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GENERALIZED GHABRIES-ABBAS-MOURAD LOG-MAJORIZATION

ZESHENG FENG AND JIAN SHI*

(Communicated by R. Vandebril)

Abstract. In this paper, Ghabries-Abbas-Mourad log-majorization is generalized in two different
cases.

1. Introduction

A capital letter, such as T, stands for an nx n complex matrix. 7 > O means that
T is positive semidefinite and 7 > O means that T is positive definite, respectively.

Recall that for two matrices X and Y, whose eigenvalues are all positive numbers,
the log-majorization X <, ¥ means that

k k

[Trx) <[Jra), k=12, n—1
i=1 i=1

k k

[THx) =TTA),  k=n,

Il
—_
Il
—_

where 4;(X) > A,(X)
counting multiplicities.

There are many log-majorizations shown in [5]. Recently, Ghabries, Abbas and
Mourad obtained a perfect log-majorization in [3] as follows.

WV

o+ =2 Ay(X) are the eigenvalues of X in decreasing order

THEOREM 1.1. ([3], Ghabries-Abbas-Mourad log-majorization) Let A and B
be two positive definite matrices. Then for all 0 <t < 1 and k > 4t, the following
log-majorization holds,

ATTB <), A% (BXATIBEY AL, (1.1)

Theorem 1.1 was recently generalized and improved in [4]. In this paper, Ghabries-
Abbas-Mourad log-majorization is generalized in two different cases. In order to prove
these results, we introduce the following two Lemmas.
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LEMMA 1.1. ([1], Furuta inequality) If A > B > 0, then for each r > 0 and
p=1,

I+r

A1+r 2 (A%BPA%)P“

and
r14r

(B2APBZ)v¥r > B\
hold.

LEMMA 1.2. ([2], Generalized Furuta inequalities) If A > B >0 and A > 0, then
for0<t<land p>1,

1—t+4r

AT S AT (AT BPAT AT

holds for s > 1 and r > t.

2. Generalized Ghabries-Abbas-Mourad log-majorization in the case of
4t <k<L2t+2

In this section, we will show a generalization of Theorem 1.1 in the case of 4t <
k<2t+2.

THEOREM 2.1. Let A and B be two positive definite matrices. Then we have
L L L AN LLor By G By
A27'B" <10 {A27T2[B2(B2 AT B2 )°B2]PATTI T2} (2.1)

holds for 1 < (1—v+1Da <2, 44<k<2t+2, 0<t<1
oyl
Loand 0 < o <1, where p= (az(liv;r;)l, g=GE-nDp-(1-—v+Hal, and 1 =
m*]} A T
(&—v)st+l
a(1—v+1)(1-vrs)

Proof. According to Schur’s complement, we have

My M
M= {M3 MJ >0, (2.2)

where My = ATB/[B7 (BSABY )'B 7 |PBIAY, ~ ~
My =AIBAT 3 My=ASpAd My =AY B (B A 1B ) B2PAL S
Then we have .
(M(ATB'))? < Ay (M)A (M)). (2.3)
It follows that
(A(ATB)) T A (ATB) = (MATB)Y < (M(M)) (a(M1)). (2.4)

In order to prove our result, it is enough to prove that

(aS1p 2t (AYB BT (BT ABY BT P B AYY, (2.5)
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which is equivalent to showing that

vt us

BIAT'BT <= ATB'[BT (BTABY)'BT|PBAT <I. (2.6)
Itis clear that BZAS B’ < I is equivalent to
AT < B (2.7)

Let Ay =B~ and By = A>~", (2.7) gives A; > By.
According to Lemma 1.2, we have

1-v+Ha

v 2 -y .
Al > [AT (A BETAZ PAT)P. (2.8)

By using the Lowner-Heinz inequality for —1 < (1 —v+ tl)oz —2<0, we have

N APV N APV Cpad
AlB(ll V1o 2A1 2AlA(ll V1o 2A1 :A(ll v+,)a. (2.9)
Now together with (2.8) and (2.9), we can conclude
(1-vi)a-2 Y (AT R AT\ A M 1P
AB, Ay > [AT (A7 B AR )'AT)P. (2.10)

Then, replacing A; with B~" and B; with A St respectively, in (2.10), it is equiv-
alent to .
B'ATIB' > [B ( 2AB?)'B 2 ]P, (2.11)

and (2.11) is equivalent to
AfBB7 (BYABY BB AY <1 (2.12)
Thus (2.6) have been proved. This complete the proof. [

Ifweputv=0,s=1o0or o=
have the following three corollaries.

(k_ztkw respectively in Theorem 2.1, we will

COROLLARY 2.1. Let A and B be two positive definite matrices. Then we have
AR < (AR (BEASBE YA
holds for 1 < (1+%)Oc<2, 4t <k<2t+2,0<t<1,s>1and 0< o <1, where
~ 1+44) (k—2 -
p1= () (k=2 ;?ikiz?a, g, = (% —n)[2—(1 —|—%)a], and I} = ﬁ > 0.
COROLLARY 2.2. Let A and B be two positive definite matrices. Then we have
AR < (AR (B AT IR Al - B

holds for 1 < %)agz, 4 <k<2t+2,0<r<1,0<v<land 0<a<l,

(1-
. o(l— /l -k 1 1 o (k22/ v)t+1
where py = %7”%, 2= -1)2—(1—v+;)a], and 12_7(1 g yyr—ws
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COROLLARY 2.3. Let A and B be two positive definite matrices. Then we have
k_yot k_, 93 1, w1 k_,_93
A27B" <0 {A2 7 [B2(B2 A"'B 2 )*B2]P3A2 715

holds for 1 < it <2, 4t <k <2042, 0<1 <1, 0<v<land 1 <s<

5o ke(t—vt+1) o (k=40)(141) vt
where p3 = (1+t)[(27vk+v2vz)xt+k72t]’ 3= ""2(1+) =, and I3 =

(I- vts)p3 >0.
If we put s = 1 in Corollary 2.1, we will have the following result.

COROLLARY 2.4. Let A and B be two positive definite matrices. Then we have
ASTB <y (AT S (B AT B )PAS - Yl
holds for 1 < (1+ 1) <2, 44 <k<2t+2, 0<t< 1 and 0< e < 1, where py =
(1+r)(11§72r)a, di=GE-02-1+Nal, and 1, = i <> 0.

Ifweputa:( kt

(=IED)] in Corollary 2.2, we will have the following result.

COROLLARY 2.5. Let A and B be two positive definite matrices. Then we have

AbB <y, (AE R (B AT B Al

holds for 1 < %gz, 4t <k<2t4+2,0<r <1 and 0 <v < 1, where ps =

kt(t—vt+1) _ 2(k=20)(1+1)—k(t—vt+1) and Is = (1+t)[k vt (k—21)]

k=] 965 = 2(1+1) o > 0

If we put v =0 in Corollary 2.3, we will have the following result.

COROLLARY 2.6. Let A and B be two positive definite matrices. Then we have
A%*IBI <log {A§*’*%(B%A*-"B%)P%A%*”%}h
holds for 1 < < =% 2: L2, 4 <k<2t4+2,0<t <1 and s > 1, where pe = %
q~6=kT,andl6—p[TG>O.

REMARK 2.1. If weput v=0, s=1 and o = M‘W in Theorem 2.1, it is
just Theorem 1.1 in the case of 47 < k < 2t +2.

3. Generalized Ghabries-Abbas-Mourad log-majorization in the case of
k>2t+2

In this section, we will show a different generalization of Theorem 1.1 in the case
of k >2t+2.

THEOREM 3.1. Let A and B be two positive definite matrices. Then we have

AR <y {ATTHE[BE(BEAU-DIPBE ) 0B P AT 5 Y (3.1)
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holds for 1 < [(1+r)o+ B <2, k>2t+2,0<t<1,0<r<1, p>1,0<

B < min{l, - '+’+1} and o € [0,1], where ¥ = (5 — t)[((1+r) 1)[3 —2}, and
— t

h= (Mot +1)p >O

Proof. According to Schur’s complement, we have

M M,
M= {M3 MJ >0, (3.2)
_F =1 —rt k_ =t LEr gy 1 _
where M; = A 7B’[BT(BTA( DPBF )BT |PBATE, My =A"EBIATTTE My =
A%f’*%B’A*% — A ’*2[32(3%14(’*%)173%)% %]ﬁA —1+5
Thenwehave .
(M (AT7'B"))? < M (Ma) Ay (M), (33)

It follows that
((a2 B (d (A2 B = (A% B) < (M (M) (). (3.4)
In order to prove our result, it is enough to prove that
(ATt o (ATERBT (B AGIPBF )y O PATIM (35)
which is equivalent to showing that
BASBE < 1= ASB([BT (BFAGIPBT ) OB PRAI <L (3.6)
It is clear that BéAlic” B < I is equivalent to
AT < B (3.7)

Let A, =B~ and By =A%, (3.7) gives A, > B
According to Lemma 1.1, we have

AT (AT BIAT )T, (3.8)
and then we have
1 1 1 r r r 1
(AT ANAT )P > (AT (AT BPAT) AT )P, (3.9)

By using the Lowner-Heinz inequality for —1 < [(147)o+ %] B —2<0, we have

g 1
AIB[l(1+r)a+l]ﬁ 2A1 ZAE(IH)(H']E (3.10)
Now together with (3.9) and (3.10), we can conclude
ig— 1 r r 1
A BT S (AT (AT BPAT ) PoAT B (3.11)
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Then, replacing A; with B~" and B; with A 5t respectively, in (3.11), it is equiv-
alent to
~ — —rt 1
BATB > [B7 (BF AGPRF ) pitop 3B, (3.12)

and (3.12) is equivalent to

—rt  14r

2-rg= 2 ) *B zl]thA_g < I (3.13)
Thus (3.6) have been proved. This complete the proof. []

Ifweput r=0,B=tora= ﬁ respectively in Theorem 3.1, we will have the

following three corollaries.

COROLLARY 3.1. Let A and B be two positive definite matrices. Then we have
ASTIB <y (ASF (BEAC DT B AT+ Ty

holds for 1 < (Oz—l—[l)ﬁ 2,k=22t+42,0<r<1, 0< B <min{1,2t} and o € [0,1],
where 7 = (5 —t)[(o+ 1) — ],andhl—ﬁ>0.
COROLLARY 3.2. Let A and B be two positive definite matrices. Then we have

1+r

B AL R e

[Sd

ASTB <y, {AS T [BE(BEAC- )P RY

holds for 0 < (1+rjou <1, k>2t4+2,0<r<1,0<r<1, p>1land a €0,1],
where 75 = (5 —1 )[(1—|—r)oct—1] and hy = W>O.

COROLLARY 3.3. Let A and B be two positive definite matrices. Then we have
rn 2(1+ 3
Ai—tBt <log {AZ —1+73 [B% (BfA( )sz ) =2 [)Jrr)Bz}ﬁA —f+‘23‘}h3

holds for 1 < 20 4+ 1B <2, k>2+2, 0<r<1, 0<r<1, p>1 and

t

2t (k—2t)(p+r —[2e(14r)+(k—21) ﬁ 2t (k—2t o
0< B < min{l, 2rt(1+(r)+(k (I;t) (p+r) } where 73 = 2 ( 2t ! ( )’ and hy =
t(k=2t)(p+r)

BT AT =28 > 0"

If we put B = in Corollary 3.1, we will have the following result.

COROLLARY 3.4. Let A and B be two positive definite matrices. Then we have
ASTB <y AS T (BIAU-Dogiyat -1t

holds for k >2t+2, 0<t <1 and o € [0,1], where i = (5 —1)(tor— 1).

If we put o = ﬁ in Corollary 3.2, we will have the following result.
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COROLLARY 3.5. Let A and B be two positive definite matrices. Then we have

2(1+r) 1

AS-ipt <log {A'%*H% [B%(B%A(f%)PB%’)WBQ}IA%H%}’%

holds for 0 < 200 < 1, k>242,0<1 <1, 0<r<1and p>1, where Fs =

2(14r)t—k+2t _ (p+r)(k—2t)
S, and hs = 2rt(1+pr)J:(p+r)(k—2t) >0

If we put » =0 in Corollary 3.3, we will have the following result.

COROLLARY 3.6. Let A and B be two positive definite matrices. Then we have
A%—tBt —<log {Alj(—t-‘rg@(B%A—IB%)ﬁAg—t-‘rgQ}hﬁ
holds for 1 < kB <2, k>22t42,0<r< 1 and 0 < B <min{l,2t}, where g =

t(k—2t)
W,andh6:%>0.

REMARK 3.1. If we put r =0, B =1 and & = &

T in Theorem 3.1, it is just
Theorem 1.1 in the case of k > 2r+2.
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