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Abstract. Given Hilbert space operators P,T ∈ B(H ),P � 0 invertible, T is (m,P) -expansive

(resp., (m,P) -isometric) for some positive integer m if �m
T ∗ ,T (P)= ∑m

j=0(−1) j

(
m
j

)
T ∗ jPT j �

0 (resp., �m
T ∗ ,T (P) = 0). Power bounded (m,P) -expansive operators, and algebraic (m,I) -

expansive operators have a simple structure. A power bounded operator T is an (m,P) -expansive
operator if and only if it is a C1· -operator such that ‖QTx‖ = ‖Qx‖ (i.e., T is Q -isometric) for
some invertible positive operator Q . If, instead, T is an algebraic (m,I) -expansive operator,
then either the spectral radius r(T) of T is greater than one or T is the perturbation of a unitary
by a nilpotent such that T is (2n−1,I) -isometric for some positive integers m0 � m , m0 odd,
and n � m0+1

2 .

1. Introduction

Let B(H ) denote the algebra of operators, i.e., bounded linear transformations,
on an infinite dimensional complex Hilbert space into itself. An operator T is (m, I)-
expansive, or simply m-expansive, for some positive integer m , if

�m
T ∗,T (I) =

m

∑
j=0

(−1) j
(

m
j

)
T ∗ jT j � 0.

Agler, [1, Theorem 3,1], characterized subnormality with positivity of �m
T∗,T (I) :

�m
T∗,T (I) � 0 if and only if ‖T‖ � 1 and T is subnormal. Operators T such that

�m
T∗,T (I) � 0 have been called m-contractive, and operators T such that �m

T ∗,T (I) = 0
are said to be m-isometric [2]. Classes of m-isometric, m-expansive and m-contractive
operators have attracted the attention of a large number of authors over the past three or
so decades (see [4], [5], [6], [7], [8], [11], [12], [13], [14], [19] for further references):
there is an extensive body of information on the structure of these classes of operators,
including that on the spectral picture, preservation (or failure) of these properties un-
der commuting products and perturbation by commuting nilpotents, available in extant
literature.
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For A,B∈ B(H ) , let LA,RB ∈B(B(H )) denote respectively the left and the right
multiplication operators

LA(X) = AX and RB(X) = XB.

Let �A,B ∈ B(B(H )) denote the elementary operator

�A,B(X)) = (I−LARB)(X) = X −AXB.

Then, for positive integers m ,

�m
A,B(X) = (I−LARB)m(X) =

m

∑
j=0

(−1) j
(

m
j

)
AjXBj.

We say in the following that the pair of operators
(A,B) ∈ (m,P)-expansive if �m

A,B(P) � 0;
(A,B) ∈ (m,P)-hyperexpansive if �t

A,B(P) � 0 for all integers 1 � t � m ;
(A,B) ∈ (m,P)-contractive if �m

A,B(P) � 0;
(A,B) ∈ (m,P)-hypercontractive if �t

A,B(P) � 0 for all integers 1 � t � m ;
(A,B) ∈ (m,P)-isometric if �m

A,B(P) = 0.
Recall that an operator T ∈ B(H ) is power bounded if supn ‖Tn‖ � M for some

scalar M > 0. A well known result says that power bounded m-isometric operators
T (i.e., T power bounded and (T ∗,T ) ∈ (m, I)-isometric) are isometric; for power
bounded pairs (A,B) ∈ (m, I)-isometric, A∗ and B are similar to isometries [9]. Does
this result extends to power bounded pairs of (m,P)-expansive operators? We prove
that the answer is in the afirmative for pairs satisfying “an order preserving property”.
Let us say that a pair of operators (A,B) preserves order if LARB(Q) � 0 whenever
Q � 0. We prove that if A,B are power boiunded operators, the pair (A,B) preserves
order and (A,B)∈ (m,P)-expansive, then there exist positive invertible operators P1,P2

and an isometry V such that A = P−1
1 V ∗P1 and B = P−1

2 VP2 . For power bounded
T ∈ (m,P)-expansive (i.e., (T ∗,T ) ∈ (m,P)-expansive) operators, this translates to “T
is a C1· -operator which is similar to an isometry and satisfies T ∗QT = Q for some
positive invertible operator Q”. (Thus T is isometric in an equivalent norm: ‖x‖Q =

〈x,x〉
1
2
Q = ‖Q 1

2 x‖ .) For operators T ∈ (m,P)-contractive, it is seen that T is similar to
the direct sum of the conjugate of a C0· -contraction with a unitary. Algebraic (m,P)-
expansive operators T are not Drazin invertible. We prove that for such operators T
either the spectral radius r(T ) > 1, or, T is the perturbation of a unitary operator by a
commuting nilpotent such that T ∈ (2n− 1)-isometric for some integer n (dependent
upon m). A similar result for algebraic m-contractive operators is not possible.

The plan of this paper is as follows. Alongwith certain additional notation and
a couple of well known complementary results, Section 2 introduces the concept of
“order preserving pairs of operators”. Using simple algebraic arguments involving lit-
tle more than the operators of left and right multiplication, we prove that if (A,B) ∈
(m,P)-expansive (resp., (A,B)∈ (m,P)-contractive), then (An,Bn)∈ (m,P)-expansive
(resp., (An,Bn) ∈ (m,P)-contractive) for all positive integers n [11]. It is seen that if
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(A,B) is an order preserving pair such that (A,B) ∈ (m,P)-expansive (resp., (A,B) ∈
(m + 1,P)-contractive) for some positive even integer m , then (A,B) ∈ (m− 1,P)-
expansive (resp., (A,B) ∈ (m,P)-contractive). Section 3 is devoted to considering the
structure of power bounded (m,P)-expansive and (m,P)-contractive operators. It is
seen that a power bounded (m,P)-expansive operator is simiar to an isometry, and a
power bounded (m,P)-contractive operator is similar to the direct sum of the adjoint
of a C0· -contraction with a unitary. Algebraic (Hilbert space) operators have a well
understood structure; they have a countably finite spectrum and are the perturbation
of a normal operator by a commuting nilpotent. Section 4 considers algebraic (m,P)-
expansive operators T to prove that if T ∗T � 1, then T ∈ (m,P)-alternatingly expan-
sive; if T has spectral radius less than or equal to one, then T is the perturbation of a
unitary with a commuting nilpotent such that T ∈ (2n−1)-isometric for some integer
2n � m0 +1, m0 some odd integer satisfying m0 � m . Similar analysis does not hold
for algebraic (m,P)-contractive T .

2. Complementary results

Throughout the following A,B and T will denote operators in B(H ) , and P ∈
B(H ) will denote a positive invertible operator. We shall henceforth shorten (T ∗,T ) ∈
(m,P)− ·· · to T ∈ (m,P)− ·· · , and T ∈ (m, I)− ·· · to T ∈ m− ·· · . The spectrum,
the approximate point spectrum and the isolated points of the spectrum of A will be
denoted by σ(A), σa(A) and isoσ(A) , respectively. T is a C0· -operator (resp., C1· -
operator) if

lim
n→∞

‖Tnx‖ = 0 for all x ∈ H

(resp., inf
n∈N

‖Tnx‖ > 0 for all 0 	= x ∈ H );

T ∈C·0 if T ∗ ∈C0· , T ∈C·1 if T ∗ ∈C1· , and T ∈Cαβ if T ∈Cα · ∩C·β (α,β = 0,1).
The operator T is weakly C0· (or, weakly stable [17]) if limn→∞〈Tnx,x〉 = 0 for all
x ∈ H (equivalently; if limn→∞〈Tnx,y〉 = 0 for all x,y ∈ H ). It is well known, [15],
that power bounded operators T have an upper triangular representation

T =
(

T1 T3

0 T2

)
∈ B(H1 ⊕H2)

for some decomposition H = H1⊕H2 of H such that T1 ∈C0· and T2 ∈C1·. Every
isometry V ∈ B(H ) has a direct sum decomposition

V = V10⊕Vu ∈ B(Hc ⊕Hu),V10 ∈C10 and Vu ∈C11

into its completely non-unitary (i.e., unilateral shift) and unitary parts [17].
The following well known result from Douglas [10] will often be used in the sequel

(without further mention).

THEOREM 2.1. The following statements are pairwise equivalent:

(i) A(H ) ⊆ B(H ) .
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(ii) There is a μ � 0 such that AA∗ � μ2BB∗ .

(iii) There is an operator C ∈ B(H ) such that A = BC.
If these conditions are satisfied, then the operator C may be chosen so that ‖C‖2 =

inf{λ : AA∗ � λBB∗} , A−1(0) ⊆C−1(0) and C(H ) ⊆ B−1(0)⊥ .

Suppose that the pair of operators (A,B) preserves order in the sense that
(LARB)(X) � 0 for all X ∈ B(H ) such that X � 0. For all positive integers n ,

�m
An,Bn(P) = (I−LAnRBn)m (P) = (I−Ln

ARn
B)m(P)

= {Ln−1
A �A,B(P)Rn−1

B +Ln−2
A �A,B(P)Rn−2

B + · · ·
+LA�A,B(P)RB +�A,B(P)}m

=
{
Ln−1

A Rn−1
B +Ln−2

A Rn−2
B + · · ·+LARB + I

}m (�m
A,B(P)

)
.

Hence
(A,B) ∈ (m,P)-expansive =⇒ (An,Bn) ∈ (m,P)-expansive, and

(A,B) ∈ (m,P)-contractive =⇒ (An,Bn) ∈ (m,P)-contractive

for all positive integers n .

The identity (a−1)m = am −∑m−1
j=0

(
m
j

)
(a−1) j implies

�̃m
A,B = (LARB − I)m = (LARB)m −

m−1

∑
j=0

(
m
j

)
�̃m−1

A,B = (−1)m�m
A,B.

If �̃m
A,B(P) � 0 for some positive integer m , then, since

�̃ j
A,B = LARB

(
�̃ j−1

A,B

)
−�̃ j−1

A,B

for all integers j � 1,

m−1

∑
j=0

(
n
j

)
LARB

(
�̃ j

A,B

)
=

m−1

∑
j=0

(
n
j

)
�̃ j+1

A,B +
m−1

∑
j=0

(
n
j

)
�̃ j

A,B

=
(

n
m−1

)
�̃m

A,B +
m−1

∑
j=0

(
n+1

j

)
�̃ j

A,B.

Evidently (see above), �̃m
A,B(P) � 0 implies

(0 �) (LARB)m(P) �
m−1

∑
j=0

(
m
j

)
�̃ j

A,B(P).

We prove

(0 �) (LARB)n(P) �
m−1

∑
j=0

(
n
j

)
�̃ j

A,B(P), for all n � m.
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The inequality being true for n = m , assume it to be true for n = t . Then, since (A,B)
preserves order,

(0 �) (LARB)t+1(P) �
m−1

∑
j=0

(
t
j

)
LARB

(
�̃ j

A,B(P)
)

(1) =
(

t
m−1

)
�̃m

A,B(P)+
m−1

∑
j=0

(
t +1

j

)
�̃ j

A,B(P)

�
m−1

∑
j=0

(
t +1

j

)
�̃ j

A,B(P)

(since �̃m
A,B(P) � 0). Thus the inequality is true for n = t +1, hence by induction for

all integers n � m .
Observe from (1) that

(0 �)
1

nm−1 (LARB)n(P) � 1
nm−1

{(
n

m−1

)
�̃m−1

A,B (P)+
m−2

∑
j=0

(
n
j

)
�̃ j

A,B(P)

}
.

Since

(
n

m−1

)
is of the order of nm−1 and

(
n

m−2

)
is of the order of nm−2 for

large n , letting n → ∞ we have

0 � �̃m−1
A,B (P)

(
⇐⇒ (−1)m�m−1

A,B (P) � 0
)

.

In conclusion, we have:

PROPOSITION 2.2. If the pair (A,B) preserves order, then

(i) m positive even and (A,B)∈ (m,P)-expansive implies (A,B)∈ (m−1,P)-expansive;

(ii) m positive odd and (A,B)∈ (m,P)-contractive implies (A,B)∈ (m−1,P)-contractive.

For pairs (T ∗,T ) this translates to (cf [13]):

PROPOSITION 2.3. If T ∈ (m,P)-expansive for some even positive integer m
(resp., T ∈ (m,P)-contractive for some odd positive integer m), then T ∈ (m−1,P)-
expansive (resp., T ∈ (m−1,P)-contractive).

3. Power bounded operators

Proposition 2.2 does not extend to odd positive integers m for (m,P)-expansive
(resp., even positive integers m for (m,P)-contractive) operators T : for if it were so,
then one would have that T ∈ (m,P)-expansive implies T ∈ (m,P)-hyperexpansive
(resp., T ∈ (m,P)-contractive implies T ∈ (m,P)-hypercontractive). A class of oper-
ators where Proposition 2.2 does have an extension to all m is that of power bounded
operators. We have:
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THEOREM 3.1. If A,B are power bounded, the pair (A,B) preserves order and
(A,B) ∈ (m,P)-expansive (resp., (A,B) ∈ (m,P)-contractive), then (A,B) ∈ (m,P)-
hyperexpansive (resp., (A,B) ∈ (m,P)-hypercontractive).

Proof. In view of Proposition 2.2, we have only to prove that m odd, (A,B) ∈
(m,P)-expansive implies (A,B) ∈ (m− 1,P)-expansive and m even, (A,B) ∈ (m,P)-
contractive implies (A,B) ∈ (m−1,P)-contractive. And for this it is sufficient to prove
that

�̃m
A,B(P) � 0 =⇒�̃m−1

A,B (P) � 0,

since by definition
�m

A,B(P) � 0 ⇐⇒�̃m
A,B(P) � 0, m odd

and
�m

A,B(P) � 0 ⇐⇒�̃m
A,B(P) � 0, m even.

If �̃m
A,B(P) � 0, then

�̃m
A,B(P) = (LARB)m(P)−

m−1

∑
j=0

(
m
j

)
�̃ j

A,B(P) � 0.

By hypothesis, (A,B) preserves order. Hence, since

(LARB)

{
(LARB)t −

m−1

∑
j=0

(
t
j

)
�̃ j

A,B

}

= (LARB)t+1 −
{

m−1

∑
j=0

(
t +1

j

)
�̃ j

A,B +
(

t
m−1

)
�̃m

A,B

}
,

an induction argument shows that

(2) 0 � (LARB)n(P)−
{

m−1

∑
j=0

(
n
j

)
�̃ j

A,B(P)+
(

n−1
m−1

)
�̃m

A,B(P)

}

� (LARB)n(P)−
m−1

∑
j=0

(
n
j

)
�̃ j

A,B(P)

for all integer n � m .
The power bounded hypothesis on A,B implies

|〈(LARB)n(P)x,x〉| �
∥∥∥P 1

2

∥∥∥2 ‖A∗n‖‖Bn‖‖x‖2 � M‖x‖2

for some scalar M > 0. Hence, since

m−1

∑
j=0

(
n
j

)
�̃ j

A,B =
(

n
m−1

)
�̃m−1

A,B +
m−2

∑
j=0

(
n
j

)
�̃ j

A,B,
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(
n

m−1

)
is of the order of nm−1 and

(
n
j

)
is of the order of nm−2 (0 � j � m−2)

as n → ∞ , it follows upon dividing the inequality in (2) by nm−1 and letting n → ∞
that

−�̃m−1
A,B (P) � 0 ⇐⇒ �̃m−1

A,B (P) � 0. �

The following theorem says that for power bounded order preserving pairs of op-
erators (A,B) ∈ (m,P)-expansive, A and B have a simple form: B is similar to an
isometry and A is similar to a co-isometry.

THEOREM 3.2. Given power bounded operators A,B such that (A,B) preserves
order, if (A,B)∈ (m,P)-expansive, then there exist positive operators Pi and isometries
Vi, i = 1,2 , such that A = P−1

1 V ∗
1 P1 and B = P−1

2 V2P2 .

Proof. Since �m
A,B(P) � 0 implies �m

An,Bn(P) � 0 for all positive integers n , we
have:

(A,B) ∈ (m,P)-expansive =⇒�m
An,Bn(P) � 0

⇐⇒ P �
m

∑
j=1

(−1) j+1
(

m
j

)
An jPBn j

⇐⇒ I �
m

∑
j=1

(−1) j+1
(

m
j

)(
P− 1

2 AnP
1
2

) j (
P

1
2 BnP− 1

2

) j−1(
P

1
2 BnP− 1

2

)

=⇒ ‖x‖ �
∥∥∥∥∥

m

∑
j=1

(−1) j+1
(

m
j

)(
P− 1

2 An(P
1
2

) j (
P

1
2 Bn(P− 1

2

) j−1
∥∥∥∥∥
∥∥∥P 1

2 BnP− 1
2 x
∥∥∥

=⇒ ‖x‖ � M0

∥∥∥P 1
2 BnP− 1

2 x
∥∥∥

for some scalar M0 > 0 and all x ∈ H . The operator P
1
2 BP− 1

2 being power bounded,
there exists a scalar M1 > 0 such that

1
M0

‖x‖ �
∥∥∥(P 1

2 BP− 1
2

)n
x
∥∥∥� M1‖x‖

for all x ∈H . Hence there exists an invertible operator S and an isometry V such that

P
1
2 BP− 1

2 = S−1VS ⇐⇒ B =
(
SP

1
2

)−1
V
(
SP

1
2

)
[16]. But then

B∗P
1
2 S∗SP

1
2 B = P

1
2 S∗SP

1
2 ⇐⇒ B∗P2

1 B = P2
1

for some invertible positive operator P2
1 = P

1
2 S∗SP

1
2 .

Conclusion: there exists an isometry V1 and a positive invertible operator P1 such
that

B∗P1 = P1V
∗
1 ⇐⇒ B = P−1

1 V1P1.
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To complete the proof, we apply the above argument to

�m
B∗,A∗(P) � 0

(⇐⇒�m
A,B(P) � 0

)
to conclude the existence of an invertible positive operator P2 and an isometry V2 such
that A = P−1

2 V ∗
2 P2 . �

For (m,P)-contractive pairs (A,B) of power bounded operators Theorem 3.1 im-
plies

�A,B(P) � 0 ⇐⇒
(
P− 1

2 A(P
1
2

)(
P

1
2 B(P− 1

2

)
� I.

Letting A = B∗ = T ∗ , it then follows that: if T ∈ (m,P)-expansive (resp., T ∈ (m,P)-
contractive), then T is similar to an isometry (resp., T is similar to a contraction, hence
similar to a part of a co-isometric operator [17, Lemma 7.1]).

More is true. Since T ∗pQT p = Lp
T ∗R

p
t (Q) � 0 for all positive integers p and

operators Q � 0, the pair (T ∗,T ) is order preserving. The following theorem says that
a power bounded (m,P)-isometric operator T is indeed an isometry (hence n -isometric
for all n � 1) in an equivalent norm.

THEOREM 3.3. The following conditions are pairwise equivalent for (m,P)-expan-
sive operators T ∈ B(H ) .

(i) T is power bounded.

(ii) T is (a C1· -operator which is) similar to an isometry.

(iii) There exists a positive invertible operator Q such that T ∈ (n,Q)-isometric for all
integers n � 1 .

(iv) There exists a positive invertible operator Q and an equivalent norm ||.||Q on H
induced by the inner product 〈., .〉Q = 〈Q., .〉 such that T is n-isometric for all integers
n � 1 in this new norm.

Proof. (i) =⇒ (ii). If T ∈ (m,P)-expansive, then (see above) there exists a posi-
tive invertible operator P1 ∈ B(H ) and an isometry V1 ∈ B(H ) such that P1T =V1P1 .
The operator T being power bounded, there exists a direct sum decomposition H =
H11⊕H12 of H such that

T =
(

T1 T3

0 T2

)
∈ B(H11 ⊕H12), T1 ∈C0· and T2 ∈C1·

[15]. Decompose V1 into its completely non-unitary (i.e., forward unilateral shift) and
unitary parts by

V1 =V10⊕V1u ∈ B(H10 ⊕H20).

Let P1 ∈ B(H11⊕H12,H10 ⊕H20) have the matrix representation

P1 =
(

P11 P12

P∗
12 P22

)
.
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Then

P1T = V1P1 =⇒ P∗
12T1 = V1uP

∗
12 =⇒ P∗

12T
n
1 = Vn

1uP
∗
12 (all positive integers n)

=⇒ ‖P∗
12x‖ = ‖Vn

1uP
∗
12x‖ = ‖P∗

12T
n
1 x‖ � ‖P∗

12‖‖Tn
1 x‖

for all x ∈ H11 . Since T1 ∈C0· ,

‖P∗
12x‖ → 0 as n → ∞ ⇐⇒ P∗

12 = 0.

Hence
P = P11⊕P22, P11 and P22 � 0 invertible,

and
P1T = V1P1 =⇒ P11T3 = 0, P11A1 = V10P11.

Consequently, T3 = 0 and

P11A1 = V10P11 =⇒ P11A
n
1 = Vn

10P11 (all positive integers n)
=⇒ ‖P11x‖ = ‖Vn

10P11x‖ = ‖P11A
n
1x‖ � ‖P11‖‖An

1x‖→ 0 as n → ∞
(since A1 ∈C0·)

=⇒ ‖P11x‖ = 0 ⇐⇒ P11 = 0 or x = 0.

Since P11 is invertible, we must have H11 = {0} , and then T is a C1· -operator such
that T = P−1

1 V1P1 .

(ii) =⇒ (iii). Evident, since (ii) holds implies

T = P−1
1 VP1 =⇒ T ∗QT = Q,Q = P2

1 =⇒ T ∈ (n,Q)-isometric

for all positive integers n � 1.

(iii) =⇒ (iv). The operator Q � 0 being invetible, ||.||Q is an equivalent norm on

H [18] such that ∑n
j=0 (−1) j

(
n
j

)
||T jx||2Q = 0 for integers n � 1 and all x ∈ H .

(iv) =⇒ (i). Evident, since T ∈ (n,Q)-isometric implies T p ∈ (n,Q)-isometric
for all integers p � 1, in particular

0 = ||x||2Q −||T px||2Q = 〈(Q−T∗pQT p)x,x〉 for all x ∈ H ⇐⇒ Q = T ∗pQT p

⇐⇒ there exists an isometry V such that T ∗pQ
1
2 = Q

1
2V ∗ ⇐⇒ T p = Q− 1

2VQ
1
2

=⇒ sup
p
||T p|| � ||Q− 1

2 ||||Q 1
2 || < ∞.

This completes the proof. �

For (m,P)-contractive power bounded operators, we have:

THEOREM 3.4. If T is a power bounded (m,P)-contractive operator in B(H ) ,
then T is similar to the direct sum of the adjoint of a C0· -contraction with a unitary.
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Proof. If T ∈ (m,P)-contractive is power bounded, then T ∈ (m,P)-hypercon-
tractive (by Theorem 2.1) and hence

�T ∗,T (P) � 0 ⇐⇒ P � T ∗PT.

Consequently, there exists a contraction C ∈ B(H ) such that

P
1
2C = T ∗P

1
2 .

The contraction C has a decomposition, the Foguel decomposition [17],

C = Z⊕U ∈ B(Hc ⊕H ⊥
c ),

He = {x ∈ H : 〈Cnx,y〉 → 0 as n → ∞, all y ∈ H },
where U is unitary and

lim
n→∞

〈Znx,x〉 = 0 for all x ∈ Hc

(i.e., Z ∈ B(Hc) is weakly C0· ). Letting, as before

T =
(

T1 T3

0 T2

)
∈ B(H11⊕H12), T1 ∈C0· and T2 ∈C1·,

and letting

P
1
2 =

(
P11 P12

P∗
12 P22

)
∈ B(H11 ⊕H12,Hc ⊕H ⊥

c ).

the equality

P12U = T ∗
1 P12 ⇐⇒U∗P∗

12 = P∗
12T1 =⇒U∗nP∗

12 = P∗
12T

n
1

=⇒ ‖P∗
12x‖ = ‖U∗nP∗

12x‖ = ‖P∗
12T

n
1 x‖ � ‖P∗

12‖‖Tn
1 x‖ (all x ∈ H11)

=⇒ ‖P∗
12x‖ � ‖P∗

12‖ lim
n→∞

‖Tn
1 x‖ = 0

=⇒ P12 = 0, P
1
2 = P11⊕P22, P11 and P22 � 0 invertible.

Considering now T ∗
3 P11 = 0 it follows that

T3 = 0, T = T1⊕T2, T ∗
1 = P11ZP−1

11 , T ∗
2 = P22UP−1

22

and T is similar to the direct sum of the adjoint of a C0· -contraction (hence, a weakly
C0· -contraction) with a unitary. �

It is clear from the above that in the case in which T ∈ (m,P)-isometric, then
(T ∈ (m,P)-expansive ∧ (m,P)-contractive) P1−T ∗P1T = 0, where the similarity P1

may be chosen to be the operator P . In particular, if P = I , then T is isometric.
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4. Algebraic T

If T ∈ B(H ) is an algebraic operator (i.e., there exists a polynomial q such that
q(T ) = 0), then T has a representation

T =
t⊕

i=1

T |H0(T−λiI), H =
t⊕

i=1

H0(T −λiI)

for some positive integer t and scalars λi , where

H0(T −λiI) =
{

x ∈ H : lim
n→∞

‖(T −λiI)nx‖ 1
n = 0

}
= (T −λiI)−pi(0)

for some positive integer pi . The points λi are poles of the resolvent of T of order pi

and (therefore) each Ti = T |H0(T−λiI) has a representation

Ti = λiIi +Ni, 1 � i � t,

where Ii is the identity of B(H0(T −λiI)) and Ni is pi -nilpotent. Evidently,

T =
t⊕

i=1

Ti =
t⊕

i=1

(λiIi +Ni) = T0 +N,

where T0 is a normal operator with

σ(T0) = σa(T0) = σ(T ) = {λ1,λ2, · · · ,λt}

and N is a nilpotent of order p = max{pi : 1 � i � t} .
Assume now that T ∈ (m,P)-expansive, P � 0 invertible (as before).
If λ ∈ σa(T ) , then there exists a sequence of unit vectors {xn} ⊂ H such that

limn→∞ ‖(T −λ I)xn‖ = 0 and

lim
n→∞

〈�m
T ∗,T (P)xn,xn〉 = lim

n→∞

m

∑
j=0

(−1) j
(

m
j

)∥∥∥P 1
2 T jx

∥∥∥2

= lim
n→∞

m

∑
j=0

(−1) j
(

m
j

)
|λ |2 j

∥∥∥P 1
2 xn

∥∥∥2

= lim
n→∞

(
1−|λ |2)m∥∥∥P 1

2 xn

∥∥∥2
� 0.

Since P � 0 is invertible, we must have

|λ | = 1 if m is even (=⇒ σa(T ) ⊆ ∂D if m is even)

and
|λ | � 1 if m is odd (=⇒ σa(T ) ⊆ C\D if m is odd).
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Algebraic (m,P)-expansive operators cannot be Drazin invertible (hence are in-
vertible). To see this, let T be an algebraic (m,P)-expansive Drazin invertible op-
erator. Then there exists a decomposition H = H1 ⊕H2 of H , a decomposition
T = T |H1 ⊕T |H2= T1 ⊕T2 of T such that T1 is invertible and T2 is p -nilpotent for
some positive integer p . Since

T ∈ (m,P)-expansive =⇒ T p ∈ (m,P)-expansive,

letting P ∈ B(H1 ⊕H2) have the representation P = [Pik]
2
i,k=1 , we have

0 �
m

∑
j=0

(−1) j
(

m
j

)
T ∗p jPT pj

=

[
m

∑
j=0

(−1) j
(

m
j

)
T
∗p j
i PikT

p j
k

]2

i,k=1

=

⎛
⎝∑m

j=0(−1) j

(
m
j

)
T
∗p j
1 P11T

pj
1 P12

P21 P22

⎞
⎠

=⇒ P22 = 0 (since P22 � 0).

But then, by the positivity of P, P12 = P∗
21 = 0 ([3], Theorem I.1). Since P is invertible,

this is a contradiction.
The following theorem says that for an algebraic (m,P)-expansive operator T ,

either r(T ) > 1 or T is the direct sum of a unitary with a nilpotent (2n−1)-isometric
operator for some positive integer n .

THEOREM 4.1. If T ∈ B(H ) is an algebraic m-expansive operator such that
r(T ) � 1 , then:

(i) T is a perturbation of a unitary by a commuting nilpotent;

(ii) there exist positive integers m0 and n,

m0 � m, m0 odd, n � m0 +1
2

,

such that

T ∈ (2n−1)-isometric.

Proof. We consider m even and m odd cases separately. If m is even, then (as
seen above)

σ(T ) = σa(T ) ⊆ ∂D =⇒ σ(T0) ⊆ ∂D

hence the normal operator T0 is a unitary (and T = T0 +N , [T0,N] = 0, is the pertur-
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bation of T0 by a nilpotent). Then

�T∗,T = (I−LT∗RT ) =
(
I−LT∗

0 +N∗RT0+N

)
=
(
I−LT∗

0
RT0

)
−
{
LN∗RT0 +LT∗

0 +N∗RN

}
= �T ∗

0 ,T0
−
{
LN∗RT0 +LT∗

0 +N∗RN

}
= �T ∗

0 ,T0
−S (say)

and

�t
T ∗,T (I) =

(
t

∑
j=0

(−1) j
(

t
j

)
�t− j

T ∗
0 ,T0

St

)
(I)

=
t

∑
j=0

(−1) j
(

t
j

)
S j�t− j

T∗
0 ,T0

(I)

(since [T0,N] = 0). Evidently,

T0 ∈ 1-isometric (⇐⇒�T∗
0 ,T0

(I) = 0);

hence

�t
T ∗,T (I) = (−1)tSt = (−1)t

(
t

∑
k=0

(
t
k

)
Rt−k

T ∗
0

Lk
T ∗
0 +N∗Lt−k

N∗ Rk
N

)
(I)

This implies that if N is n -nilpotent and t = 2n− 1, then S = 0 and, consequently,
T ∈ (2n− 1)-isometric. We prove that n � m0+1

2 . By hypothesis (above) the odd
integer m0 is the smallest positive integer such that

〈�m0−1
T ∗,T (I)x0,x0〉 =

m0−1

∑
j=0

(−1) j
(

m0−1
j

)∥∥T jx0
∥∥2

> 0

⇐⇒ 〈Sm0−1x0,x0〉 =
m0−1

∑
k=0

(−1) j
(

m0−1
k

)
N∗m0−1−k〈T ∗

0 +N∗m0−1Tm0−1−1
0 x0,x0〉Nk

> 0.

Since n = m0−1
2 forces

〈Sm0−1x0,x0〉 = 0,

we must have Nn 	= 0 for all n � m0−1
2 .

If m is odd, then
σ(T ) = σa(T ) ⊆ C\D

and the spectral radius
r(T ) = max{|λ | : λ ∈ σ(T )}

satisfies r(T ) = 1 or r(T ) > 1. If r(T ) = 1, then σ(T ) = σa(T )⊆ ∂D and T = T0 +N
is the perturbation of a unitary by a commuting nilpotent. The argument above applies,
and the proof follows. �
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The theorem fails in the case in which m is odd and r(T ) > 1. Consider, for
example, the operator T = αI , where |α| > 1. Then

�2m+1
T∗,T (I) =

2m+1

∑
j=0

(−1) j
(

2m+1
j

)
|α|2 j =

(
1−|α|2)2m+1

< 0

for all integers m � 0. Observe here that

�̃m
T ∗,T (I) > 0

for all positive integers m (i.e., the operator T is m-alternatingly expansive [12, Defini-
tion 1.1(7)]). Is this typical of operators T ∈m-expansive for some odd positive integer
m with r(T ) > 1 ? The operator T of the example evidently satisfies T ∗T > I : The fol-
lowing proposition proves that invertible operators T such that T ∈ (m,P)-expansive,
P � 0 invertible and T ∗T � 1 are indeed (m,P)-alternatingly expansive.

PROPOSITION 4.2. If an invertible operator T ∈ (m,P)-expansive, P � 0 invert-
ible, satisfies T ∗T � 1 , then T ∈ (m,P)-alternatingly expansive.

Proof. The hypotheses imply that T−1 is a contraction, hence power bounded,
such that

�̃m
T∗−1,T−1(P) � 0.

Consequently,

�̃m
T ∗−1,T−1(P) =

{�m
T ∗−1,T−1(P) � 0 if m is even

�m
T ∗−1,T−1(P) � 0 if m is odd,

and this (by Proposition 2.3) implies

T−1 ∈
{

(m,P)-hyperexpansive if m is even
(m,P)-hypercontractive if m is odd.

Since

�t
T∗−1,T−1(P) � 0 =⇒

{�t
T∗,T (P) � 0 if t is even

�t
T∗,T (P) � 0 if t is odd

and

�t
T∗−1,T−1(P) � 0 =⇒

{�t
T∗,T (P) � 0 if t is even

�t
T∗,T (P) � 0 if t is odd,

the proof follows. �

REMARK 4.3. We remark in closing that a similar analysis does not hold for
(m,P)-contractive algebraic operators. Thus T = αI ⊕ 0 ∈ B(H ⊕H ) is Drazin in-
vertible (m,P1 ⊕P2)-contractive operator, P1 and P2 ∈ B(H ) are positive invertible,
for all scalars α if m is even and for scalars α such that |α| � 1 if m is odd.
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