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GENERALIZED GHABRIES–ABBAS–MOURAD LOG–MAJORIZATION

ZESHENG FENG AND JIAN SHI ∗

(Communicated by R. Vandebril)

Abstract. In this paper, Ghabries-Abbas-Mourad log-majorization is generalized in two different
cases.

1. Introduction

A capital letter, such as T , stands for an n× n complex matrix. T � O means that
T is positive semidefinite and T > O means that T is positive definite, respectively.

Recall that for two matrices X and Y , whose eigenvalues are all positive numbers,
the log-majorization X ≺log Y means that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k

∏
i=1

λi(X) �
k

∏
i=1

λi(Y ), k = 1,2, · · · ,n−1;

k

∏
i=1

λi(X) =
k

∏
i=1

λi(Y ), k = n,

where λ1(X) � λ2(X) � · · · � λn(X) are the eigenvalues of X in decreasing order
counting multiplicities.

There are many log-majorizations shown in [5]. Recently, Ghabries, Abbas and
Mourad obtained a perfect log-majorization in [3] as follows.

THEOREM 1.1. ([3], Ghabries-Abbas-Mourad log-majorization) Let A and B
be two positive definite matrices. Then for all 0 � t � 1 and k � 4t , the following
log-majorization holds,

A
k
2−tBt ≺log A

k
4 (B

1
2 A−1B

1
2 )tA

k
4 . (1.1)

Theorem1.1 was recently generalized and improved in [4]. In this paper, Ghabries-
Abbas-Mourad log-majorization is generalized in two different cases. In order to prove
these results, we introduce the following two Lemmas.
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LEMMA 1.1. ([1], Furuta inequality) If A � B � 0 , then for each r � 0 and
p � 1 ,

A1+r � (A
r
2 BpA

r
2 )

1+r
p+r

and
(B

r
2 ApB

r
2 )

1+r
p+r � B1+r

hold.

LEMMA 1.2. ([2], Generalized Furuta inequalities) If A � B � 0 and A > 0 , then
for 0 � t � 1 and p � 1 ,

A1−t+r � [A
r
2 (A

−t
2 BpA

−t
2 )sA

r
2 ]

1−t+r
(p−t)s+r

holds for s � 1 and r � t .

2. Generalized Ghabries-Abbas-Mourad log-majorization in the case of
4t � k � 2t +2

In this section, we will show a generalization of Theorem 1.1 in the case of 4t �
k � 2t +2.

THEOREM 2.1. Let A and B be two positive definite matrices. Then we have

A
k
2−tBt ≺log {A k

2−t− q̃
2 [B

1
2 (B

−vt
2 A−1B

−vt
2 )sB

1
2 ] p̃A

k
2−t− q̃

2 }l (2.1)

holds for 1 � (1− v + 1
t )α � 2 , 4t � k � 2t + 2 , 0 � t � 1 , 0 � v � 1 , 1 � s �

1
vt and 0 � α � 1 , where p̃ = α(1−v+ 1

t )
( 2

k−2t −v)s+ 1
t
, q̃ = ( k

2 − t)[2− (1− v + 1
t )α] , and l =

( 2
k−2t −v)st+1

α(1−v+ 1
t )(1−vts)

> 0 .

Proof. According to Schur’s complement, we have

M =
[
M1 M2

M3 M4

]
� 0, (2.2)

where M1 = A
q̃
2 Bt [B

−1
2 (B

vt
2 AB

vt
2 )sB

−1
2 ] p̃BtA

q̃
2 ,

M2 = A
q̃
2 BtA

k
2−t− q̃

2 , M3 = A
k
2−t− q̃

2 BtA
q̃
2 , M4 = A

k
2−t− q̃

2 [B
1
2 (B

−vt
2 A−1B

−vt
2 )sB

1
2 ] p̃A

k
2−t− q̃

2 .
Then we have

(λ1(A
k
2−tBt))2 � λ1(M4)λ1(M1). (2.3)

It follows that

(λ1(A
k
2−tBt))2l−1(λ1(A

k
2−tBt))1 = (λ1(A

k
2−tBt))2l � (λ1(M4))l(λ1(M1))l . (2.4)

In order to prove our result, it is enough to prove that

{A k
2−tBt}2l−1 �log {A

q̃
2 Bt [B

−1
2 (B

vt
2 AB

vt
2 )sB

−1
2 ] p̃BtA

q̃
2 }l, (2.5)
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which is equivalent to showing that

B
t
2 A

k
2−tB

t
2 � I ⇒ A

q̃
2 Bt [B

−1
2 (B

vt
2 AB

vt
2 )sB

−1
2 ] p̃BtA

q̃
2 � I. (2.6)

It is clear that B
t
2 A

k
2−tB

t
2 � I is equivalent to

A
k
2−t � B−t . (2.7)

Let A1 = B−t and B1 = A
k
2−t , (2.7) gives A1 � B1 .

According to Lemma 1.2, we have

A
(1−v+ 1

t )α
1 � [A

1
2t
1 (A

−v
2

1 B
2

k−2t
1 A

−v
2

1 )sA
1
2t
1 ] p̃. (2.8)

By using the Löwner-Heinz inequality for −1 � (1− v+ 1
t )α −2 � 0, we have

A1B
(1−v+ 1

t )α−2
1 A1 � A1A

(1−v+ 1
t )α−2

1 A1 = A
(1−v+ 1

t )α
1 . (2.9)

Now together with (2.8) and (2.9), we can conclude

A1B
(1−v+ 1

t )α−2
1 A1 � [A

1
2t
1 (A

−v
2

1 B
2

k−2t
1 A

−v
2

1 )sA
1
2t
1 ] p̃. (2.10)

Then, replacing A1 with B−t and B1 with A
k
2−t , respectively, in (2.10), it is equiv-

alent to
B−tA−q̃B−t � [B

−1
2 (B

vt
2 AB

vt
2 )sB

−1
2 ] p̃, (2.11)

and (2.11) is equivalent to

A
q̃
2 Bt [B

−1
2 (B

vt
2 AB

vt
2 )sB

−1
2 ] p̃BtA

q̃
2 � I. (2.12)

Thus (2.6) have been proved. This complete the proof. �

If we put v = 0, s = 1 or α = kt
(k−2t)(1+t) respectively in Theorem 2.1, we will

have the following three corollaries.

COROLLARY 2.1. Let A and B be two positive definite matrices. Then we have

A
k
2−tBt ≺log {A k

2−t− q̃1
2 (B

1
2 A−sB

1
2 ) p̃1A

k
2−t− q̃1

2 }l1

holds for 1 � (1+ 1
t )α � 2 , 4t � k � 2t +2 , 0 � t � 1 , s � 1 and 0 � α � 1 , where

p̃1 = (1+t)(k−2t)α
2st+k−2t , q̃1 = ( k

2 − t)[2− (1+ 1
t )α] , and l1 = t

p̃1
> 0 .

COROLLARY 2.2. Let A and B be two positive definite matrices. Then we have

A
k
2−tBt ≺log {A k

2−t− q̃2
2 (B

1−vt
2 A−1B

1−vt
2 ) p̃2A

k
2−t− q̃2

2 }l2

holds for 1 � (1−v+ 1
t )α � 2 , 4t � k � 2t +2 , 0 � t � 1 , 0 � v � 1 and 0 � α � 1 ,

where p̃2 = α(1−v+ 1
t )

2
k−2t −v+ 1

t
, q̃2 = ( k

2 − t)[2− (1− v+ 1
t )α] , and l2 =

( 2
k−2t −v)t+1

α(1−v+ 1
t )(1−vt)

> 0 .
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COROLLARY 2.3. Let A and B be two positive definite matrices. Then we have

A
k
2−tBt ≺log {A

k
2−t− q̃3

2 [B
1
2 (B

−vt
2 A−1B

−vt
2 )sB

1
2 ] p̃3A

k
2−t− q̃3

2 }l3

holds for 1 � (t−vt+1)k
(k−2t)(1+t) � 2 , 4t � k � 2t + 2 , 0 � t � 1 , 0 � v � 1 and 1 � s � 1

vt ,

where p̃3 = kt(t−vt+1)
(1+t)[(2−vk+2vt)st+k−2t] , q̃3 = (k−4t)(1+t)+kvt

2(1+t) , and l3 = t
(1−vts) p̃3

> 0 .

If we put s = 1 in Corollary 2.1, we will have the following result.

COROLLARY 2.4. Let A and B be two positive definite matrices. Then we have

A
k
2−tBt ≺log {A k

2−t− q̃4
2 (B

1
2 A−1B

1
2 ) p̃4A

k
2−t− q̃4

2 }l4

holds for 1 � (1+ 1
t )α � 2 , 4t � k � 2t + 2 , 0 � t � 1 and 0 � α � 1 , where p̃4 =

(1+t)(k−2t)α
k , q̃4 = ( k

2 − t)[2− (1+ 1
t )α] , and l4 = t

p̃4
> 0 .

If we put α = kt
(k−2t)(1+t) in Corollary 2.2, we will have the following result.

COROLLARY 2.5. Let A and B be two positive definite matrices. Then we have

A
k
2−tBt ≺log {A k

2−t− q̃5
2 (B

1−vt
2 A−1B

1−vt
2 ) p̃5A

k
2−t− q̃5

2 }l2

holds for 1 � k(t−vt+1)
(k−2t)(1+t) � 2 , 4t � k � 2t +2 , 0 � t � 1 and 0 � v � 1 , where p̃5 =

kt(t−vt+1)
(1+t)[k−vt(k−2t)] , q̃5 = 2(k−2t)(1+t)−k(t−vt+1)

2(1+t) , and l5 = (1+t)[k−vt(k−2t)]
k(t−vt+1)(1−vt) > 0 .

If we put v = 0 in Corollary 2.3, we will have the following result.

COROLLARY 2.6. Let A and B be two positive definite matrices. Then we have

A
k
2−tBt ≺log {A k

2−t− q̃6
2 (B

1
2 A−sB

1
2 ) p̃6A

k
2−t− q̃6

2 }l3

holds for 1 � k
k−2t � 2 , 4t � k � 2t + 2 , 0 � t � 1 and s � 1 , where p̃6 = kt

2st+k−2t ,

q̃6 = k−4t
2 , and l6 = t

p̃6
> 0 .

REMARK 2.1. If we put v = 0, s = 1 and α = kt
(k−2t)(1+t) in Theorem 2.1, it is

just Theorem 1.1 in the case of 4t � k � 2t +2.

3. Generalized Ghabries-Abbas-Mourad log-majorization in the case of
k � 2t +2

In this section, we will show a different generalization of Theorem 1.1 in the case
of k � 2t +2.

THEOREM 3.1. Let A and B be two positive definite matrices. Then we have

A
k
2−tBt ≺log {A

k
2−t+ r̃

2 [B
1
2 (B

rt
2 A(t− k

2 )pB
rt
2 )

1+r
p+r αB

1
2 ]β A

k
2−t+ r̃

2 }h (3.1)
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holds for 1 � [(1 + r)α + 1
t ]β � 2 , k � 2t + 2 , 0 � t � 1 , 0 � r � 1 , p � 1 , 0 �

β � min{1, 2t
rtα 1+r

p+r +1
} and α ∈ [0,1] , where r̃ = ( k

2 − t)[((1 + r)α + 1
t )β − 2] , and

h = t
(rtα 1+r

p+r +1)β
> 0 .

Proof. According to Schur’s complement, we have

M =
[
M1 M2

M3 M4

]
� 0, (3.2)

where M1 = A− r̃
2 Bt [B

−1
2 (B

−rt
2 A( k

2−t)pB
−rt
2 )

1+r
p+r αB

−1
2 ]β BtA− r̃

2 , M2 = A− r̃
2 BtA

k
2−t+ r̃

2 , M3 =

A
k
2−t+ r̃

2 BtA− r̃
2 , M4 = A

k
2−t+ r̃

2 [B
1
2 (B

rt
2 A(t− k

2 )pB
rt
2 )

1+r
p+r αB

1
2 ]β A

k
2−t+ r̃

2 .
Then we have

(λ1(A
k
2−tBt))2 � λ1(M4)λ1(M1). (3.3)

It follows that

(λ1(A
k
2−tBt))2h−1(λ1(A

k
2−tBt))1 = (λ1(A

k
2−tBt))2h � (λ1(M4))h(λ1(M1))h. (3.4)

In order to prove our result, it is enough to prove that

{A k
2−tBt}2h−1 �log {A− r̃

2 Bt [B
−1
2 (B

−rt
2 A( k

2−t)pB
−rt
2 )

1+r
p+r αB

−1
2 ]β BtA− r̃

2 }h, (3.5)

which is equivalent to showing that

B
t
2 A

k
2−tB

t
2 � I ⇒ A− r̃

2 Bt [B
−1
2 (B

−rt
2 A( k

2−t)pB
−rt
2 )

1+r
p+r αB

−1
2 ]β BtA− r̃

2 � I. (3.6)

It is clear that B
t
2 A

k
2−tB

t
2 � I is equivalent to

A
k
2−t � B−t . (3.7)

Let A1 = B−t and B1 = A
k
2−t , (3.7) gives A1 � B1 .

According to Lemma 1.1, we have

A(1+r)α
1 � (A

r
2
1 Bp

1A
r
2
1 )

1+r
p+r α , (3.8)

and then we have

(A
1
2t
1 A(1+r)α

1 A
1
2t
1 )β � (A

1
2t
1 (A

r
2
1 Bp

1A
r
2
1 )

1+r
p+r αA

1
2t
1 )β . (3.9)

By using the Löwner-Heinz inequality for −1 � [(1+r)α + 1
t ]β −2 � 0, we have

A1B
[(1+r)α+ 1

t ]β−2
1 A1 � A

[(1+r)α+ 1
t ]β

1 . (3.10)

Now together with (3.9) and (3.10), we can conclude

A1B
[(1+r)α+ 1

t ]β−2
1 A1 � (A

1
2t
1 (A

r
2
1 Bp

1A
r
2
1 )

1+r
p+r αA

1
2t
1 )β . (3.11)
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Then, replacing A1 with B−t and B1 with A
k
2−t , respectively, in (3.11), it is equiv-

alent to

B−tAr̃B−t � [B
−1
2 (B

−rt
2 A( k

2−t)pB
−rt
2 )

1+r
p+r αB

−1
2 ]β , (3.12)

and (3.12) is equivalent to

A− r̃
2 Bt [B

−1
2 (B

−rt
2 A( k

2−t)pB
−rt
2 )

1+r
p+r αB

−1
2 ]β BtA− r̃

2 � I. (3.13)

Thus (3.6) have been proved. This complete the proof. �

If we put r = 0, β = t or α = 2
k−2t respectively in Theorem 3.1, we will have the

following three corollaries.

COROLLARY 3.1. Let A and B be two positive definite matrices. Then we have

A
k
2−tBt ≺log {A

k
2−t+ r̃1

2 (B
1
2 A(t− k

2 )αB
1
2 )β A

k
2−t+ r̃1

2 }h1

holds for 1 � (α + 1
t )β � 2 , k � 2t +2 , 0 � t � 1 , 0 � β � min{1,2t} and α ∈ [0,1] ,

where r̃1 = ( k
2 − t)[(α + 1

t )β −2] , and h1 = t
β > 0 .

COROLLARY 3.2. Let A and B be two positive definite matrices. Then we have

A
k
2−tBt ≺log {A

k
2−t+ r̃2

2 [B
1
2 (B

rt
2 A(t− k

2 )pB
rt
2 )

1+r
p+r αB

1
2 ]tA

k
2−t+ r̃2

2 }h2

holds for 0 � (1+ r)αt � 1 , k � 2t +2 , 0 � t � 1 , 0 � r � 1 , p � 1 and α ∈ [0,1] ,
where r̃2 = ( k

2 − t)[(1+ r)αt−1] , and h2 = p+r
rtα(1+r)+p+r > 0 .

COROLLARY 3.3. Let A and B be two positive definite matrices. Then we have

A
k
2−tBt ≺log {A

k
2−t+ r̃3

2 [B
1
2 (B

rt
2 A(t− k

2 )pB
rt
2 )

2(1+r)
(k−2t)(p+r) B

1
2 ]β A

k
2−t+ r̃3

2 }h3

holds for 1 � [ 2(1+r)
k−2t + 1

t ]β � 2 , k � 2t + 2 , 0 � t � 1 , 0 � r � 1 , p � 1 and

0 � β � min{1, 2t(k−2t)(p+r)
2rt(1+r)+(k−2t)(p+r)} , where r̃3 = [2t(1+r)+(k−2t)]β−2t(k−2t)

2t , and h3 =
t(k−2t)(p+r)

[2rt(1+r)+(k−2t)(p+r)]β > 0 .

If we put β = t in Corollary 3.1, we will have the following result.

COROLLARY 3.4. Let A and B be two positive definite matrices. Then we have

A
k
2−tBt ≺log A

k
2−t+ r̃4

2 (B
1
2 A(t− k

2 )αB
1
2 )tA

k
2−t+ r̃4

2

holds for k � 2t +2 , 0 � t � 1 and α ∈ [0,1] , where r̃4 = ( k
2 − t)(tα −1) .

If we put α = 2
k−2t in Corollary 3.2, we will have the following result.
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COROLLARY 3.5. Let A and B be two positive definite matrices. Then we have

A
k
2−tBt ≺log {A k

2−t+ r̃5
2 [B

1
2 (B

rt
2 A(t− k

2 )pB
rt
2 )

2(1+r)
(k−2t)(p+r) B

1
2 ]tA

k
2−t+ r̃5

2 }h5

holds for 0 � 2(1+r)t
k−2t � 1 , k � 2t + 2 , 0 � t � 1 , 0 � r � 1 and p � 1 , where r̃5 =

2(1+r)t−k+2t
2 , and h5 = (p+r)(k−2t)

2rt(1+r)+(p+r)(k−2t) > 0 .

If we put r = 0 in Corollary 3.3, we will have the following result.

COROLLARY 3.6. Let A and B be two positive definite matrices. Then we have

A
k
2−tBt ≺log {A k

2−t+ r̃6
2 (B

1
2 A−1B

1
2 )β A

k
2−t+ r̃6

2 }h6

holds for 1 � kβ
t(k−2t) � 2 , k � 2t +2 , 0 � t � 1 and 0 � β � min{1,2t} , where r̃6 =

kβ−2t(k−2t)
2t , and h6 = t

β > 0 .

REMARK 3.1. If we put r = 0, β = t and α = 2
k−2t in Theorem 3.1, it is just

Theorem 1.1 in the case of k � 2t +2.
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