A NOTE ON SOME CLASSES OF G-MATRICES

SARA M. MOTLAGHIAN, ALI ARMANDNEJAD* AND FRANK J. HALL

(Communicated by Z. Drmač)

Abstract. Let \mathbf{M}_n be the set of all $n \times n$ real matrices. A nonsingular matrix $A \in \mathbf{M}_n$ is called a G-matrix if there exist nonsingular diagonal matrices D_1 and D_2 such that $A^{-T} = D_1 A D_2$. For fixed nonsingular diagonal matrices D_1 and D_2 , let $\mathbb{G}(D_1, D_2) = \{A \in \mathbf{M}_n : A^{-T} = D_1 A D_2\}$, which is called a G-class. In this note, a characterization of $\mathbb{G}(D_1, D_2)$ is obtained and some properties of these G-classes are exhibited, such as conditions for equality of two G-classes. It is shown that $\mathbb{G}(D_1, D_2)$ has two or four connected components in \mathbf{M}_n and that $\mathbb{G}_n = \bigcup_{D_1, D_2} \mathbb{G}(D_1, D_2)$, the set of all $n \times n$ G-matrices, has two connected components in \mathbf{M}_n . Sign patterns of the G-classes are also examined.

1. Introduction

All matrices in this note have real number entries. Let \mathbf{M}_n be the set of all $n \times n$ real matrices. A nonsingular matrix $A \in \mathbf{M}_n$ is called a G-matrix if there exist nonsingular diagonal matrices D_1 and D_2 such that $A^{-T} = D_1 A D_2$, where A^{-T} denotes the transpose of the inverse of A. These matrices form a rich class and were originally studied in [3] by Fiedler and Hall. Some properties of these matrices are as follows:

All orthogonal matrices are G-matrices.

All nonsingular diagonal matrices are G-matrices.

Any n positive real numbers are the singular values and eigenvalues of a diagonal G-matrix D.

If A is a G-matrix, then both A^T and A^{-1} are G-matrices.

If A is an $n \times n$ G-matrix and D is an $n \times n$ nonsingular diagonal matrix, then both AD and DA are G-matrices.

If A is an $n \times n$ G-matrix and P is an $n \times n$ permutation matrix, then both AP and PA are G-matrices.

Cauchy matrices have the form $C = [c_{ij}]$, where $c_{ij} = \frac{1}{x_i + y_j}$ for some numbers x_i and y_j . We shall restrict to square, say $n \times n$, Cauchy matrices – such matrices are defined only if $x_i + y_j \neq 0$ for all pairs of indices i, j, and it is well known that C is nonsingular if and only if all the numbers x_i are mutually distinct and all the numbers y_j are mutually distinct. It turns out that by an observation of Fiedler [2] every nonsingular Cauchy matrix is a G-matrix. So, in particular, G-matrices arise

^{*} Corresponding author.

Mathematics subject classification (2020): Primary 15B10; Secondary 15A30.

Keywords and phrases: G-matrix, J-orthogonal matrix, connected component, sign pattern.

naturally as the very well-defined structured nonsingular Cauchy matrices. Furthermore, G-matrices arise also in the context of "combined matrices" $C(A) = A \circ A^{-T}$, where \circ denotes the Hadamard product, see [2]. For example, if A is a G-matrix, then $C(A) = A \circ (D_1AD_2) = D_1(A \circ A)D_2$; so if say D_1 and D_2 are nonnegative, then C(A)is nonnegative. The combined matrices appear in the chemical literature where they represent the relative gain array, [10]. From a basic point of view, we can rewrite the original G-matrix equation as

$$A^{-1} = D_2 A^T D_1,$$

which says that A^{-1} and A^{T} are diagonally equivalent, giving a generalization of orthogonal matrices. Theorem 2.2 and Corollary 2.3 in Section 2 describe specifically how the structure of G-matrices arises from the structure of J-orthogonal matrices.

The G-matrices were later studied in two papers [9] and [4].

Denote by $J = \text{diag}(\pm 1)$ a diagonal (signature) matrix, each of whose diagonal entries is +1 or -1. As in [8], a nonsingular real matrix Q is called J-orthogonal if

$$Q^T J Q = J_s$$

or equivalently, if

$$Q^{-T} = JQJ.$$

Of course, with $J = I_n$ the identity matrix of order n, every orthogonal matrix is a J-orthogonal matrix. And clearly, from the equation $Q^{-T} = JQJ$, every J-orthogonal matrix is a G-matrix. Not every G-matrix is a J-orthogonal matrix; for example, $2I_n$ is a G-matrix but not a J-orthogonal matrix. But, a G-matrix can always be "transformed" to a *J*-orthogonal matrix [7].

For fixed nonsingular diagonal matrices D_1 and D_2 , let the class of $n \times n$ G-matrices

$$\mathbb{G}(D_1, D_2) = \{A \in \mathbf{M}_n : A^{-T} = D_1 A D_2\}.$$

We call such a class of matrices a G-class of matrices.

In this note, a characterization of $\mathbb{G}(D_1, D_2)$ is obtained and some properties of these G-classes are exhibited, such as conditions for equality of two G-classes. It is shown that $\mathbb{G}(D_1, D_2)$ has two or four connected components in \mathbf{M}_n and that $\mathbb{G}_n = \bigcup_{D_1, D_2} \mathbb{G}(D_1, D_2)$, the set of all $n \times n$ G-matrices, has two connected components in \mathbf{M}_n . Sign patterns of the G-classes are also examined.

The following characterization of J-orthogonal matrices is contained in the article [8] by N. Higham. As stated in [8], this decomposition was first derived in [5]. As in our previous papers [11] and [12], for a fixed signature matrix J,

$$\Gamma_n(J) = \{ A \in \mathbf{M}_n : A^\top J A = J \}.$$

Also, \mathcal{O}_k denotes the set of all $k \times k$ orthogonal matrices.

PROPOSITION 1.1. [8, Theorem 3.2 (hyperbolic CS decomposition)] Let $q \ge p$ and $J = I_p \oplus (-I_q)$. Then every $A \in \Gamma_n(J)$ is of the form

$$(U_1 \oplus U_2) \left(\begin{pmatrix} C & -S \\ -S & C \end{pmatrix} \oplus I_{q-p} \right) (V_1 \oplus V_2), \tag{1.1}$$

where $U_1, V_1 \in \mathcal{O}_p$, $U_2, V_2 \in \mathcal{O}_q$ and $C, S \in \mathbf{M}_p$ are nonnegative diagonal matrices such that $C^2 - S^2 = I$. Also, any matrix of the form (1.1) is *J*-orthogonal.

As in our previous works, the decomposition in Proposition 1.1 will also be employed in this paper.

2. Classes of G-matrices

We note that the nonsingular diagonal matrices D_1 and D_2 satisfying $A^{-T} = D_1AD_2$ are in general not uniquely determined as we can multiply one of them by a nonzero real number and divide the other by the same number. (However, if A is a "fully indecomposable" G-matrix then D_1 and D_2 are unique up to scalar multiplies, see Theorem 2.2 in [7]. For the definition of fully indecomposable matrices, the reader can see [1, p. 112]). On the other hand, for nonsingular $n \times n$ diagonal matrices D_1 and D_2 , the following known result from [3] shows that if $A^{-T} = D_1AD_2$ then D_1 and D_2 have the same inertia matrix.

PROPOSITION 2.1. Suppose A is a G-matrix and $A^{-T} = D_1AD_2$, where D_1 and D_2 are nonsingular diagonal matrices. Then the inertia of D_1 is equal to the inertia of D_2 .

Proof. We have $A^T D_1 A D_2 = I$ and so $A^T D_1 A = D_2^{-1}$. Since A is nonsingular, the result follows from Sylvester's Law of Inertia. \Box

We just mention the following in passing. A (J_1, J_2) -orthogonal matrix is defined as a nonsingular real matrix Q such that

$$Q^T J_1 Q = J_2,$$

where $J_1 = \text{diag}(\pm 1)$ and $J_2 = \text{diag}(\pm 1)$ are signature matrices [8]. Similar to the proof of Proposition 2.1, J_1 and J_2 have the same inertia and are just permutations of each other.

In this section we find a characterization of $\mathbb{G}(D_1, D_2)$ in terms of the matrices in $\Gamma_n(J)$, thus establishing a further specific connection between the G-matrices and the *J*-orthogonal matrices.

Let *D* be a nonsingular diagonal matrix with the inertia matrix *J* (a signature matrix having all its positive ones in the upper left corner). Then there exists a permutation matrix *P* such that $D = |D|P^T JP$, where |D| is obtained by taking the absolute value on entries of *D*. Recall that for a fixed signature matrix *J*, $\Gamma_n(J) = \{A \in \mathbf{M}_n : A^T JA = J\}$. In fact,

$$\Gamma_n(J) = \mathbb{G}(J,J).$$

THEOREM 2.2. Let D_1 and D_2 be nonsingular diagonal matrices with the inertia matrix J. Then there exist permutation matrices P and Q such that

$$\mathbb{G}(D_1, D_2) = \{ |D_1|^{-1/2} P^T A Q |D_2|^{-1/2} : A \in \Gamma_n(J) \}.$$

This characterization shows that $\mathbb{G}(D_1, D_2)$ is in fact nonempty.

Proof. Since J is the inertia matrix for D_1 and D_2 , there exist permutation matrices P and Q such that $D_1 = |D_1|P^T JP$ and $D_2 = |D_2|Q^T JQ$.

Then $\widetilde{J} = P|D_1|^{-1/2}D_1|D_1|^{-1/2}P^T = Q|D_2|^{-1/2}D_2|D_2|^{-1/2}Q^T$. These imply that

$$\begin{split} A \in \Gamma_n(J) \Leftrightarrow A^{-T} = JAJ \\ \Leftrightarrow A^{-T} = P|D_1|^{-1/2}D_1|D_1|^{-1/2}P^TAQ|D_2|^{-1/2}D_2|D_2|^{-1/2}Q^T \\ \Leftrightarrow (|D_1|^{-1/2}P^TAQ|D_2|^{-1/2})^{-T} = D_1(|D_1|^{-1/2}P^TAQ|D_2|^{-1/2})D_2 \\ \Leftrightarrow |D_1|^{-1/2}P^TAQ|D_2|^{-1/2} \in \mathbb{G}(D_1, D_2). \end{split}$$

Let $X = |D_1|^{-1/2} P^T$ and $Y = Q|D_2|^{-1/2}$. We have shown that

$$A \in \Gamma_n(J) \Leftrightarrow XAY \in \mathbb{G}(D_1, D_2).$$

Now, by use of this fact we have

$$B \in \mathbb{G}(D_1, D_2) \Leftrightarrow X(X^{-1}BY^{-1})Y \in \mathbb{G}(D_1, D_2)$$
$$\Leftrightarrow X^{-1}BY^{-1} \in \Gamma_n(J)$$
$$\Leftrightarrow B \in X\Gamma_n(J)Y.$$

Therefore

$$\mathbb{G}(D_1, D_2) = X\Gamma_n(J)Y = \{ |D_1|^{-1/2} P^T A Q |D_2|^{-1/2} : A \in \Gamma_n(J) \}. \quad \Box$$

We will now incorporate the hyperbolic CS Decomposition for $\Gamma_n(J)$ into a simplified version of $\mathbb{G}(D_1, D_2)$. Assume $q \ge p$, the common inertia matrix J of D_1 and D_2 has the form

$$\left(\begin{array}{cc}I_p & 0\\ 0 & -I_q\end{array}\right)$$

and that D_1 and D_2 have the form

$$\left(\begin{array}{cc} +_p & 0\\ 0 & -_q \end{array}\right),$$

where $+_p (-_q)$ denotes an order p(q) diagonal matrix with positive (negative) diagonal entries. Then P = Q = I, $D_1 = |D_1|J$, and $D_2 = |D_2|J$. Using Proposition 1.1 on the CS Decomposition, we then have the following result.

COROLLARY 2.3. With the above notation,

$$\mathbb{G}(D_1, D_2) = \left\{ |D_1|^{-1/2} (U_1 \oplus U_2) \left(\begin{pmatrix} C & -S \\ -S & C \end{pmatrix} \oplus I_{q-p} \right) (V_1 \oplus V_2) |D_2|^{-1/2} \right\}.$$

where $U_1, V_1 \in \mathcal{O}_p$, $U_2, V_2 \in \mathcal{O}_q$ and $C, S \in \mathbf{M}_p$ are nonnegative diagonal matrices such that $C^2 - S^2 = I_p$.

Let A be an $n \times n$ nonsingular real matrix with Singular Value Decomposition

$$A = U\Sigma W$$

where U and W are orthogonal matrices, and Σ is a diagonal matrix with positive diagonal entries. So, $AW^T = U\Sigma$. Now, it is easy to see that $U\Sigma \in \mathbb{G}(I, \Sigma^{-2})$. (Also: since U is an orthogonal matrix, U is a G-matrix; multiplying U by the nonsingular diagonal matrix Σ we still have a G-matrix.) Hence, $AW^T = B$, where $B \in \mathbb{G}(I, \Sigma^{-2})$, so that A = BW. We thus arrive at the following result.

PROPOSITION 2.4. Every $n \times n$ nonsingular real matrix is a product of a Gmatrix and an orthogonal matrix. In particular, if $U\Sigma W$ is a Singular Value Decomposition of a nonsingular matrix A, then $U\Sigma$ is a G-matrix.

Let \mathscr{P}_n denote the set of permutation matrices of order n.

LEMMA 2.5. Let D_1 and D_2 be $n \times n$ real nonsingular diagonal matrices. If $D_1 \mathscr{P}_n D_2 \subseteq \mathscr{O}_n$, then there is a positive number d such that

$$D_{1} = d \begin{pmatrix} \pm 1 & 0 \\ & \ddots \\ & 0 & \pm 1 \end{pmatrix}, \quad D_{2} = \frac{1}{d} \begin{pmatrix} \pm 1 & 0 \\ & \ddots \\ & 0 & \pm 1 \end{pmatrix}.$$

Proof. For i, j = 1, ..., n, let the i^{th} diagonal entry of D_1 be d_i^1 and similarly j^{th} diagonal entry of D_2 be d_j^2 . Let P_{ij} be the permutation matrix obtained from the identity matrix by interchanging the i^{th} and j^{th} rows. The norm of the j^{th} column of $D_1P_{ij}D_2$ is $|d_i^1d_j^2|$. By the assumption of $D_1\mathcal{P}_nD_2 \subseteq \mathcal{O}_n$, we have $|d_i^1d_j^2| = 1$ for all i, j = 1, ..., n. Letting $d = |d_1^1|$, then the result is achieved. \Box

COROLLARY 2.6. Let D_1 and D_2 be $n \times n$ real nonsingular diagonal matrices. Then $D_1 \mathcal{O}_n D_2 = \mathcal{O}_n$ if and only if there is a positive number d such that

$$D_1 = d \begin{pmatrix} \pm 1 & 0 \\ \ddots \\ 0 & \pm 1 \end{pmatrix}, \quad D_2 = \frac{1}{d} \begin{pmatrix} \pm 1 & 0 \\ \ddots \\ 0 & \pm 1 \end{pmatrix}.$$

Proof. The proof of sufficiency is clear. For the proof of the necessity, suppose that $D_1 \mathscr{O}_n D_2 = \mathscr{O}_n$. Then we have $D_1 \mathscr{P}_n D_2 \subseteq \mathscr{O}_n$. By the use of Lemma 2.5 the result is obtained. \Box

3. Relationships between the G-classes

Given a fixed $n \times n$ inertia matrix J, we have various G-classes associated with J. We define the following relation on the collection of the $n \times n$ G-classes:

$$\mathbb{G}(D_1, D_2) \sim \mathbb{G}(D_3, D_4)$$

if and only if each class is associated with the same J, i.e. the inertia matrix of D_1 , D_2 , D_3 , D_4 is J. (Note that $\mathbb{G}(J,J)$ is in the same equivalence class.) It is clear that \sim is an equivalence relation on the collection of the $n \times n$ G-classes.

We first consider $\mathbb{G}(D_1, D_2) \sim \mathbb{G}(D_3, D_4)$ in the specific case where the common inertia matrix of D_1 , D_2 , D_3 , D_4 is $\pm I$, and we give the condition for equality of the two classes.

THEOREM 3.1. Assume D_1 , D_2 , D_3 and D_4 are real nonsingular diagonal matrices with the inertia matrix I or -I. Then

$$\mathbb{G}(D_1, D_2) = \mathbb{G}(D_3, D_4)$$

if and only if there exists a positive number d such that $D_3 = dD_1$ and $D_4 = \frac{1}{d}D_2$.

Proof. Since $\mathbb{G}(D_1, D_2) = \mathbb{G}(-D_1, -D_2)$, we can assume without loss of generality that the common inertia matrix is *I*. We have by using Theorem 2.2 that

$$\begin{split} \mathbb{G}(D_1, D_2) &= \mathbb{G}(D_3, D_4) \Leftrightarrow D_1^{-1/2} \mathcal{O}_n D_2^{-1/2} = D_3^{-1/2} \mathcal{O}_n D_4^{-1/2} \\ &\Leftrightarrow D_3^{1/2} D_1^{-1/2} \mathcal{O}_n D_2^{-1/2} D_4^{1/2} = \mathcal{O}_n, \end{split}$$

which by Corollary 2.6 holds

$$\Leftrightarrow D_3^{1/2} D_1^{-1/2} = kI, D_2^{-1/2} D_4^{1/2} = \frac{1}{k}I,$$

where k is a positive number. Then for $d = k^2$, the latter two equations become

$$D_3 D_1^{-1} = dI, D_2^{-1} D_4 = \frac{1}{d}I,$$

which then completes the proof. \Box

We next consider a second case where $\mathbb{G}(D_1, D_2) \sim \mathbb{G}(D_3, D_4)$.

Let $J = \begin{pmatrix} I_p & 0 \\ 0 & -I_q \end{pmatrix}$. For $A \in \mathbf{M}_n$, we say that A is conformal to J if $A = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}$ with $A_1 \in \mathbf{M}_p$ and $A_2 \in \mathbf{M}_q$.

THEOREM 3.2. Let $q \ge p$, $J = I_p \oplus (-I_q)$ and, suppose D_1 , D_2 , D_3 and D_4 are real nonsingular diagonal matrices with the inertia matrix J such that $D_i = |D_i|J$ for i = 1, ..., 4. Then

$$\mathbb{G}(D_1, D_2) = \mathbb{G}(D_3, D_4)$$

if and only if there exists a positive number d such that $D_3 = dD_1$ and $D_4 = \frac{1}{d}D_2$.

Proof. The proof of the sufficiency is straightforward. Suppose $D_3 = dD_1$ and $D_4 = \frac{1}{d}D_2$. Hence if $A \in \mathbb{G}(D_3, D_4)$, then $A \in \mathbb{G}(D_1, D_2)$. Similarly $\mathbb{G}(D_1, D_2) \subseteq \mathbb{G}(D_3, D_4)$.

To prove the necessity, suppose

$$\mathbb{G}(D_1, D_2) = \mathbb{G}(D_3, D_4).$$

By using Theorem 2.2 we have

$$|D_1|^{-1/2} \Gamma_n(J) |D_2|^{-1/2} = |D_3|^{-1/2} \Gamma_n(J) |D_4|^{-1/2}.$$

That is equivalent to

$$|D_3|^{1/2}|D_1|^{-1/2}\Gamma_n(J)|D_2|^{-1/2}|D_4|^{1/2} = \Gamma_n(J).$$
(3.1)

The set of $P \oplus Q$ such that $P \in \mathscr{P}_p$ and $Q \in \mathscr{P}_q$ is a subset of $\Gamma_n(J)$. So

$$|D_3|^{1/2}|D_1|^{-1/2}(P\oplus Q)|D_2|^{-1/2}|D_4|^{1/2}\in \Gamma_n(J),$$

for all $P \in \mathscr{P}_p$ and $Q \in \mathscr{P}_q$. Matrices of the form $|D_3|^{1/2}|D_1|^{-1/2}(P \oplus Q)|D_2|^{-1/2}|D_4|^{1/2}$ are conformal to J. That is to say, they have the form

$$B = \begin{pmatrix} B_1 & 0 \\ 0 & B_2 \end{pmatrix}$$

where B_1 is $p \times p$ and B_2 is $q \times q$. Since $B \in \Gamma_n(J)$, $BJB^T = J$. Thus we have $B_1 \in \mathcal{O}_p$ and $B_2 \in \mathcal{O}_q$. That implies

$$|D_3|^{1/2}|D_1|^{-1/2}(P\oplus Q)|D_2|^{-1/2}|D_4|^{1/2}\in \mathscr{O}_p\oplus \mathscr{O}_q.$$

By applying Lemma 2.5 to each part of the latter direct sum, there are positive numbers k_1 and k_2 such that

$$|D_3|^{1/2}|D_1|^{-1/2} = k_1I_p \oplus k_2I_q, \ |D_2|^{-1/2}|D_4|^{1/2} = \frac{1}{k_1}I_p \oplus \frac{1}{k_2}I_q.$$

Next we show that $k_1 = k_2$. Let $C = 2I_p$ and $S = \sqrt{3}I_p$. Then by Proposition 1.1,

$$\begin{pmatrix} C & -S \\ -S & C \end{pmatrix} \oplus I_{q-p} \in \Gamma_n(J).$$

From Equation 3.1, we have

$$(k_1I_p \oplus k_2Iq)\left(\begin{pmatrix} C & -S \\ -S & C \end{pmatrix} \oplus I_{q-p}\right)\left(\frac{1}{k_1}I_p \oplus \frac{1}{k_2}I_q\right) \in \Gamma_n(J).$$

Hence, letting

$$A = (k_1 I_p \oplus k_2 Iq) \left(\begin{pmatrix} C & -S \\ -S & C \end{pmatrix} \oplus I_{q-p} \right) \left(\frac{1}{k_1} I_p \oplus \frac{1}{k_2} I_q \right),$$

and multiplying this expression out we obtain

$$A = \begin{pmatrix} C & -\frac{k_1}{k_2}S \\ -\frac{k_2}{k_1}S & C \end{pmatrix} \oplus I_{q-p}$$

From $A^T J A = J$ it can be seen that $(\frac{k_1}{k_2})^2 = 1$. So $k_1 = k_2$. Letting $k = k_1 = k_2$ and $d = k^2$, then $|D_3||D_1|^{-1} = dI$ and $|D_2|^{-1}|D_4| = \frac{1}{d}I$.

We can observe that $D_i = |D_i|J$ for i = 1, ..., 4 if and only if D_1, D_2, D_3, D_4 all have the same sign pattern (the corresponding (i,i) entries have the same sign) as J. So, $|D_3||D_1|^{-1} = dI$ and $|D_2|^{-1}|D_4| = \frac{1}{d}I$ are equivalent to $D_3 = dD_1$ and $D_4 = \frac{1}{d}D_2$, respectively. \Box

Suppose D_1 , D_2 , D_3 , D_4 have the same sign pattern, but not all + or all - on the diagonals (the case where the common inertia matrix is $\pm I$ is covered in Theorem 3.1). Assume $\mathbb{G}(D_1, D_2) = \mathbb{G}(D_3, D_4)$. Since $\mathbb{G}(D_1, D_2) = \mathbb{G}(-D_3, -D_4)$, we can assume that the number q of negative diagonal entries is greater than or equal to the number p of positive diagonal entries. With $A \in \mathbb{G}(D_1, D_2)$ and P a permutation matrix, we have

$$(P^T A P)^{-T} = (P^T D_1 P)(P^T A P)(P^T D_2 P)$$

and similarly for $\mathbb{G}(D_3, D_4)$. Let *P* be the permutation matrix such that all $P^T D_i P$ have the *p* positive diagonal entries in the upper left corner so that $J = I_p \oplus (-I)_q$ is the common inertia matrix of D_1 , D_2 , D_3 , D_4 . Similar to the proof of Theorem 3.2 we would reach

$$|P^T D_3 P| |P^T D_1 P|^{-1} = dI,$$

so that $|D_3||D_1|^{-1} = dI$, and $|P^T D_2 P|^{-1}|P^T D_4 P| = \frac{1}{d}I$ so that $|D_2|^{-1}|D_4| = \frac{1}{d}I$. Since D_1 , D_2 , D_3 , D_4 have the same sign pattern, these are equivalent to $D_3 = dD_1$ and $D_4 = \frac{1}{d}D_2$. Thus, we have the final culminating result.

COROLLARY 3.3. Suppose D_1 , D_2 , D_3 , and D_4 are real $n \times n$ nonsingular diagonal matrices with the same sign pattern. Then

$$\mathbb{G}(D_1, D_2) = \mathbb{G}(D_3, D_4)$$

if and only if there exists a positive number d such that $D_3 = dD_1$ and $D_4 = \frac{1}{d}D_2$.

For the general case, when $D_i = |D_i|P_i^T J P_i$ with $P_i \in \mathcal{P}_n$, for i = 1, ..., 4, we can have different scenarios depending on the P_i . Note that the selection of the P_i is not unique. Without loss of generality we can consider permutations P_i such that if P_i permutes row *i* to row *j*, then it permutes row *j* to row *i*. Thus without loss of generality we can assume that such permutation matrices are equal to their transposes.

One of the cases is that all but one of the P_i are I. Suppose $P_1 = P_2 = P_3 = I$ and $P_4 \neq I$. For simplicity assume J is the same as in Theorem 3.2. Then $\mathbb{G}(D_1, D_2) \neq \mathbb{G}(D_3, D_4)$. Otherwise, by applying Theorem 2.2, we have

$$D_3|^{1/2}|D_1|^{-1/2}\Gamma_n(J)|D_2|^{-1/2}|D_4|^{1/2}P_4^T = \Gamma_n(J).$$

Note that P_4 is not conformal to J. That's true because there are at least two diagonal entries of D_4 say d_i^4 and d_j^4 such that their signs are different from the sings of the corresponding entries in J. Let's say that permutation matrix P_4 exchanges the rows and columns of these entries. By knowing the form of J, either $i \leq p$ and j > p, or i > p and $j \leq p$. Thus if P_4 is partitioned such that

$$P_4 = \begin{pmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{pmatrix},$$

where P_{11} is $p \times p$, then we have $P_{12} = P_{21}^T \neq 0$. Since $I \in \Gamma_n(J)$, we have

$$|D_3|^{1/2}|D_1|^{-1/2}I|D_2|^{-1/2}|D_4|^{1/2}P_4 \in \Gamma_n(J).$$

If

$$A = |D_3|^{1/2} |D_1|^{-1/2} I |D_2|^{-1/2} |D_4|^{1/2} P_4,$$

then A has the same partitioned form as P_4 . From $A^T J A = J$ we would have $P_{12} = P_{21}^T = 0$ which doesn't hold. Thus, indeed, $\mathbb{G}(D_1, D_2) \neq \mathbb{G}(D_3, D_4)$!

With having the same inertia matrix J, two G-classes do not necessarily have nonempty intersection. Consider $\mathbb{G}(I,I) = \mathcal{O}_n$ and $\mathbb{G}(2I,I)$. We can observe by using Theorem 2.2 that

$$\mathbb{G}(I,I) \cap \mathbb{G}(2I,I) = \emptyset.$$

The following is an example of two 2×2 G-classes with finite intersection.

EXAMPLE 3.4. Let $D_1 = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$, $D_2 = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$, $D_3 = \begin{pmatrix} \frac{1}{3} & 0 \\ 0 & 1 \end{pmatrix}$, and $D_4 = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$. Then *I* is the inertia matrix of D_1 , D_2 , D_3 and D_4 . By Theorem 3.1, $\mathbb{G}(D_1, D_2) \neq \mathbb{G}(D_3, D_4)$. Suppose $A \in \mathbb{G}(D_1, D_2) \cap \mathbb{G}(D_3, D_4)$. By Theorem 2.2, there are $V, W \in \mathcal{O}_2$ such that

$$A = D_1^{-1/2} V D_2^{-1/2} = D_3^{-1/2} W D_4^{-1/2}.$$

That implies

$$D_3^{1/2} D_1^{-1/2} V D_2^{-1/2} D_4^{1/2} \in \mathscr{O}_2.$$

Thus $v_{1,2} = v_{2,1} = 0$. So A only can be of the form

$$\begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{pmatrix}.$$

The following question arises.

OPEN QUESTION. Do there exist two $n \times n$ G-classes having finite intersection when $n \ge 3$.

REMARK 3.5. Of course, there are other similar questions for G-matrices with a common inertia matrix. One could also consider various relationships between $n \times n$ G-classes $\mathbb{G}(D_1, D_2)$ and $\mathbb{G}(D_3, D_4)$ with inertia matrices J_1 and J_2 respectively, where $J_1 \neq J_2$. The latter becomes more difficult to analyze.

4. The connected components and sign patterns

In this section we show that $\mathbb{G}(D_1, D_2)$ has two or four connected components in \mathbf{M}_n . Also we show that

$$\mathbb{G}_n = \bigcup_{D_1, D_2} \mathbb{G}(D_1, D_2),$$

the set of all $n \times n$ G-matrices, has two connected components in \mathbf{M}_n . Let \mathcal{O}_n be the set of all $n \times n$ orthogonal matrices, \mathcal{O}_n^+ be the set of all $n \times n$ orthogonal matrices with determinant 1, and \mathcal{O}_n^- be the set of all $n \times n$ orthogonal matrices with determinant -1.

PROPOSITION 4.1. [13, Theorem 3.67] For every $n \ge 1$, \mathcal{O}_n has two connected components, \mathcal{O}_n^+ and \mathcal{O}_n^- .

PROPOSITION 4.2. [11, Theorem 3.5] Let J be an $n \times n$ signature matrix. If $J \neq \pm I$ then $\Gamma_n(J)$ has four connected components.

COROLLARY 4.3. For every $n \times n$ signature matrix J, $\mathcal{O}_n \cup \Gamma_n(J)$ has two connected components.

Proof. Since every component of $\Gamma_n(J)$ has some orthogonal matrices (this is because each component has signature matrices, which in fact are orthogonal matrices), by the use of Proposition 4.1, the result is obtained. \Box

THEOREM 4.4. Let D_1 and D_2 be nonsingular diagonal matrices with the inertia matrix J.

(*i*) If $J \neq \pm I$, then $\mathbb{G}(D_1, D_2)$ has four connected components.

(*ii*) If $J = \pm I$, $\mathbb{G}(D_1, D_2)$ has two connected components.

Proof. Let *P* and *Q* be as in the proof of Theorem 2.2. Consider the linear operator $T: \mathbf{M}_n \longrightarrow \mathbf{M}_n$ defined by

$$T(A) = |D_1|^{-1/2} P^T A Q |D_2|^{-1/2}.$$

Both *T* and T^{-1} are continuous and $T(\Gamma_n(J)) = \mathbb{G}(D_1, D_2)$ by Theorem 2.2. So the number of connected components of $\Gamma_n(J)$ and $\mathbb{G}(D_1, D_2)$ are the same. Now, by the use of Propositions 4.1, 4.2, the proof is complete. \Box

THEOREM 4.5. The set \mathbb{G}_n of all $n \times n$ G-matrices has two connected components.

Proof. We present the proof in two steps.

Step 1: First we show that every component of $\mathbb{G}(D_1, D_2)$ intersects one of the components of $\mathbb{G}(|D_1|, |D_2|)$ and hence $\mathbb{G}(D_1, D_2) \cup \mathbb{G}(|D_1|, |D_2|)$ has two connected

components, when $J \neq \pm I$ is the inertia matrix of D_1 and D_2 (if $J = \pm I$ we have $\mathbb{G}(D_1, D_2) = \mathbb{G}(|D_1|, |D_2|)$). By Theorem 2.2, there exist permutation matrices P and Q such that

$$\begin{split} &\mathbb{G}(D_1, D_2) = \{ |D_1|^{-1/2} P^T A Q |D_2|^{-1/2} : A \in \Gamma_n(J) \}, \\ &\mathbb{G}(|D_1|, |D_2|) = \{ |D_1|^{-1/2} P^T A Q |D_2|^{-1/2} : A \in \mathscr{O}_n \}. \end{split}$$

We know that (see [11, Proposition 3.8]) every component of $\Gamma_n(J)$ has 2^{n-2} signature matrices say $J_1, \ldots, J_{2^{n-2}}$. So the corresponding component of $\mathbb{G}(D_1, D_2)$ has the following matrices:

 $|D_1|^{-1/2} P^T J_1 Q |D_2|^{-1/2}, \dots, |D_1|^{-1/2} P^T J_{2^{n-2}} Q |D_2|^{-1/2}.$

On the other hand it is clear that

$$|D_1|^{-1/2} P^T J_1 Q |D_2|^{-1/2}, \dots, |D_1|^{-1/2} P^T J_{2^{n-2}} Q |D_2|^{-1/2} \in \mathbb{G}(|D_1|, |D_2|).$$

So, the first part of the claim is proved. Since $\mathbb{G}(|D_1|, |D_2|) = T(\mathcal{O}_n)$, where *T* is the linear operator in the proof of Theorem 4.4, $\mathbb{G}(|D_1|, |D_2|)$ has two connected components. By these two facts we obtain that $\mathbb{G}(D_1, D_2) \cup \mathbb{G}(|D_1|, |D_2|)$ has two connected components.

Step 2: Let \mathbb{D}_n and \mathbb{D}_n^+ be the sets of all $n \times n$ diagonal matrices with nonzero and positive diagonal entries respectively. It is clear that \mathbb{D}_n and \mathbb{D}_n^+ are connected sets. For every $D_1, D_2 \in \mathbb{D}_n^+$, we have $\mathbb{G}(D_1, D_2) = D_1^{-1/2} \mathcal{O}_n^+ D_2^{-1/2} \cup D_1^{-1/2} \mathcal{O}_n^- D_2^{-1/2}$. Then we have

$$\mathbb{G}_{n}^{+} := \bigcup_{D_{1}, D_{2} \in \mathbb{D}_{n}^{+}} \mathbb{G}(D_{1}, D_{2}) = [\bigcup_{D_{1}, D_{2} \in \mathbb{D}_{n}^{+}} D_{1}^{-1/2} \mathscr{O}_{n}^{+} D_{2}^{-1/2}] \dot{\cup} [\bigcup_{D_{1}, D_{2} \in \mathbb{D}_{n}^{+}} D_{1}^{-1/2} \mathscr{O}_{n}^{-} D_{2}^{-1/2}].$$

Since \mathbb{D}_n^+ , \mathscr{O}_n^+ and \mathscr{O}_n^- are connected sets,

$$\bigcup_{D_1, D_2 \in \mathbb{D}_n^+} D_1^{-1/2} \mathscr{O}_n^+ D_2^{-1/2}, \bigcup_{D_1, D_2 \in \mathbb{D}_n^+} D_1^{-1/2} \mathscr{O}_n^- D_2^{-1/2}$$

are disjoint connected sets. Then \mathbb{G}_n^+ has two connected components.

For every $D_1, D_2 \in \mathbb{D}_n$, by the use of Step 1, every component of $\mathbb{G}(D_1, D_2)$ intersects one of the components of \mathbb{G}_n^+ . By Step 2, \mathbb{G}_n^+ has two connected components and hence \mathbb{G}_n has two connected components. \Box

Finally in this section, we make another connection with the connected components of $\Gamma_n(J)$.

LEMMA 4.6. [11, Proposition 3.6] Let J be an $n \times n$ signature matrix and $J \neq \pm I$. Then for every $i \ (2 \leq i \leq 4)$, the component \mathcal{C}_i of $\Gamma_n(J)$ is homeomorphic and group isomorphic to \mathcal{C}_1 .

As in the proof of Theorem 4.4, let *P* and *Q* be as in the proof of Theorem 2.2. Consider the linear operator $T : \mathbf{M}_n \longrightarrow \mathbf{M}_n$ defined by $T(A) = |D_1|^{-1/2} P^T A Q |D_2|^{-1/2}$. Both *T* and T^{-1} are continuous and $T(\Gamma_n(J)) = \mathbb{G}(D_1, D_2)$ by Theorem 2.2. We thus obtain the following result on the connected components of $\mathbb{G}(D_1, D_2)$. PROPOSITION 4.7. If J is the inertia matrix of D_1 , D_2 and $J \neq I$, then the four connected components of $\mathbb{G}(D_1, D_2)$ are homeomorphic.

The second part of this section will be some observations on sign pattern matrices. In qualitative and combinatorial matrix theory, we study properties of a matrix based on combinatorial information, such as the signs of the entries in the matrix. An $m \times n$ matrix whose entries are from the set $\{+, -, 0\}$ is called a sign pattern matrix (or a sign pattern). A sign pattern is said to be full if it does not have a 0 entry. For a real matrix *B*, sgn(B) is the sign pattern matrix obtained by replacing each positive (respectively, negative, zero) entry of *B* by + (respectively, -, 0). For a sign pattern matrix *A*, the sign pattern class of *A* is defined by

$$Q(A) = \{B : \operatorname{sgn}(B) = A\}.$$

A sign pattern matrix P is called a permutation sign pattern if exactly one entry in each row and column is equal to + and all the other entries are 0. A permutation equivalence of the $n \times n$ sign pattern A has the form PAQ, where P and Q are permutation patterns.

Suppose \mathscr{P} is a property referring to a real matrix. A sign pattern A is said to allow \mathscr{P} if some real matrix in Q(A) has property \mathscr{P} . We can then speak of the set or class of sign patterns allowing \mathscr{P} as the class of sign pattern A with property \mathscr{P} .

Theorem 1.8 in [6] is a general result which says the following: the set of all $n \times n$ sign patterns that allow a G-matrix is the same as the set of all permutation equivalences of the $n \times n$ sign patterns allowing *J*-orthogonality. However, from our Theorem 2.2 we obtain the following specific result.

THEOREM 4.8. The set of sign patterns of the matrices in an $n \times n$ G-class $\mathbb{G}(D_1, D_2)$ is the same as a permutation equivalence of the set of sign patterns of the *J*-orthogonal matrices in $\Gamma_n(J)$, where *J* is the common inertia matrix of D_1 and D_2 .

Then, from our equivalence relation \sim we obtain:

COROLLARY 4.9. If $\mathbb{G}(D_1, D_2) \sim \mathbb{G}(D_3, D_4)$, then the set of sign patterns of the matrices in $\mathbb{G}(D_1, D_2)$ is the same as a permutation equivalence of the set of sign patterns of the matrices in $\mathbb{G}(D_3, D_4)$.

We next recall Theorem 3.2 from [3]: the class of sign patterns of $n \times n$ nonsingular Cauchy matrices is the same as the class of $n \times n$ sign patterns each of which is permutation equivalent to a "staircase pattern". Using this and the previous corollary we have the next result.

COROLLARY 4.10. If $G(D_1,D_2) \sim G(D_3,D_4)$, and the class of sign patterns of $G(D_1,D_2)$ contains a sign pattern of a nonsigular Cauchy matrix, then so does $G(D_3,D_4)$.

We take this opportunity to recall the following.

Open questions. Does every full $n \times n$ sign pattern allow a *J*-orthogonal matrix? As shown in [6] and [7] the answer is yes for $n \leq 4$. For n > 4, we can more generally ask the following: does every $n \times n$ full sign pattern even allow a G-matrix?

Acknowledgement. The authors greatly appreciate the valuable comments of the referee.

REFERENCES

- [1] R. A. BRUALDI AND H. J. RYSER, Combinatorial Matrix Theory, Cambridge University Press, 1991.
- [2] M. FIEDLER, Notes on Hilbert and Cauchy matrices, Linear Algebra Appl. 432 (2010) 351–356.
- [3] M. FIEDLER, F. J. HALL, G-matrices, Linear Algebra Appl. 436 (2012) 731-741.
- [4] M. FIEDLER, T. L. MARKHAM, More on G-matrices, Linear Algebra Appl. 438 (2013) 231–241.
- [5] E. J. GRIMME, D. C. SORENSEN, P. VAN DOOREN, Model reduction of state space systems via an implicitly restarted Lanczos method, Numer. Algorithms 12 (1996) 1–31.
- [6] F. J. HALL, Z. LI, C. T. PARNASS, M. ROZLOŽNÍK, Sign patterns of J-orthogonal matrices, Spec. Matrices 5 (2017) 225–241.
- [7] F. J. HALL, M. ROZLOŽNÍK, G-matrices, J-orthogonal matrices, and their sign patterns, Czechoslovak Mathematical Journal 66 (3) (2016) 653–670.
- [8] N. J. HIGHAM, J-orthogonal matrices: properties and generation, SIAM Review 45 (3) (2003) 504– 519.
- [9] M. MATSUURA, A note on generalized G-matrices, Linear Algebra Appl., 436 (2012) 3475–3479.
- [10] T. J. MCAVOY, Interaction Analysis: Principles and Applications, vol. 6 of Monograph Series, Instrument Society of America, 1983.
- [11] S. M. MOTLAGHIAN, A. ARMANDNEJAD AND F. J. HALL, *Topological properties of J-orthogonal matrices*, Linear and Multilinear Algebra, 66 no. 12, (2018) 2524–2533.
- [12] S. M. MOTLAGHIAN, A. ARMANDNEJAD AND F. J. HALL, Topological properties of J-orthogonal matrices, part II, Linear and Multilinear Algebra, 69 no. 3, (2021) 438–447.
- [13] F. W. WARNER, Foundations of Differentiable Manifolds and Lie Groups, Springer, 1983.

(Received June 1, 2021)

Sara M. Motlaghian Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University Atlanta, Ga 30303, USA e-mail: motlaghian86@gmail.com

> Ali Armandnejad Department of mathematics Vali-e-Asr University of Rafsanjan P.O. box: 7713936417, Rafsanjan, Iran e-mail: armandnejad@vru.ac.ir

> > F. J. Hall

Department of Mathematics and Statistics Georgia State University Atlanta, Ga 30303, USA e-mail: fhall@gsu.edu