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BUZANO, KREĬN AND CAUCHY–SCHWARZ INEQUALITIES

MOHAMMAD SABABHEH, HAMID REZA MORADI AND ZAHRA HEYDARBEYGI

(Communicated by F. Kittaneh)

Abstract. The Cauchy-Schwarz, Buzano and Kreı̆n inequalities are three inequalities about inner
product. The main goal of this article is to present refinements of Buzano and Cauchy-Schwarz
inequalities, and to present a new proof of a refined version of a Kreı̆n-type inequality. Appli-
cations that include Buzano-type inequalities for certain operators, operator norm and numerical
radius inequalities of Hilbert space operators will be presented.

1. Introduction

Let H be a given complex Hilbert space, with inner product 〈·, ·〉 . The celebrated
Cauchy-Schwarz inequality states that

| 〈x,y〉 | � ‖x‖ ‖y‖, (1.1)

for any vectors x,y ∈ H . When x and y are non-zero vectors, (1.1) implies 0 �
|〈x,y〉|
‖x‖ ‖y‖ � 1. This motivates defining the angle between the vectors x,y by ψx,y where

cosψx,y =
|〈x,y〉|
‖x‖‖y‖ ; 0 � ψx,y � π

2
. (1.2)

Another possible definition for the angle is ϕx,y defined as

cosϕx,y =
Re 〈x,y〉
‖x‖‖y‖ ; 0 � ϕx,y � π .

We refer the reader to [15] for these definitions and some details.
In [12], Kreı̆n obtained the following inequality for angles between two vectors

ϕx,z � ϕx,y + ϕy,z, (1.3)

for any nonzero x,y,z ∈ Cn .
In [13], Lin showed that the following triangle inequality

ψx,y � ψx,z + ψz,y, (1.4)
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holds for any nonzero x,y,z ∈ Cn . Lin’s proof used the representation

ψx,y = inf
α ,β∈C\{0}

ϕαx,β y = inf
α∈C\{0}

ϕαx,y = inf
β∈C\{0}

ϕx,β y

and inequality (1.3).
Thus, both ϕx,y and ψx,y satisfy the triangle inequality. Our first target in this

article is to present a new proof of (1.4). This new proof will follow from some inner
product inequalities, that we present while refining the celebrated Buzano inequality
[4], which states

|〈x,z〉| |〈y,z〉| � ‖z‖2

2
(|〈x,y〉|+‖x‖‖y‖) (1.5)

for any x,y,z ∈ H . It is important to note that Buzano inequality gives a better bound
than applying the Cauchy-Schwarz inequality twice on the left side. That is, (1.1)
implies

|〈x,z〉| |〈y,z〉| � ‖z‖2‖x‖ ‖y‖. (1.6)

At the same time, (1.1) implies

‖z‖2

2
(|〈x,y〉|+‖x‖‖y‖) � ‖z‖2‖x‖ ‖y‖.

Consequently, (1.5) provides a refinement of (1.6).
After discussing the Buzano and Kreı̆n inequalities, we present some new refine-

ments of the Cauchy-Schwarz inequality (1.1) for positive contractive operators.
As further and interesting applications of the obtained inequalities, we present

some inequalities for the numerical radius and operator norm of Hilbert space operators.
In this context, let B(H ) denote the algebra of all bounded linear operators acting on
a Hilbert space H . In B(H ) , an operator A is said to be positive, and is denoted as
A � 0, if 〈Ax,x〉� 0 for all x∈H . The partial ordering relation “�” is defined among
self adjoint operators as

A � B ⇔ B−A � 0.

An operator A ∈ B(H ) is said to be a positive contractive operator if A is positive and
A � I , where I is the identity operator on H .

We recall here that the operator norm and the numerical radius of an operator
T ∈ B(H ) are defined respectively by

ω(T ) = sup
‖x‖=1

| 〈Tx,x〉 | and ‖T‖ = sup
‖x‖=1

‖Tx‖.

It is well known that 1
2‖T‖ � ω(T ) � ‖T‖, for T ∈ B(H ) (see e.g., [10, Theorem

1.3-1]). Our applications below include refinements of the second inequality above and
some other consequences. Among many results, we retrieve the well known inequality
[6, Theorem 1]:

ω(ST ) � 1
2
‖ |S∗|2 + |T 2| ‖, S,T ∈ B(H ).
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In this context, the notation |X | will be used to denote (X∗X)
1
2 , for X ∈ B(H ).

Another interesting application of our results is another better bound for the nu-
merical radius of the product of two operators. In particular, we deduce that when B is
positive, then (see [1, Corollary 2.6])

ω(AB) � 3
2
‖B‖ω(A), A ∈ B(H ).

The significance of this inequality is due to the following inequalities

ω(AB) � ‖AB‖ � ‖B‖ ‖A‖ � 2‖B‖ω(A), A,B ∈ B(H ).

Consequently, our new bound provides a considerable refinement of this latter bound.
See Remark 3.1 and Corollary 3.3 below for the details.

Before proceeding to the main results, we present the following observation about
projections and Buzano inequality, which can be considered as a new proof of the main
result in [8].

REMARK 1.1. Let P be any orthogonal projection in B(H ) . Put z = Px in (1.5),
and use the fact that P2 = P = P∗ , for any projection, then for x,y ∈ H ,

‖Px‖2 |〈y,Px〉| = |〈Px,Px〉| |〈y,Px〉|
=

∣∣〈x,P2x
〉∣∣ |〈y,Px〉|

= |〈x,Px〉| |〈y,Px〉|

� ‖Px‖2

2
(|〈x,y〉|+‖x‖‖y‖) .

Thus, we have shown that

|〈Px,y〉| � 1
2

(|〈x,y〉|+‖x‖‖y‖) ,

for any orthogonal projection P . It is interesting that positive contractive operators
satisfy the Buzano inequality, as we show in Corollary 3.2 below.

2. Buzano and Kreı̆n inequalities

We start this section with the following lemma, which can be obtained by [9,
Inequalities (1.5)–(1.6)]; however, for the reader’s convenience, we add a proof. After
that we present a new proof of the Kreı̆n-Lin inequality (1.4), with a refinement.

LEMMA 2.1. For any x,y,z ∈ H ,

|〈x,z〉 〈z,y〉|
� 1

2

[
|〈x,z〉 〈y,z〉|+ |〈x,y〉|‖z‖2 +

∣∣∣〈x,y〉‖z‖2 −〈x,z〉 〈z,y〉
∣∣∣]

� 1
2

[
|〈x,z〉 〈y,z〉|+ |〈x,y〉|‖z‖2 +

√
‖x‖2‖z‖2−|〈x,z〉|2

√
‖y‖2‖z‖2−|〈y,z〉|2

]

� ‖z‖2

2
(‖x‖‖y‖+ |〈x,y〉|) .
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Proof. We notice that if any of the vectors x,y,z is the zero vector, then the result
follows trivially. Let x,y,z ∈ H be any non-zero vectors. Then

|〈x,y〉− 〈x,e〉〈e,y〉| �
√

‖x‖2−|〈x,e〉|2
√
‖y‖2 −|〈y,e〉|2

� ‖x‖‖y‖− |〈x,e〉 〈y,e〉| ,
for any unit vector e∈H . Replacing e by z

‖z‖ , and multiplying by ‖z‖2 , we infer that

|〈x,z〉 〈z,y〉|− |〈x,y〉|‖z‖2 �
∣∣∣〈x,y〉‖z‖2−〈x,z〉 〈z,y〉

∣∣∣ .
Thus,

|〈x,z〉 〈z,y〉|
� 1

2

[
|〈x,z〉 〈y,z〉|+ |〈x,y〉|‖z‖2 +

∣∣∣〈x,y〉‖z‖2 −〈x,z〉 〈z,y〉
∣∣∣]

� 1
2

[
|〈x,z〉 〈y,z〉|+ |〈x,y〉|‖z‖2 +

√
‖x‖2‖z‖2−|〈x,z〉|2

√
‖y‖2‖z‖2−|〈y,z〉|2

]

� ‖z‖2

2
(‖x‖‖y‖+ |〈x,y〉|) .

This completes the proof. �
To obtain the following result, we employ the strategy used in [9, Inequality (1.9)]

COROLLARY 2.1. Let x,y,z ∈ H be any vectors. Then

ψx,y � cos−1 (
cosψx,y +

∣∣cosψx,y − cosψx,z cosψz,y
∣∣− sinψx,z sinψz,y

)
� ψx,z + ψz,y.

Proof. It follows from the proof of Lemma 2.1 that

|〈x,z〉| |〈z,y〉|
� |〈x,y〉|‖z‖2 +

√
‖x‖2‖z‖2 −|〈x,z〉|2

√
‖y‖2‖z‖2−|〈z,y〉|2.

(2.1)

If we multiply (2.1), by 0 < 1
‖x‖‖y‖‖z‖2 , we get

|〈x,z〉|
‖x‖‖z‖

|〈z,y〉|
‖y‖‖z‖ � |〈x,y〉|

‖x‖‖y‖ +
∣∣∣∣ |〈x,y〉|‖x‖‖y‖ − |〈x,z〉|

‖x‖‖z‖
|〈z,y〉|
‖y‖‖z‖

∣∣∣∣
� |〈x,y〉|

‖x‖‖y‖ +

√
1− |〈x,z〉|2

‖x‖2‖z‖2

√
1− |〈z,y〉|2

‖y‖2‖z‖2 ,

which is equivalent to

cosψx,z cosψz,y � cosψx,y +
∣∣cosψx,y − cosψx,z cosψz,y

∣∣
� cosψx,y +

√
1− cos2ψx,z

√
1− cos2ψz,y

= cosψx,y + sinψx,z sinψz,y
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by (1.2). This implies

cos(ψx,z + ψz,y)

� cosψx,y +
∣∣cosψx,y − cosψx,z cosψz,y

∣∣− sinψx,z sinψz,y

� cosψx,y.

Now, since cos is a decreasing function on [0,π ] and since 0 � ψx,z + ψz,y � π , the
desired inequalities follow. �

Another refinement of the Cauchy-Schwarz inequality (1.1) can be stated as fol-
lows.

COROLLARY 2.2. For any x,y,z ∈ H ,

|〈x,y〉|‖z‖2 � |〈x,z〉| |〈z,y〉|+
√
‖x‖2‖z‖2−|〈x,z〉|2

√
‖y‖2‖z‖2 −|〈y,z〉|2

� ‖z‖2 ‖x‖‖y‖ ,

holds. In particular,

|〈x,y〉| � |〈x,e〉| |〈e,y〉|+
√
‖x‖2−|〈x,e〉|2

√
‖y‖2 −|〈y,e〉|2 � ‖x‖‖y‖ ,

where e ∈ H is a unit vector.

3. Refinements of the Cauchy-Schwarz inequality via positive contractive
operators with applications to the numerical radius

The main results in this section include refinements of (1.1) via positive contractive
operators. These refinements will lead to interesting applications including numerical
radius and operator norm inequalities.

We first have the following simple observation.

LEMMA 3.1. Let A ∈ B(H ) be such that 0 � A � 2I and let x,y ∈ H . Then

|〈x−Ax,y−Ay〉| � ‖x‖‖y‖−
√
〈(2A−A2)x,x〉 〈(2A−A2)y,y〉. (3.1)

Proof. We have

|〈x−Ax,y−Ay〉|
� ‖x−Ax‖‖y−Ay‖

=
(
‖x‖2 − 〈(

2A−A2)x,x
〉) 1

2
(
‖y‖2 − 〈(

2A−A2)y,y
〉) 1

2

� ‖x‖‖y‖−
√
〈(2A−A2)x,x〉 〈(2A−A2)y,y〉,

where the second inequality follows from
(
a2−b2

)(
c2−d2

)
� (ac−bd)2 ; (a,b,c,d ∈

R
+ ). This completes the proof. �
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THEOREM 3.1. Let A ∈ B(H ) be a positive contractive operator and let x,y ∈
H . Then

0 �
√
〈(A−A2)x,x〉 〈(A−A2)y,y〉− ∣∣〈(A−A2)x,y

〉∣∣ � ‖x‖‖y‖− |〈x,y〉|
4

. (3.2)

Proof. Observe that

|〈x−Ax,y−Ay〉| = ∣∣〈x,y〉− 〈(
2A−A2)x,y

〉∣∣
� |〈x,y〉|− ∣∣〈(2A−A2)x,y

〉∣∣ . (3.3)

Combining inequalities (3.3) and (3.1) gives

|〈x,y〉|− ∣∣〈(2A−A2)x,y
〉∣∣ � ‖x‖‖y‖−

√
〈(2A−A2)x,x〉 〈(2A−A2)y,y〉.

Whence,√
〈(2A−A2)x,x〉 〈(2A−A2)y,y〉− ∣∣〈(2A−A2)x,y

〉∣∣ � ‖x‖‖y‖− |〈x,y〉| .

Replacing A by 2A , we get

√
〈(A−A2)x,x〉 〈(A−A2)y,y〉− ∣∣〈(A−A2)x,y

〉∣∣ � ‖x‖‖y‖− |〈x,y〉|
4

,

when A � I . This proves the second desired inequality. For the first inequality, since A
is positive contractive, A−A2 is positive. Then by the Cauchy-Schwarz inequality for
positive operators, we get

0 �
√
〈(A−A2)x,x〉 〈(A−A2)y,y〉− ∣∣〈(A−A2)x,y

〉∣∣ ,
which proves the first inequality in (3.2), and completes the proof of the theorem. �

In fact, Theorem 3.1 may be used to obtain the following easier form; as a refine-
ment of the Cauchy-Schwarz inequality. It should be remarked that in [9], this result
was shown similarly for projections.

COROLLARY 3.1. Let A ∈ B(H ) be positive contractive. Then for x,y ∈ H ,

| 〈x,y〉 |+
√
〈Ax,x〉〈Ay,y〉− |〈Ax,y〉| � ‖x‖ ‖y‖.

In particular, if A ∈ B(H ) is any nonzero positive operator, then

| 〈x,y〉 |+ 1
‖A‖

(√
〈Ax,x〉 〈Ay,y〉− |〈Ax,y〉|

)
� ‖x‖ ‖y‖.
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Proof. In Theorem 3.1, we have shown that

0 �
√
〈(A−A2)x,x〉 〈(A−A2)y,y〉− ∣∣〈(A−A2)x,y

〉∣∣ � ‖x‖‖y‖− |〈x,y〉|
4

, (3.4)

for the positive contractive operator A ∈ B(H ) and x,y ∈H . Now, let A ∈ B(H ) be
such that 0 � A � 1

4 I , and define

B =
1
2

(
I +(I−4A)

1
2

)
.

Since the mapping t �→ t
1
2 is operator monotone on [0,∞) [2, Proposition V.1.8], we

have

0 � A � 1
4
I ⇔ 0 � I−4A � I

⇒ 0 � (I−4A)
1
2 � I

⇒ 0 � 1
2

(
I +(I−4A)

1
2

)
� I.

Then 0 � B � I . Therefore, (3.4) applies for B , and we have

0 �
√
〈(B−B2)x,x〉 〈(B−B2)y,y〉− ∣∣〈(B−B2)x,y

〉∣∣ � ‖x‖‖y‖− |〈x,y〉|
4

.

But by the definition of B , we have B−B2 = A . This implies

0 �
√
〈Ax,x〉 〈Ay,y〉− |〈Ax,y〉| � ‖x‖‖y‖− |〈x,y〉|

4
,

when 0 � A � 1
4 I. Now, if A is an arbitrary positive contractive operator, replace A

by 1
4A in the above inequality. This implies the desired inequality and completes the

proof. �
The following result is a Cauchy-Schwarz type inequality for positive contractive

operators. Following this result, we explain how this extends (1.1).

COROLLARY 3.2. Let A ∈ B(H ) be a positive contractive operator. Then for
x,y ∈ H ,

|〈Ax,y〉| � ‖x‖‖y‖+ |〈x,y〉|
2

.

Proof. If A � 2I , it follows from (3.3) and (3.1) that

∣∣〈x,y〉− 〈(
2A−A2)x,y

〉∣∣ � ‖x‖‖y‖−
√
〈(2A−A2)x,x〉 〈(2A−A2)y,y〉.

This implies

∣∣〈x,y〉− 〈(
2A−A2)x,y

〉∣∣+√
〈(2A−A2)x,x〉 〈(2A−A2)y,y〉 � ‖x‖‖y‖ .
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On the other hand, we have∣∣〈x,y〉− 〈(
2A−A2)x,y

〉∣∣+ ∣∣〈(2A−A2)x,y
〉∣∣ � ‖x‖‖y‖ .

This implies

−|〈x,y〉|+ ∣∣〈(2A−A2)x,y
〉∣∣+ ∣∣〈(2A−A2)x,y

〉∣∣ � ‖x‖‖y‖ ,

when A � 2I . Thus,

∣∣〈(2A−A2)x,y
〉∣∣ � ‖x‖‖y‖+ |〈x,y〉|

2
,

when A � 2I . Replacing A by 2A , we get

∣∣〈(A−A2)x,y
〉∣∣ � ‖x‖‖y‖+ |〈x,y〉|

8
.

Applying the same procedure as in the proof of Corollary 3.1, we reach

|〈Ax,y〉| � ‖x‖‖y‖+ |〈x,y〉|
2

,

as desired. �
Notice that when A = I , Corollary 3.2 implies (1.1). Therefore, the above corol-

lary provides an extension of (1.1).

REMARK 3.1. Notice that when A∈B(H ) is a given positive operator, replacing
A by 1

‖A‖A (when A �= 0) in Corollary 3.2 implies

|〈Ax,y〉| � ‖A‖
2

(| 〈x,y〉 |+‖x‖ ‖y‖) , x,y ∈ H .

However, this inequality is not true for an arbitrary nonzero A ∈ B(H ). This can
be seen by taking the example:

A =
[

0 1
0 0

]
, x =

[
0
1

]
, y =

[
1
0

]
.

However, using the polar decomposition A =U |A| , one can see that the inequality

| 〈Ax,y〉 | � ‖A‖
2

(| 〈Ux,y〉 |+‖x‖ ‖U∗y‖)

� ‖A‖
2

(| 〈Ux,y〉 |+‖x‖ ‖y‖)

holds for x,y ∈ H and A ∈ B(H ) with polar decomposition A = U |A|. We notice
here that U is a partial isometry, and hence ‖U‖ = ‖U∗‖ � 1. This justifies the second
inequality above.
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It is worth mentioning that, in the case when B is a positive operator, the con-
stant 4 in the inequality ω(AB) � 4ω(A)ω(B) can be reduced to 3/2 as shown in the
following way:

ω (AB) � ‖B‖
2

(ω (A)+‖A‖)

� 3
2

ω (A)‖B‖

=
3
2

ω (A)ω (B) .

In particular, if B is positive contractive, then

ω (AB) � 3
2

ω (A) .

As a conclusion of the above remark, and due to the importance of its finding, we
summarize as follows.

COROLLARY 3.3. Let A,B ∈ B(H ) be such that B is positive. Then

ω(AB) � 3
2
‖B‖ω(A).

It is worth mentioning that the above result has been proved in [1, Corollary 2.6]
using a different method.

As another application of Corollary 3.2, we present the following numerical radius
and operator norm applications.

COROLLARY 3.4. Let A,S,T ∈ B(H ) be such that A is positive contractive.
Then

ω (SAT) � 1
4

∥∥∥|T |2 + |S∗|2
∥∥∥+

1
2

ω (ST ) . (3.5)

Moreover,

‖SAT‖ � ‖T‖‖S‖+‖ST‖
2

. (3.6)

In particular,

ω(ST) � 1
2

∥∥∥|T |2 + |S∗|2
∥∥∥ .

Proof. Replacing x by Tx and y by S∗x in Corollary 3.2, we get

|〈SATx,x〉| � ‖Tx‖‖S∗x‖+ |〈Tx,S∗x〉|
2

.
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Thus, by the arithmetic-geometric mean inequality, we obtain

|〈SATx,x〉| � ‖Tx‖‖S∗x‖+ |〈STx,x〉|
2

=

√〈
|T |2x,x

〉〈
|S∗|2x,x

〉
+ |〈STx,x〉|

2

� 1
2

(
1
2

(〈
|T |2x,x

〉
+

〈
|S∗|2x,x

〉)
+ |〈STx,x〉|

)

=
1
2

(
1
2

〈(
|T |2 + |S∗|2

)
x,x

〉
+ |〈STx,x〉|

)
.

Therefore,

|〈SATx,x〉| � 1
2

(
1
2

〈(
|T |2 + |S∗|2

)
x,x

〉
+ |〈STx,x〉|

)
.

Now, by taking supremum over all unit vector x ∈ H , we get the inequality (3.5).
To prove (3.6), letting x = Tx and y = S∗y in Corollary 3.2, we have

|〈SATx,y〉| � ‖Tx‖‖S∗y‖+ |〈Tx,S∗y〉|
2

=
‖Tx‖‖S∗y‖+ |〈STx,y〉|

2
.

Now, the desired inequality (3.6) follows by taking supremum over x,y ∈ H with
‖x‖ = ‖y‖ = 1. �

In dealing with numerical radius inequalities, we are interested in power inequal-
ities. We refer the reader to [6, 7, 11, 14] as a sample of references treating such
inequalities. In the following result, we use Corollary 3.4 to obtain a power inequality
for the numerical radius.

COROLLARY 3.5. Let A,S,T ∈ B(H ) be such that A is positive contractive.
Then

ωr (SAT ) � 1
4

∥∥∥|T |2r + |S∗|2r
∥∥∥+

1
2

ωr (ST ) , (3.7)

for r � 1 .

Proof. This follows from Corollary 3.4 and the facts that t �→ tr , r � 1 is a convex
increasing function on [0,∞) and that∥∥∥∥ f

(
A+B

2

)∥∥∥∥ � 1
2
‖ f (A)+ f (B)‖,

for any increasing convex function f : [0,∞) → [0,∞) and positive operators A,B, [3,
Corollary 2.2]. �

Next, we use Corollary 3.4 to obtain a refinement of the inequality ω(T ) � ‖T‖.
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COROLLARY 3.6. Let T ∈ B(H ) be a given operator with the polar decomposi-
tion T = U |T |. Then

ω(T ) � 1
2

(
‖T‖+‖T‖ 1

2 ω
(
U |T | 1

2

))
� 1

2

(
‖T‖+‖T‖ 1

2

∥∥∥U |T | 1
2

∥∥∥)
� 1

2

(
‖T‖+‖T‖ 1

2 ‖U‖‖T‖ 1
2

)
� ‖T‖.

Proof. We prove the first inequality, from which the other inequalities follow im-
mediately. Let T = U |T | be the polar decomposition of T . Then, for any vectors
x,y ∈ H ,

|〈Tx,y〉| = |〈U |T |x,y〉| =
∣∣∣〈|T | 1

2 x, |T | 1
2U∗y

〉∣∣∣ . (3.8)

Let A be any positive operator. Remark 3.1 implies

|〈Ax,y〉| � ‖A‖
2

(|〈x,y〉|+‖x‖ ‖y‖) .

This together with (3.8) imply

|〈Tx,x〉| =
∣∣∣〈|T | 1

2 x, |T | 1
2U∗x

〉∣∣∣
�

∥∥∥ |T | 1
2

∥∥∥
2

(∣∣∣〈x, |T | 1
2U∗x

〉∣∣∣+‖x‖
∥∥∥|T | 1

2U∗x
∥∥∥)

=
‖T‖ 1

2

2

(∣∣∣〈U |T | 1
2 x,x

〉∣∣∣+‖x‖2 ‖T‖ 1
2 ‖U∗‖

)
.

Noting that ‖U∗‖ = ‖U‖ = 1 and taking the supremum over all unit vectors x ∈ H ,
we obtain

ω(T ) � ‖T‖ 1
2

2

(
ω

(
U |T | 1

2

)
+‖T‖ 1

2

)
.

This completes the proof of the first inequality, as desired. �
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