GENERALIZED GHABRIES-ABBAS-MOURAD LOG-MAJORIZATION

Zesheng Feng and Jian Shi*

(Communicated by R. Vandebril)

Abstract. In this paper, Ghabries-Abbas-Mourad log-majorization is generalized in two different cases.

1. Introduction

A capital letter, such as T, stands for an $n \times n$ complex matrix. $T \geqslant O$ means that T is positive semidefinite and $T>O$ means that T is positive definite, respectively.

Recall that for two matrices X and Y, whose eigenvalues are all positive numbers, the log-majorization $X \prec_{\log } Y$ means that

$$
\begin{cases}\prod_{i=1}^{k} \lambda_{i}(X) \leqslant \prod_{i=1}^{k} \lambda_{i}(Y), & k=1,2, \cdots, n-1 \\ \prod_{i=1}^{k} \lambda_{i}(X)=\prod_{i=1}^{k} \lambda_{i}(Y), & k=n\end{cases}
$$

where $\lambda_{1}(X) \geqslant \lambda_{2}(X) \geqslant \cdots \geqslant \lambda_{n}(X)$ are the eigenvalues of X in decreasing order counting multiplicities.

There are many log-majorizations shown in [5]. Recently, Ghabries, Abbas and Mourad obtained a perfect log-majorization in [3] as follows.

Theorem 1.1. ([3], Ghabries-Abbas-Mourad log-majorization) Let A and B be two positive definite matrices. Then for all $0 \leqslant t \leqslant 1$ and $k \geqslant 4 t$, the following log-majorization holds,

$$
\begin{equation*}
A^{\frac{k}{2}-t} B^{t} \prec_{\log } A^{\frac{k}{4}}\left(B^{\frac{1}{2}} A^{-1} B^{\frac{1}{2}}\right)^{t} A^{\frac{k}{4}} . \tag{1.1}
\end{equation*}
$$

Theorem 1.1 was recently generalized and improved in [4]. In this paper, Ghabries-Abbas-Mourad log-majorization is generalized in two different cases. In order to prove these results, we introduce the following two Lemmas.

[^0]LEmmA 1.1. ([1], Furuta inequality) If $A \geqslant B \geqslant 0$, then for each $r \geqslant 0$ and $p \geqslant 1$,

$$
A^{1+r} \geqslant\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{1+r}{p+r}}
$$

and

$$
\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{1+r}{p+r}} \geqslant B^{1+r}
$$

hold.
LEMMA 1.2. ([2], Generalized Furuta inequalities) If $A \geqslant B \geqslant 0$ and $A>0$, then for $0 \leqslant t \leqslant 1$ and $p \geqslant 1$,

$$
A^{1-t+r} \geqslant\left[A^{\frac{r}{2}}\left(A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}}\right)^{s} A^{\frac{r}{2}}\right]^{\frac{1-t+r}{(p-t) s+r}}
$$

holds for $s \geqslant 1$ and $r \geqslant t$.

2. Generalized Ghabries-Abbas-Mourad log-majorization in the case of $4 t \leqslant k \leqslant 2 t+2$

In this section, we will show a generalization of Theorem 1.1 in the case of $4 t \leqslant$ $k \leqslant 2 t+2$.

THEOREM 2.1. Let A and B be two positive definite matrices. Then we have

$$
\begin{equation*}
A^{\frac{k}{2}-t} B^{t} \prec_{\log }\left\{A^{\frac{k}{2}-t-\frac{\tilde{q}}{2}}\left[B^{\frac{1}{2}}\left(B^{\frac{-v t}{2}} A^{-1} B^{\frac{-v t}{2}}\right)^{s} B^{\frac{1}{2}}\right]^{\tilde{p}} A^{\frac{k}{2}-t-\frac{\tilde{q}}{2}}\right\}^{l} \tag{2.1}
\end{equation*}
$$

holds for $1 \leqslant\left(1-v+\frac{1}{t}\right) \alpha \leqslant 2,4 t \leqslant k \leqslant 2 t+2,0 \leqslant t \leqslant 1,0 \leqslant v \leqslant 1,1 \leqslant s \leqslant$ $\frac{1}{v t}$ and $0 \leqslant \alpha \leqslant 1$, where $\tilde{p}=\frac{\alpha\left(1-v+\frac{1}{t}\right)}{\left(\frac{2}{k-2 t}-v\right) s+\frac{1}{t}}, \tilde{q}=\left(\frac{k}{2}-t\right)\left[2-\left(1-v+\frac{1}{t}\right) \alpha\right]$, and $l=$ $\frac{\left(\frac{2}{k-2 t}-v\right) s t+1}{\alpha\left(1-v+\frac{1}{t}\right)(1-v t s)}>0$.

Proof. According to Schur's complement, we have

$$
M=\left[\begin{array}{ll}
M_{1} & M_{2} \tag{2.2}\\
M_{3} & M_{4}
\end{array}\right] \geqslant 0
$$

where $M_{1}=A^{\frac{\tilde{q}}{2}} B^{t}\left[B^{\frac{-1}{2}}\left(B^{\frac{v t}{2}} A B^{\frac{v t}{2}}\right)^{s} B^{\frac{-1}{2}}\right]^{\tilde{p}} B^{t} A^{\frac{\tilde{q}}{2}}$,
$M_{2}=A^{\frac{\tilde{q}}{2}} B^{t} A^{\frac{k}{2}-t-\frac{\tilde{q}}{2}}, M_{3}=A^{\frac{k}{2}-t-\frac{\tilde{q}}{2}} B^{t} A^{\tilde{q}}, M_{4}=A^{\frac{k}{2}-t-\frac{\tilde{q}}{2}}\left[B^{\frac{1}{2}}\left(B^{\frac{-v t}{2}} A^{-1} B^{\frac{-v t}{2}}\right)^{s} B^{\frac{1}{2}}\right]^{\tilde{p}} A^{\frac{k}{2}-t-\frac{\tilde{q}}{2}}$.
Then we have

$$
\begin{equation*}
\left(\lambda_{1}\left(A^{\frac{k}{2}-t} B^{t}\right)\right)^{2} \leqslant \lambda_{1}\left(M_{4}\right) \lambda_{1}\left(M_{1}\right) \tag{2.3}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\left(\lambda_{1}\left(A^{\frac{k}{2}-t} B^{t}\right)\right)^{2 l-1}\left(\lambda_{1}\left(A^{\frac{k}{2}-t} B^{t}\right)\right)^{1}=\left(\lambda_{1}\left(A^{\frac{k}{2}-t} B^{t}\right)\right)^{2 l} \leqslant\left(\lambda_{1}\left(M_{4}\right)\right)^{l}\left(\lambda_{1}\left(M_{1}\right)\right)^{l} \tag{2.4}
\end{equation*}
$$

In order to prove our result, it is enough to prove that

$$
\begin{equation*}
\left\{A^{\frac{k}{2}-t} B^{t}\right\}^{2 l-1} \succ_{\log }\left\{A^{\frac{\tilde{q}}{2}} B^{t}\left[B^{\frac{-1}{2}}\left(B^{\frac{v t}{2}} A B^{\frac{v t}{2}}\right)^{s} B^{\frac{-1}{2}}\right]^{\tilde{p}} B^{t} A^{\frac{\tilde{q}}{2}}\right\}^{l} \tag{2.5}
\end{equation*}
$$

which is equivalent to showing that

$$
\begin{equation*}
B^{\frac{t}{2}} A^{\frac{k}{2}-t} B^{\frac{t}{2}} \leqslant I \Rightarrow A^{\frac{\tilde{q}}{2}} B^{t}\left[B^{\frac{-1}{2}}\left(B^{\frac{v t}{2}} A B^{\frac{v t}{2}}\right)^{s} B^{\frac{-1}{2}}\right]^{\tilde{p}} B^{t} A^{\tilde{q}} \leqslant I \tag{2.6}
\end{equation*}
$$

It is clear that $B^{\frac{t}{2}} A^{\frac{k}{2}-t} B^{\frac{t}{2}} \leqslant I$ is equivalent to

$$
\begin{equation*}
A^{\frac{k}{2}-t} \leqslant B^{-t} \tag{2.7}
\end{equation*}
$$

Let $A_{1}=B^{-t}$ and $B_{1}=A^{\frac{k}{2}-t},(2.7)$ gives $A_{1} \geqslant B_{1}$.
According to Lemma 1.2, we have

$$
\begin{equation*}
A_{1}^{\left(1-v+\frac{1}{t}\right) \alpha} \geqslant\left[A_{1}^{\frac{1}{2 t}}\left(A_{1}^{\frac{-v}{2}} B_{1}^{\frac{2}{k-2 t}} A_{1}^{\frac{-v}{2}}\right)^{s} A_{1}^{\frac{1}{2 t}}\right]^{\tilde{p}} \tag{2.8}
\end{equation*}
$$

By using the Löwner-Heinz inequality for $-1 \leqslant\left(1-v+\frac{1}{t}\right) \alpha-2 \leqslant 0$, we have

$$
\begin{equation*}
A_{1} B_{1}^{\left(1-v+\frac{1}{t}\right) \alpha-2} A_{1} \geqslant A_{1} A_{1}^{\left(1-v+\frac{1}{t}\right) \alpha-2} A_{1}=A_{1}^{\left(1-v+\frac{1}{t}\right) \alpha} \tag{2.9}
\end{equation*}
$$

Now together with (2.8) and (2.9), we can conclude

$$
\begin{equation*}
A_{1} B_{1}^{\left(1-v+\frac{1}{t}\right) \alpha-2} A_{1} \geqslant\left[A_{1}^{\frac{1}{2 t}}\left(A_{1}^{\frac{-v}{2}} B_{1}^{\frac{2}{k-2 t}} A_{1}^{\frac{-v}{2}}\right)^{s} A_{1}^{\frac{1}{2 t}}\right]^{\tilde{p}} \tag{2.10}
\end{equation*}
$$

Then, replacing A_{1} with B^{-t} and B_{1} with $A^{\frac{k}{2}-t}$, respectively, in (2.10), it is equivalent to

$$
\begin{equation*}
B^{-t} A^{-\tilde{q}} B^{-t} \geqslant\left[B^{\frac{-1}{2}}\left(B^{\frac{v t}{2}} A B^{\frac{v t}{2}}\right)^{s} B^{\frac{-1}{2}}\right]^{\tilde{p}} \tag{2.11}
\end{equation*}
$$

and (2.11) is equivalent to

$$
\begin{equation*}
A^{\frac{\tilde{q}}{2}} B^{t}\left[B^{\frac{-1}{2}}\left(B^{\frac{v t}{2}} A B^{\frac{v t}{2}}\right)^{s} B^{\frac{-1}{2}}\right]^{\tilde{p}} B^{t} A^{\frac{\tilde{q}}{2}} \leqslant I \tag{2.12}
\end{equation*}
$$

Thus (2.6) have been proved. This complete the proof.
If we put $v=0, s=1$ or $\alpha=\frac{k t}{(k-2 t)(1+t)}$ respectively in Theorem 2.1, we will have the following three corollaries.

Corollary 2.1. Let A and B be two positive definite matrices. Then we have

$$
A^{\frac{k}{2}-t} B^{t} \prec_{\log }\left\{A^{\frac{k}{2}-t-\frac{\tilde{q}_{1}}{2}}\left(B^{\frac{1}{2}} A^{-s} B^{\frac{1}{2}}\right)^{\tilde{p_{1}}} A^{\frac{k}{2}-t-\frac{\tilde{q}_{1}}{2}}\right\}^{l_{1}}
$$

holds for $1 \leqslant\left(1+\frac{1}{t}\right) \alpha \leqslant 2,4 t \leqslant k \leqslant 2 t+2,0 \leqslant t \leqslant 1, s \geqslant 1$ and $0 \leqslant \alpha \leqslant 1$, where $\tilde{p_{1}}=\frac{(1+t)(k-2 t) \alpha}{2 s t+k-2 t}, \tilde{q_{1}}=\left(\frac{k}{2}-t\right)\left[2-\left(1+\frac{1}{t}\right) \alpha\right]$, and $l_{1}=\frac{t}{\tilde{p_{1}}}>0$.

Corollary 2.2. Let A and B be two positive definite matrices. Then we have

$$
A^{\frac{k}{2}-t} B^{t} \prec_{l o g}\left\{A^{\frac{k}{2}-t-\frac{\tilde{q}_{2}}{2}}\left(B^{\frac{1-v t}{2}} A^{-1} B^{\frac{1-v t}{2}}\right)^{\tilde{p_{2}}} A^{\frac{k}{2}-t-\frac{q_{2}}{2}}\right\}^{l_{2}}
$$

holds for $1 \leqslant\left(1-v+\frac{1}{t}\right) \alpha \leqslant 2,4 t \leqslant k \leqslant 2 t+2,0 \leqslant t \leqslant 1,0 \leqslant v \leqslant 1$ and $0 \leqslant \alpha \leqslant 1$, where $\tilde{p}_{2}=\frac{\alpha\left(1-v+\frac{1}{t}\right)}{\frac{2}{k-2 t}-v+\frac{1}{t}}, \tilde{q}_{2}=\left(\frac{k}{2}-t\right)\left[2-\left(1-v+\frac{1}{t}\right) \alpha\right]$, and $l_{2}=\frac{\left(\frac{2}{k-2 t}-v\right) t+1}{\alpha\left(1-v+\frac{1}{t}\right)(1-v t)}>0$.

Corollary 2.3. Let A and B be two positive definite matrices. Then we have

$$
A^{\frac{k}{2}-t} B^{t} \prec_{\log }\left\{A^{\frac{k}{2}-t-\frac{\tilde{q}_{3}}{2}}\left[B^{\frac{1}{2}}\left(B^{\frac{-v t}{2}} A^{-1} B^{\frac{-v t}{2}}\right)^{s} B^{\frac{1}{2}}\right]^{\tilde{p_{3}}} A^{\frac{k}{2}-t-\frac{\tilde{q}_{3}}{2}}\right\}^{l_{3}}
$$

holds for $1 \leqslant \frac{(t-v t+1) k}{(k-2 t)(1+t)} \leqslant 2,4 t \leqslant k \leqslant 2 t+2,0 \leqslant t \leqslant 1,0 \leqslant v \leqslant 1$ and $1 \leqslant s \leqslant \frac{1}{v t}$, where $\tilde{p}_{3}=\frac{k t(t-v t+1)}{(1+t)[(2-v k+2 v t) s t+k-2 t]}, \tilde{q_{3}}=\frac{(k-4 t)(1+t)+k v t}{2(1+t)}$, and $l_{3}=\frac{t}{(1-v t s) \tilde{p}_{3}}>0$.

If we put $s=1$ in Corollary 2.1, we will have the following result.
Corollary 2.4. Let A and B be two positive definite matrices. Then we have

$$
A^{\frac{k}{2}-t} B^{t} \prec_{\log }\left\{A^{\frac{k}{2}-t-\frac{\tilde{q}_{4}}{2}}\left(B^{\frac{1}{2}} A^{-1} B^{\frac{1}{2}}\right)^{\tilde{p_{4}}} A^{\frac{k}{2}-t-\frac{\tilde{q}_{4}}{2}}\right\}^{l_{4}}
$$

holds for $1 \leqslant\left(1+\frac{1}{t}\right) \alpha \leqslant 2,4 t \leqslant k \leqslant 2 t+2,0 \leqslant t \leqslant 1$ and $0 \leqslant \alpha \leqslant 1$, where $\tilde{p_{4}}=$ $\frac{(1+t)(k-2 t) \alpha}{k}, \tilde{q_{4}}=\left(\frac{k}{2}-t\right)\left[2-\left(1+\frac{1}{t}\right) \alpha\right]$, and $l_{4}=\frac{t}{\tilde{p_{4}}}>0$.

If we put $\alpha=\frac{k t}{(k-2 t)(1+t)}$ in Corollary 2.2, we will have the following result.
Corollary 2.5. Let A and B be two positive definite matrices. Then we have

$$
A^{\frac{k}{2}-t} B^{t} \prec_{\log }\left\{A^{\frac{k}{2}-t-\frac{\tilde{q}_{5}}{2}}\left(B^{\frac{1-v t}{2}} A^{-1} B^{\frac{1-v t}{2}}\right)^{\tilde{p_{5}}} A^{\frac{k}{2}-t-\frac{\tilde{q}_{5}}{2}}\right\}^{l_{2}}
$$

holds for $1 \leqslant \frac{k(t-v t+1)}{(k-2 t)(1+t)} \leqslant 2,4 t \leqslant k \leqslant 2 t+2,0 \leqslant t \leqslant 1$ and $0 \leqslant v \leqslant 1$, where $\tilde{p_{5}}=$ $\frac{k t(t-v t+1)}{(1+t)[k-v t(k-2 t)]}, \tilde{q}_{5}=\frac{2(k-2 t)(1+t)-k(t-v t+1)}{2(1+t)}$, and $l_{5}=\frac{(1+t)[k-v t(k-2 t)]}{k(t-v t+1)(1-v t)}>0$.

If we put $v=0$ in Corollary 2.3, we will have the following result.
Corollary 2.6. Let A and B be two positive definite matrices. Then we have

$$
A^{\frac{k}{2}-t} B^{t} \prec_{\log }\left\{A^{\frac{k}{2}-t-\frac{\tilde{q}_{6}}{2}}\left(B^{\frac{1}{2}} A^{-s} B^{\frac{1}{2}}\right)^{\tilde{p_{6}}} A^{\frac{k}{2}-t-\frac{\tilde{q}_{6}}{2}}\right\}^{l_{3}}
$$

holds for $1 \leqslant \frac{k}{k-2 t} \leqslant 2,4 t \leqslant k \leqslant 2 t+2,0 \leqslant t \leqslant 1$ and $s \geqslant 1$, where $\tilde{p_{6}}=\frac{k t}{2 s t+k-2 t}$, $\tilde{q_{6}}=\frac{k-4 t}{2}$, and $l_{6}=\frac{t}{\tilde{p_{6}}}>0$.

REMARK 2.1. If we put $v=0, s=1$ and $\alpha=\frac{k t}{(k-2 t)(1+t)}$ in Theorem 2.1, it is just Theorem 1.1 in the case of $4 t \leqslant k \leqslant 2 t+2$.

3. Generalized Ghabries-Abbas-Mourad log-majorization in the case of

$$
k \geqslant 2 t+2
$$

In this section, we will show a different generalization of Theorem 1.1 in the case of $k \geqslant 2 t+2$.

Theorem 3.1. Let A and B be two positive definite matrices. Then we have

$$
\begin{equation*}
A^{\frac{k}{2}-t} B^{t} \prec_{\log }\left\{A^{\frac{k}{2}-t+\frac{\tilde{r}}{2}}\left[B^{\frac{1}{2}}\left(B^{\frac{r t}{2}} A^{\left(t-\frac{k}{2}\right) p} B^{\frac{r t}{2}}\right)^{\frac{1+r}{p+r} \alpha} B^{\frac{1}{2}}\right]^{\beta} A^{\frac{k}{2}-t+\frac{\tilde{r}}{2}}\right\}^{h} \tag{3.1}
\end{equation*}
$$

holds for $1 \leqslant\left[(1+r) \alpha+\frac{1}{t}\right] \beta \leqslant 2, k \geqslant 2 t+2,0 \leqslant t \leqslant 1,0 \leqslant r \leqslant 1, p \geqslant 1,0 \leqslant$ $\beta \leqslant \min \left\{1, \frac{2 t}{r t \alpha \frac{1+r}{p+r}+1}\right\}$ and $\alpha \in[0,1]$, where $\tilde{r}=\left(\frac{k}{2}-t\right)\left[\left((1+r) \alpha+\frac{1}{t}\right) \beta-2\right]$, and $h=\frac{t}{\left(r t \alpha \frac{1+r}{p+r}+1\right) \beta}>0$.

Proof. According to Schur's complement, we have

$$
M=\left[\begin{array}{ll}
M_{1} & M_{2} \tag{3.2}\\
M_{3} & M_{4}
\end{array}\right] \geqslant 0
$$

where $M_{1}=A^{-\frac{\tilde{r}}{2}} B^{t}\left[B^{\frac{-1}{2}}\left(B^{\frac{-r t}{2}} A^{\left(\frac{k}{2}-t\right) p} B^{\frac{-r t}{2}}\right)^{\frac{1+r}{p+r} \alpha} B^{\frac{-1}{2}}\right]^{\beta} B^{t} A^{-\frac{\tilde{r}}{2}}, M_{2}=A^{-\frac{\tilde{r}}{2}} B^{t} A^{\frac{k}{2}-t+\frac{\tilde{r}}{2}}, M_{3}=$ $A^{\frac{k}{2}-t+\frac{\tilde{r}}{2}} B^{t} A^{-\frac{\tilde{r}}{2}}, M_{4}=A^{\frac{k}{2}-t+\frac{\tilde{r}}{2}}\left[B^{\frac{1}{2}}\left(B^{\frac{r t}{2}} A^{\left(t-\frac{k}{2}\right) p} B^{\frac{r t}{2}}\right)^{\frac{1+r}{p+r} \alpha} B^{\frac{1}{2}}\right]^{\beta} A^{\frac{k}{2}-t+\frac{\tilde{r}}{2}}$.

Then we have

$$
\begin{equation*}
\left(\lambda_{1}\left(A^{\frac{k}{2}-t} B^{t}\right)\right)^{2} \leqslant \lambda_{1}\left(M_{4}\right) \lambda_{1}\left(M_{1}\right) \tag{3.3}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\left(\lambda_{1}\left(A^{\frac{k}{2}-t} B^{t}\right)\right)^{2 h-1}\left(\lambda_{1}\left(A^{\frac{k}{2}-t} B^{t}\right)\right)^{1}=\left(\lambda_{1}\left(A^{\frac{k}{2}-t} B^{t}\right)\right)^{2 h} \leqslant\left(\lambda_{1}\left(M_{4}\right)\right)^{h}\left(\lambda_{1}\left(M_{1}\right)\right)^{h} \tag{3.4}
\end{equation*}
$$

In order to prove our result, it is enough to prove that

$$
\begin{equation*}
\left\{A^{\frac{k}{2}-t} B^{t}\right\}^{2 h-1} \succ_{\log }\left\{A^{-\frac{\tilde{r}}{2}} B^{t}\left[B^{\frac{-1}{2}}\left(B^{\frac{-r t}{2}} A^{\left(\frac{k}{2}-t\right) p} B^{\frac{-r t}{2}}\right)^{\frac{1+r}{p+r} \alpha} B^{\frac{-1}{2}}\right]^{\beta} B^{t} A^{-\frac{\tilde{r}}{2}}\right\}^{h} \tag{3.5}
\end{equation*}
$$

which is equivalent to showing that

$$
\begin{equation*}
B^{\frac{t}{2}} A^{\frac{k}{2}-t} B^{\frac{t}{2}} \leqslant I \Rightarrow A^{-\frac{\tilde{r}}{2}} B^{t}\left[B^{\frac{-1}{2}}\left(B^{\frac{-r t}{2}} A^{\left(\frac{k}{2}-t\right) p} B^{\frac{-r t}{2}}\right)^{\frac{1+r}{p+r} \alpha} B^{\frac{-1}{2}}\right]^{\beta} B^{t} A^{-\frac{\tilde{r}}{2}} \leqslant I \tag{3.6}
\end{equation*}
$$

It is clear that $B^{\frac{t}{2}} A^{\frac{k}{2}-t} B^{\frac{t}{2}} \leqslant I$ is equivalent to

$$
\begin{equation*}
A^{\frac{k}{2}-t} \leqslant B^{-t} . \tag{3.7}
\end{equation*}
$$

Let $A_{1}=B^{-t}$ and $B_{1}=A^{\frac{k}{2}-t}$, (3.7) gives $A_{1} \geqslant B_{1}$.
According to Lemma 1.1, we have

$$
\begin{equation*}
A_{1}^{(1+r) \alpha} \geqslant\left(A_{1}^{\frac{r}{2}} B_{1}^{p} A_{1}^{\frac{r}{2}}\right)^{\frac{1+r}{p+r} \alpha} \tag{3.8}
\end{equation*}
$$

and then we have

$$
\begin{equation*}
\left(A_{1}^{\frac{1}{2 t}} A_{1}^{(1+r) \alpha} A_{1}^{\frac{1}{2 t}}\right)^{\beta} \geqslant\left(A_{1}^{\frac{1}{2 t}}\left(A_{1}^{\frac{r}{2}} B_{1}^{p} A_{1}^{\frac{r}{2}}\right)^{\frac{1+r}{p+r}} \alpha A_{1}^{\frac{1}{2 t}}\right)^{\beta} \tag{3.9}
\end{equation*}
$$

By using the Löwner-Heinz inequality for $-1 \leqslant\left[(1+r) \alpha+\frac{1}{t}\right] \beta-2 \leqslant 0$, we have

$$
\begin{equation*}
A_{1} B_{1}^{\left[(1+r) \alpha+\frac{1}{t}\right] \beta-2} A_{1} \geqslant A_{1}^{\left[(1+r) \alpha+\frac{1}{t}\right] \beta} \tag{3.10}
\end{equation*}
$$

Now together with (3.9) and (3.10), we can conclude

$$
\begin{equation*}
A_{1} B_{1}^{\left[(1+r) \alpha+\frac{1}{t}\right] \beta-2} A_{1} \geqslant\left(A_{1}^{\frac{1}{2 t}}\left(A_{1}^{\frac{r}{2}} B_{1}^{p} A_{1}^{\frac{r}{2}}\right)^{\frac{1+r}{p+r} \alpha} A_{1}^{\frac{1}{2 t}}\right)^{\beta} \tag{3.11}
\end{equation*}
$$

Then, replacing A_{1} with B^{-t} and B_{1} with $A^{\frac{k}{2}-t}$, respectively, in (3.11), it is equivalent to

$$
\begin{equation*}
B^{-t} A^{\tilde{r}} B^{-t} \geqslant\left[B^{\frac{-1}{2}}\left(B^{\frac{-r t}{2}} A^{\left(\frac{k}{2}-t\right) p} B^{\frac{-r t}{2}}\right)^{\frac{1+r}{p+r} \alpha} B^{\frac{-1}{2}}\right]^{\beta} \tag{3.12}
\end{equation*}
$$

and (3.12) is equivalent to

$$
\begin{equation*}
A^{-\frac{\tilde{r}}{2}} B^{t}\left[B^{\frac{-1}{2}}\left(B^{\frac{-r t}{2}} A^{\left(\frac{k}{2}-t\right) p} B^{\frac{-r t}{2}}\right)^{\frac{1+r}{p+r} \alpha} B^{\frac{-1}{2}}\right]^{\beta} B^{t} A^{-\frac{\tilde{r}}{2}} \leqslant I \tag{3.13}
\end{equation*}
$$

Thus (3.6) have been proved. This complete the proof.
If we put $r=0, \beta=t$ or $\alpha=\frac{2}{k-2 t}$ respectively in Theorem 3.1, we will have the following three corollaries.

Corollary 3.1. Let A and B be two positive definite matrices. Then we have

$$
A^{\frac{k}{2}-t} B^{t} \prec_{\log }\left\{A^{\frac{k}{2}-t+\frac{r_{1}}{2}}\left(B^{\frac{1}{2}} A^{\left(t-\frac{k}{2}\right) \alpha} B^{\frac{1}{2}}\right)^{\beta} A^{\frac{k}{2}-t+\frac{r_{1}}{2}}\right\}^{h_{1}}
$$

holds for $1 \leqslant\left(\alpha+\frac{1}{t}\right) \beta \leqslant 2, k \geqslant 2 t+2,0 \leqslant t \leqslant 1,0 \leqslant \beta \leqslant \min \{1,2 t\}$ and $\alpha \in[0,1]$, where $\tilde{r_{1}}=\left(\frac{k}{2}-t\right)\left[\left(\alpha+\frac{1}{t}\right) \beta-2\right]$, and $h_{1}=\frac{t}{\beta}>0$.

Corollary 3.2. Let A and B be two positive definite matrices. Then we have

$$
A^{\frac{k}{2}-t} B^{t} \prec_{\log }\left\{A^{\frac{k}{2}-t+\frac{\tilde{亏}_{2}}{2}}\left[B^{\frac{1}{2}}\left(B^{\frac{r t}{2}} A^{\left(t-\frac{k}{2}\right) p} B^{\frac{r t}{2}}\right)^{\frac{1+r}{p+r} \alpha} B^{\frac{1}{2}}\right]^{t} A^{\frac{k}{2}-t+\frac{r_{3}}{2}}\right\}^{h_{2}}
$$

holds for $0 \leqslant(1+r) \alpha t \leqslant 1, k \geqslant 2 t+2,0 \leqslant t \leqslant 1,0 \leqslant r \leqslant 1, p \geqslant 1$ and $\alpha \in[0,1]$, where $\tilde{r_{2}}=\left(\frac{k}{2}-t\right)[(1+r) \alpha t-1]$, and $h_{2}=\frac{p+r}{r t \alpha(1+r)+p+r}>0$.

Corollary 3.3. Let A and B be two positive definite matrices. Then we have

$$
A^{\frac{k}{2}-t} B^{t} \prec_{\log }\left\{A^{\frac{k}{2}-t+\frac{r_{3}}{2}}\left[B^{\frac{1}{2}}\left(B^{\frac{r t}{2}} A^{\left(t-\frac{k}{2}\right) p} B^{\frac{r t}{2}}\right)^{\frac{2(1+r)}{(k-2 t)(p+r)}} B^{\frac{1}{2}}\right]^{\beta} A^{\frac{k}{2}-t+\frac{r_{3}}{2}}\right\}^{h_{3}}
$$

holds for $1 \leqslant\left[\frac{2(1+r)}{k-2 t}+\frac{1}{t}\right] \beta \leqslant 2, k \geqslant 2 t+2,0 \leqslant t \leqslant 1,0 \leqslant r \leqslant 1, p \geqslant 1$ and $0 \leqslant \beta \leqslant \min \left\{1, \frac{2 t(k-2 t)(p+r)}{2 r t(1+r)+(k-2 t)(p+r)}\right\}$, where $\tilde{r_{3}}=\frac{[2 t(1+r)+(k-2 t)] \beta-2 t(k-2 t)}{2 t}$, and $h_{3}=$ $\frac{t(k-2 t)(p+r)}{[2 r t(1+r)+(k-2 t)(p+r)] \beta}>0$.

If we put $\beta=t$ in Corollary 3.1, we will have the following result.
Corollary 3.4. Let A and B be two positive definite matrices. Then we have

$$
A^{\frac{k}{2}-t} B^{t} \prec_{\log } A^{\frac{k}{2}-t+\frac{r_{4}}{2}}\left(B^{\frac{1}{2}} A^{\left(t-\frac{k}{2}\right) \alpha} B^{\frac{1}{2}}\right)^{t} A^{\frac{k}{2}-t+\frac{\tilde{r}_{4}}{2}}
$$

holds for $k \geqslant 2 t+2,0 \leqslant t \leqslant 1$ and $\alpha \in[0,1]$, where $\tilde{r_{4}}=\left(\frac{k}{2}-t\right)(t \alpha-1)$.
If we put $\alpha=\frac{2}{k-2 t}$ in Corollary 3.2, we will have the following result.

Corollary 3.5. Let A and B be two positive definite matrices. Then we have

$$
A^{\frac{k}{2}-t} B^{t} \prec_{l o g}\left\{A^{\frac{k}{2}-t+\frac{r_{5}}{2}}\left[B^{\frac{1}{2}}\left(B^{\frac{r t}{2}} A^{\left(t-\frac{k}{2}\right) p} B^{\frac{r t}{2}}\right)^{\frac{2(1+r)}{(k-2 t)(p+r)}} B^{\frac{1}{2}}\right]^{t} A^{\frac{k}{2}-t+\frac{r_{5}}{2}}\right\}^{h_{5}}
$$

holds for $0 \leqslant \frac{2(1+r) t}{k-2 t} \leqslant 1, k \geqslant 2 t+2,0 \leqslant t \leqslant 1,0 \leqslant r \leqslant 1$ and $p \geqslant 1$, where $\tilde{r_{5}}=$ $\frac{2(1+r) t-k+2 t}{2}$, and $h_{5}=\frac{(p+r)(k-2 t)}{2 r t(1+r)+(p+r)(k-2 t)}>0$.

If we put $r=0$ in Corollary 3.3, we will have the following result.
Corollary 3.6. Let A and B be two positive definite matrices. Then we have

$$
A^{\frac{k}{2}-t} B^{t} \prec_{\log }\left\{A^{\frac{k}{2}-t+\frac{r_{6}}{2}}\left(B^{\frac{1}{2}} A^{-1} B^{\frac{1}{2}}\right)^{\beta} A^{\frac{k}{2}-t+\frac{r_{6}}{2}}\right\}^{h_{6}}
$$

holds for $1 \leqslant \frac{k \beta}{t(k-2 t)} \leqslant 2, k \geqslant 2 t+2,0 \leqslant t \leqslant 1$ and $0 \leqslant \beta \leqslant \min \{1,2 t\}$, where $\tilde{r_{6}}=$ $\frac{k \beta-2 t(k-2 t)}{2 t}$, and $h_{6}=\frac{t}{\beta}>0$.

REMARK 3.1. If we put $r=0, \beta=t$ and $\alpha=\frac{2}{k-2 t}$ in Theorem 3.1, it is just Theorem 1.1 in the case of $k \geqslant 2 t+2$.

Acknowledgements. The authors thank anonymous reviewers for their helpful comments on an earlier draft of this paper. The corresponding author Jian Shi is supported by Science and Technology Project of Hebei Education Department (QN2020145, ZD2021307) and President Foundation of Hebei University (No. XZJJ201902). Zesheng Feng is supported by Post-graduate's Innovation Fund Project of Hebei Province (No. CXZZSS2021005).

REFERENCES

[1] T. FURUTA, $A \geqslant B \geqslant 0$ assures $\left(B^{r} A^{p} B^{r}\right)^{\frac{1}{q}} \geqslant B^{\frac{p+2 r}{q}}$ for $r \geqslant 0, p \geqslant 0, q \geqslant 1$ with $(1+2 r) q \geqslant p+2 r$, Proc. Amer. Math. Soc. 101 (1987), 85-88.
[2] T. Furuta, Invitation to Linear Operators: From Matrices to Bounded Linear Operators on a Hilbert Space, CRC Press, Taylor \& Francis Group, 2001.
[3] M. M. Ghabries, H. Abbas, B. Mourad, On some open questions concerning determinantal inequalities, Linear Algebra Appl., 596 (2020), 169-183.
[4] M. M. Ghabries, H. Abbas, B. Mourad, A. Assi, A proof of a conjectured determinantal inequality, Linear Algebra Appl., 605 (2020), 21-28.
[5] F. Zhang, Matrix Theory: Basic Results and Techniques, Springer, New York, 2nd ed., 2011.

[^0]: Mathematics subject classification (2020): 47A63, 47A64.
 Keywords and phrases: Furuta inequality, generalized Furuta inequality, Ghabries-Abbas-Mourad logmajorization.

 * Corresponding author.

