f\left(\frac{1-x}{2}\right) + f\left(\frac{1+x}{2}\right) \right\} dx.$$

Hence we have

$$(E(f) \circ \varphi_2^{-1})(x) = \frac{1}{2} \left\{ f\left(\frac{1-x}{2}\right) + f\left(\frac{1+x}{2}\right) \right\}.$$

And so

$$E(f)(x) = \frac{1}{2} \{ f(x) + f(1-x) \} \chi_{[0,\frac{1}{2}]} + \frac{1}{2} \{ f(-x) + f(x) \} \chi_{(\frac{1}{2},1]}$$

If we put $u(x) = 4(x + \frac{1}{2})$, then we have

$$J(x) = 2\{(2+x)^2 + (2-x)^2\}.$$

The operator W^* , by Theorem 3.2 is an (n,k)-quasi class Q operator if and only if

$$\langle u_{n+k+1}h_{n+k+1} \circ T^{n+k+1}E(u_{n+k+1}f) - (n+1)u_{k+1}h_{k+1} \circ T^{k+1}E(u_{k+1}f) + nu_kh_k \circ T^kE(u_kf), f \rangle \ge O.$$

And W^* , by Theorem 3.4 is an (n,k)-quasi class Q^* operator if and only if

$$\begin{aligned} \langle u_{n+k+1} \cdot h_{n+k+1} \circ T^{n+k+1} E(\overline{u}_{n+k+1}.f) - (n+1)u_k J \circ T^k h_k \circ T^k E(\overline{u}_k.f) \\ + nu_k \cdot h_k \circ T^k E(\overline{u}_k.f), f \rangle \geqslant O. \end{aligned}$$

EXAMPLE 4.3. Let X = (0, a], $d\mu = dx$ and Σ be the Lebesgue sets. Define the non-singular transformation $\varphi : X \to X$ by $\varphi(x) = e^x$. Since $\varphi^{-1}(x) = \ln(x)$, then $h(x) = \frac{1}{x}$. Hence $\varphi^{-m}(x) = \ln \circ \ln \circ \ln \circ \ldots \circ \ln(x)$, m times, $h_2(x) = \frac{1}{x \ln(x)}$ and $h_3(x) = \frac{1}{x \ln(x) \cdot \ln \circ \ln(x)} = \frac{1}{x \ln(x) \cdot \varphi^{-2}(x)}$. And so by induction we get that $h_m(x) = \frac{1}{x \ln(x) \cdot \varphi^{-m+1}(x)}$. Moreover, $\varphi^{-1}(\Sigma) = \Sigma$ and therefore E = I (identity operator). This implies that

$$J_m(x) = \frac{1}{x \cdot \ln(x) \cdot \varphi^{-m+1}(x)} |u_m| \circ \varphi^{-m}(x).$$

Therefore by Theorem 3.1, we have that $W = uC_{\varphi}$ is an (n,k)-quasi class Q operator if and only if

$$u_{n+k+1}^2 \circ T^{-(n+k+1)} \cdot f - (n+1)u_{k+1}^2 \circ T^{-(k+1)} \cdot f + n \cdot u_k^2 \circ T^{-k} \cdot f \ge O.$$

Also, by Theorem 3.3 we get that W is an (n,k)-quasi class Q^* operator if and only if

$$\langle u_{n+k+1}^2 \circ T^{-(n+k+1)} \cdot f - (n+1) \cdot |u|^2 \circ T^{-k} \cdot |u_k|^2 \circ T^{-k} \cdot f + n \cdot u_k^2 \circ T^{-k} \cdot f, f \rangle \ge O.$$

The operator W^* , by Theorem 3.2 is an (n,k)-quasi class Q operator if and only if

$$\langle u_{n+k+1}h_{n+k+1} \circ T^{n+k+1}E(u_{n+k+1}f) - (n+1)u_{k+1}h_{k+1} \circ T^{k+1}E(u_{k+1}f) + nu_kh_k \circ T^kE(u_kf), f \rangle \ge O.$$

And W^* , by Theorem 3.4 is an (n,k)-quasi class Q^* operator if and only if

$$\begin{aligned} \langle u_{n+k+1} \cdot h_{n+k+1} \circ T^{n+k+1} E(\overline{u}_{n+k+1}.f) - (n+1)u_k J \circ T^k h_k \circ T^k E(\overline{u}_k.f) \\ + nu_k \cdot h_k \circ T^k E(\overline{u}_k.f), f \rangle \geqslant O. \end{aligned}$$

5. On (n,k)-quasi class Q and (n,k)-quasi class Q^* composition on Fock-spaces

Let $z = (z_1, z_2, ..., z_m)$ and $w = (w_1, w_2, ..., w_m)$ be point in \mathbb{C}^m , $\langle z, w \rangle = \sum_{k=1}^m z_k \overline{w_k}$ and $|z| = \sqrt{\langle z, z \rangle}$. The Fock space \mathscr{F}_m^2 is the Hilbert space of all holomorphic functions on \mathbb{C}^m (entire functions) with inner product

$$\langle f,g\rangle = \frac{1}{(2\pi)^m} \int_{\mathbb{C}^m} f(z)\overline{g(z)}e^{-\frac{1}{2}|z|^2} dA(z),$$

here dA(z) denotes Lebesgue measure on \mathbb{C}^m , and $\frac{1}{(2\pi)^m}e^{-\frac{1}{2}|z|^2}dA(z)$ is called Gaussian measure on \mathbb{C}^m . The sequence $\{e_m = \sqrt{\frac{1}{m!}z^m}\}_{m\in\mathbb{N}}$ forms an orthonormal basis for \mathscr{F}_m^2 .

Since each point evaluation is a bounded linear functional on \mathscr{F}_m^2 , for each $w \in \mathbb{C}^m$ there exists a unique function $u_w \in \mathscr{F}_m^2$ such that $\langle f, u_w \rangle = f(w)$ for all $f \in \mathscr{F}_m^2$. The reproducing kernel functions for the Fock space are given by $u_w(z) = e^{\frac{\langle z, w \rangle}{2}}$ and $||u_w|| = e^{\frac{|w|^2}{4}}$.

For a given holomorphic mapping $\phi : \mathbb{C}^m \mapsto \mathbb{C}^m$, the composition operator $C_{\phi} : \mathscr{F}_m^2 \mapsto \mathscr{F}_m^2$ is given by $C_{\phi}(f) = f \circ \phi$, $f \in \mathscr{F}_m^2$, so $(C_{\phi}f)(z) = f(\phi(z))$. The multiplication operator M_u induced by an entire function u on \mathscr{F}_m^2 is defined as $M_u f(z) = u(z)f(z)$ for an entire function f.

LEMMA 5.1. [6, Lemma 2] If f(z) = Az + B, where A is an $m \times m$ matrix with $||A|| \leq 1$ and B is an $m \times 1$ vector and if $\langle A\xi, B \rangle = 0$ whenever $|A\xi| = |\xi|$ then $C_{\phi}^* = M_{u_b}C_{\tau}$, where $\tau(z) = A^*z$ and M_{u_b} is the multiplication by the kernel function u_b .

THEOREM 5.2. A composition operator C_{ϕ} is an (n,k)-quasi class Q operator on \mathscr{F}_m^2 if and only if

$$M_{u_{k} \circ \tau^{k}} \dots M_{u_{k} \circ \tau^{n+k}} C_{\phi^{n+k+1} \circ \tau^{n+k+1}} - (n+1) M_{u_{k} \circ \tau^{k}} C_{\phi^{k+1} \circ \tau^{k+1}} + n C_{\phi^{k} \circ \tau^{k}} \ge 0.$$

Proof. A composition operator C_{ϕ} is an (n,k)-quasi class Q operator on \mathscr{F}_m^2 if and only if

$$C_{\phi}^{*(n+k+1)}C_{\phi}^{n+k+1} - (n+1)C_{\phi}^{*(k+1)}C_{\phi}^{k+1} + nC_{\phi}^{*k}C_{\phi}^{k} \ge O.$$
(5.1)

By Lemma 5.1 we have

$$C_{\phi}^{*(n+k)}(C_{\phi}^{*}C_{\phi})C_{\phi}^{n+k} = C_{\phi}^{*(n+k)}((M_{u_{b}}C_{\tau})C_{\phi})C_{\phi}^{n+k}.$$

Since $C_{\phi}C_{\tau} = C_{\tau \circ \phi}$ we have

$$C_{\phi}^{*(n+k)}(C_{\phi}^{*}C_{\phi})C_{\phi}^{n+k} = C_{\phi}^{*(n+k)}(M_{u_{b}}C_{\phi\circ\tau})C_{\phi}^{n+k} = C_{\phi}^{*(n+k)}(M_{u_{b}}C_{\phi^{n+k+1}\circ\tau}).$$

Again by using into consideration Lemma 5.1, we obtain

$$C_{\phi}^{*(n+k)}(C_{\phi}^{*}C_{\phi})C_{\phi}^{n+k} = C_{\phi}^{*(n+k-1)}M_{u_{b}}C_{\tau}(M_{u_{b}}C_{\phi^{n+k+1}\circ\tau}).$$

Since

$$C_{\tau}M_{u_b} = M_{u_b \circ \tau}C_{\tau}$$

then

$$C_{\phi}^{*(n+k)}(C_{\phi}^{*}C_{\phi})C_{\phi}^{n+k} = C_{\phi}^{*(n+k-1)}M_{u_{b}}M_{u_{b}\circ\tau}C_{\phi^{n+k+1}\circ\tau^{2}}.$$

Continuing this way we obtain

$$C_{\phi}^{*(n+k+1)}C_{\phi}^{n+k+1} = M_{u_b}M_{u_b\circ\tau}\dots M_{u_b\circ\tau^{n+k}}C_{\phi^{n+k+1}\circ\tau^{n+k+1}}.$$
(5.2)

From relations (5.1) and (5.2) we have: C_{ϕ} is an (n,k)-quasi class Q operator on \mathscr{F}^2_m if and only if

$$\begin{split} M_{u_b}M_{u_b\circ\tau}\dots M_{u_b\circ\tau^{n+k}}C_{\phi^{n+k+1}\circ\tau^{n+k+1}}\\ -(n+1)M_{u_b}M_{u_b\circ\tau}\dots M_{u_b\circ\tau^k}C_{\phi^{k+1}\circ\tau^{k+1}} + nM_{u_b}M_{u_b\circ\tau}\dots M_{u_b\circ\tau^{k-1}}C_{\phi^k\circ\tau^k} \geqslant 0, \end{split}$$

hence

$$M_{u_b\circ\tau^k}\dots M_{u_b\circ\tau^{n+k}}C_{\phi^{n+k+1}\circ\tau^{n+k+1}} - (n+1)M_{u_b\circ\tau^k}C_{\phi^{k+1}\circ\tau^{k+1}} + nC_{\phi^k\circ\tau^k} \ge 0. \quad \Box$$

THEOREM 5.3. A composition operator C_{ϕ} is an (n,k)-quasi class Q^* operator on \mathscr{F}_m^2 if and only if

$$M_{u_b \circ \tau^k} \dots M_{u_b \circ \tau^{n+k}} C_{\phi^{n+k+1} \circ \tau^{n+k+1}} - (n+1) M_{u_b \circ \tau^k} M_{u_b \circ \phi \circ \tau^k} C_{\phi^k \circ \tau \circ \phi \circ \tau^k} + n C_{\phi^k \circ \tau^k} \ge 0.$$

Proof. A composition operator C_{ϕ} is an (n,k)-quasi class Q^* operator on \mathscr{F}_m^2 if and only if

$$C_{\phi}^{*(n+k+1)}C_{\phi}^{n+k+1} - (n+1)C_{\phi}^{*k}(C_{\phi}C_{\phi}^{*})C_{\phi}^{k} + nC_{\phi}^{*k}C_{\phi}^{k} \ge 0.$$
(5.3)

By Lemma 5.1 and since $C_{\tau}M_{u_b} = M_{u_b \circ \tau}C_{\tau}$, $C_{\phi}C_{\tau} = C_{\tau \circ \phi}$ we have

$$C_{\phi}^{*k}(C_{\phi}C_{\phi}^{*})C_{\phi}^{k} = C_{\phi}^{*k}(C_{\phi}M_{u_{b}}C_{\tau})C_{\phi}^{k} = C_{\phi}^{*k}M_{u_{b}\circ\phi}C_{\phi^{k}\circ\tau\circ\phi}$$
$$= C_{\phi}^{*(k-1)}M_{u_{b}}M_{u_{b}\circ\phi\circ\tau}C_{\phi^{k}\circ\tau\circ\phi\circ\tau}$$
$$= M_{u_{b}}M_{u_{b}\circ\tau}\dots M_{u_{b}\circ\tau^{k}}M_{u_{b}\circ\phi\circ\tau^{k}}C_{\phi^{k}\circ\tau\circ\phi\circ\tau^{k}}$$

From above relation and from relations (5.2) and (5.3) we have: C_{ϕ} is an (n,k)-quasi class Q operator on \mathscr{F}_m^2 if and only if

 $M_{u_b}M_{u_b\circ\tau}\ldots M_{u_b\circ\tau^{n+k}}C_{\phi^{n+k+1}\circ\tau^{n+k+1}}$

$$-(n+1)M_{u_b}M_{u_b\circ\tau}\dots M_{u_b\circ\tau^k}M_{u_b\circ\phi\circ\tau^k}C_{\phi^k\circ\tau\circ\phi\circ\tau^k}+nM_{u_b}M_{u_b\circ\tau}\dots M_{u_b\circ\tau^{k-1}}C_{\phi^k\circ\tau^k} \ge 0,$$

hence

$$M_{u_b \circ \tau^k} \dots M_{u_b \circ \tau^{n+k}} C_{\phi^{n+k+1} \circ \tau^{n+k+1}} - (n+1) M_{u_b \circ \tau^k} M_{u_b \circ \phi \circ \tau^k} C_{\phi^k \circ \tau \circ \phi \circ \tau^k} + n C_{\phi^k \circ \tau^k} \geqslant 0. \quad \Box$$

Data Availability. No data were used to support this study.

Conflicts of Interest. The authors declare that there are no conflicts of interest regarding the publication of this paper.

REFERENCES

- ARIYADASA ALUTHGE, DERMING WANG, w-hyponormal operators, II, Integral Equations Operator Theory 37 (2000), no. 3, 324–331.
- [2] S. C. ARORA AND J. K. THUKRAL, On a class of operators, Glasnik Math., 21 (41) (1986), 381-386.
- [3] CHARLES BURNAP, IL BONG JUNG, ALAN LAMBERT, Separating partial normality classes with composition operators, J. Operator Theory 53 (2005), no. 2, 381–397.
- [4] J. T. CAMPBELL AND P. DIBRELL, Hyponormal powers of composition operators, Proc. Amer. Math. Soc., 102 (1988), 914–918.
- [5] J. CAMPBELL AND J. JAMISON, On some classes of weighted composition operators, Glasgow Math J., 32 (1990), 87–94.
- [6] B. J. CARSWELL, B. D. MACCLUER AND A. SCHUSTER, Composition operator on the Fock space, Acta Sci. Math. (Szeged), 69 (2003), 871–887.
- [7] B. P. DUGGAL, C. S. KUBRUSLY AND N. LEVAN, Contractions of class Q and invariant subspaces, Bull. Korean Math. Soc., 42 (2005), no. 1, pp. 169–177.
- [8] H. EMAMALIPOUR, M. R. JABBARZADEH, AND Z. MOAYYERIZADEH, Separating partial normality classes with weighted composition operators on L², Bull. Iranian Math. Soc. vol. 43 (2017), no. 2, pp. 561–574.
- [9] T. FURUTA, On The Class of Paranormal Operators, Proc. Jap. Acad., 43 (1967), 594-598.
- [10] I. HOXHA AND N. L. BRAHA, A note on k-quasi-*-paranormal operators, Journal of Inequalities and Applications 2013, 2013:350.
- [11] I. HOXHA AND N. L. BRAHA, On (n,k)-quasi class Q operators, Note di Matematica 39 (2019) no. 2, 39–56.
- [12] I. HOXHA AND N. L. BRAHA, On (n,k)-quasi class Q^* operators, preprint.
- [13] V. R. HAMITI, On k-quasi class Q operators, Bulletin of Mathematical Analysis and Applications, vol. 6 Issue 3 (2014), pp. 31–37.
- [14] V. R. HAMITI, SH. LOHAJ AND Q. GJONBALAJ, On k-Quasi Class Q^{*} Operators, Turkish Journal of Analysis and Number Theory, 2016, vol. 4, no. 4, 87–91.

- [15] M. R. JABBARZADEH AND M. R. AZIMI, Some weak hyponormal classes of weighted composition operators, Bull. Korean Math. Soc. 47 (2010), no. 4, 793–803.
- [16] D. HARRINGTON AND R. WHITLEY, Seminormal composition operators, J. Operator Theory, 11 (1984), 125–135.
- [17] A. LAMBERT AND B. WEINSTOCK, Descriptions of conditional expectations induced by non-measure preserving transformations, Proc. Amer. Math. Soc., 123 (1995), 897–903.
- [18] S. MECHERI, Bishop's property β and Riesz idempotent for k-quasi-paranormal operators, Banach J. Math. Anal., 6 (2012), no. 1, 147–154.
- [19] M. M. RAO, Conditional measure and applications, Marcel Dekker, New York, 1993.
- [20] D. SENTHILKUMAR AND S. PARVATHAM, Aluthge Transformation Of quasi n-class Q and quasi n-class Q* operators, European Journal of Pure and Applied Mathematics, vol. 11, no. 4 (2018), 1108–1129.
- [21] JIANGTAO YUAN, GUOXING JI, On (n,k)-quasiparanormal operators, Studia Math. 209 (2012), no. 3, 289–301.
- [22] Q. ZENG AND H. ZHONG, On (n,k)-quasi-*-paranormal operators, Bull. Malays. Math. Sci. Soc. doi:10.1007/s40840-015-0119-z.

(Received September 19, 2020)

Naim L. Braha Department of Mathematics and Computer Sciences University of Prishtina Avenue "George Bush" nn Prishtinë, 10000, Kosova and Ilirias Research Institute Janina, No-2, Ferizaj, 70000, Kosova e-mail: nbraha@yahoo.com

Ilmi Hoxha Faculty of Education University of Gjakova "Fehmi Agani" Avenue "Ismail Qemali" nn Gjakovë, 50000, Kosova e-mail: ilmihoxha011@gmail.com

Usef Estaremi Department of Mathematics and Computer Sciences Golestan University Gorgan, Iran e-mail: estaremi@gmail.com

Operators and Matrices www.ele-math.com oam@ele-math.com