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A NOTE ON SOME CLASSES OF G–MATRICES

SARA M. MOTLAGHIAN, ALI ARMANDNEJAD ∗ AND FRANK J. HALL

(Communicated by Z. Drmač)

Abstract. Let Mn be the set of all n×n real matrices. A nonsingular matrix A ∈ Mn is called a
G-matrix if there exist nonsingular diagonal matrices D1 and D2 such that A−T = D1AD2 . For
fixed nonsingular diagonal matrices D1 and D2 , let G(D1,D2) = {A ∈ Mn : A−T = D1AD2},
which is called a G-class. In this note, a characterization of G(D1,D2) is obtained and some
properties of these G-classes are exhibited, such as conditions for equality of two G-classes.
It is shown that G(D1,D2) has two or four connected components in Mn and that Gn =⋃

D1,D2
G(D1,D2) , the set of all n×n G-matrices, has two connected components in Mn . Sign

patterns of the G-classes are also examined.

1. Introduction

All matrices in this note have real number entries. Let Mn be the set of all n×n
real matrices. A nonsingular matrix A ∈ Mn is called a G-matrix if there exist non-
singular diagonal matrices D1 and D2 such that A−T = D1AD2 , where A−T denotes
the transpose of the inverse of A . These matrices form a rich class and were originally
studied in [3] by Fiedler and Hall. Some properties of these matrices are as follows:

All orthogonal matrices are G-matrices.
All nonsingular diagonal matrices are G-matrices.
Any n positive real numbers are the singular values and eigenvalues of a diagonal

G-matrix D.
If A is a G-matrix, then both AT and A−1 are G-matrices.
If A is an n× n G-matrix and D is an n× n nonsingular diagonal matrix, then

both AD and DA are G-matrices.
If A is an n×n G-matrix and P is an n×n permutation matrix, then both AP and

PA are G-matrices.
Cauchy matrices have the form C = [ci j], where ci j = 1

xi+y j
for some numbers

xi and y j . We shall restrict to square, say n× n , Cauchy matrices – such matrices
are defined only if xi + y j �= 0 for all pairs of indices i, j , and it is well known that
C is nonsingular if and only if all the numbers xi are mutually distinct and all the
numbers y j are mutually distinct. It turns out that by an observation of Fiedler [2]
every nonsingular Cauchy matrix is a G-matrix. So, in particular, G-matrices arise
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naturally as the very well-defined structured nonsingular Cauchy matrices. Further-
more, G-matrices arise also in the context of “combined matrices” C(A) = A ◦A−T ,
where ◦ denotes the Hadamard product, see [2]. For example, if A is a G-matrix, then
C(A) = A◦ (D1AD2) = D1(A◦A)D2 ; so if say D1 and D2 are nonnegative, then C(A)
is nonnegative. The combined matrices appear in the chemical literature where they
represent the relative gain array, [10]. From a basic point of view, we can rewrite the
original G-matrix equation as

A−1 = D2A
T D1,

which says that A−1 and AT are diagonally equivalent, giving a generalization of or-
thogonal matrices. Theorem 2.2 and Corollary 2.3 in Section 2 describe specifically
how the structure of G-matrices arises from the structure of J-orthogonal matrices.

The G-matrices were later studied in two papers [9] and [4].
Denote by J = diag(±1) a diagonal (signature) matrix, each of whose diagonal

entries is +1 or −1. As in [8], a nonsingular real matrix Q is called J -orthogonal if

QT JQ = J,

or equivalently, if
Q−T = JQJ.

Of course, with J = In the identity matrix of order n , every orthogonal matrix is a
J-orthogonal matrix. And clearly, from the equation Q−T = JQJ , every J-orthogonal
matrix is a G-matrix. Not every G-matrix is a J-orthogonal matrix; for example, 2In is
a G-matrix but not a J-orthogonal matrix. But, a G-matrix can always be “transformed”
to a J -orthogonal matrix [7].

For fixed nonsingular diagonal matrices D1 and D2 , let the class of n× n G-
matrices

G(D1,D2) = {A ∈ Mn : A−T = D1AD2}.
We call such a class of matrices a G-class of matrices.

In this note, a characterization of G(D1,D2) is obtained and some properties of
these G-classes are exhibited, such as conditions for equality of two G-classes. It is
shown that G(D1,D2) has two or four connected components in Mn and that Gn =⋃

D1,D2
G(D1,D2) , the set of all n× n G-matrices, has two connected components in

Mn . Sign patterns of the G-classes are also examined.
The following characterization of J -orthogonal matrices is contained in the article

[8] by N. Higham. As stated in [8], this decomposition was first derived in [5]. As in
our previous papers [11] and [12], for a fixed signature matrix J ,

Γn(J) = {A ∈ Mn : A�JA = J}.
Also, Ok denotes the set of all k× k orthogonal matrices.

PROPOSITION 1.1. [8, Theorem 3.2 (hyperbolic CS decomposition)] Let q � p
and J = Ip⊕ (−Iq) . Then every A ∈ Γn(J) is of the form

(U1⊕U2)
((

C −S
−S C

)
⊕ Iq−p

)
(V1⊕V2), (1.1)
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where U1,V1 ∈ Op , U2,V2 ∈ Oq and C,S ∈ Mp are nonnegative diagonal matrices
such that C2−S2 = I . Also, any matrix of the form (1.1) is J -orthogonal.

As in our previous works, the decomposition in Proposition 1.1 will also be em-
ployed in this paper.

2. Classes of G-matrices

We note that the nonsingular diagonal matrices D1 and D2 satisfying A−T =
D1AD2 are in general not uniquely determined as we can multiply one of them by a
nonzero real number and divide the other by the same number. (However, if A is a
“fully indecomposable” G-matrix then D1 and D2 are unique up to scalar multiplies,
see Theorem 2.2 in [7]. For the definition of fully indecomposable matrices, the reader
can see [1, p. 112]). On the other hand, for nonsingular n× n diagonal matrices D1

and D2 , the following known result from [3] shows that if A−T = D1AD2 then D1 and
D2 have the same inertia matrix.

PROPOSITION 2.1. Suppose A is a G-matrix and A−T = D1AD2 , where D1 and
D2 are nonsingular diagonal matrices. Then the inertia of D1 is equal to the inertia of
D2 .

Proof. We have ATD1AD2 = I and so ATD1A = D−1
2 . Since A is nonsingular, the

result follows from Sylvester’s Law of Inertia. �
We just mention the following in passing. A (J1,J2)-orthogonal matrix is defined

as a nonsingular real matrix Q such that

QT J1Q = J2,

where J1 = diag(±1) and J2 = diag(±1) are signature matrices [8]. Similar to the
proof of Proposition 2.1, J1 and J2 have the same inertia and are just permutations of
each other.

In this section we find a characterization of G(D1,D2) in terms of the matrices in
Γn(J) , thus establishing a further specific connection between the G-matrices and the
J -orthogonal matrices.

Let D be a nonsingular diagonal matrix with the inertia matrix J (a signature ma-
trix having all its positive ones in the upper left corner). Then there exists a permutation
matrix P such that D = |D|PT JP , where |D| is obtained by taking the absolute value on
entries of D . Recall that for a fixed signature matrix J , Γn(J) = {A∈Mn : A�JA = J} .
In fact,

Γn(J) = G(J,J).

THEOREM 2.2. Let D1 and D2 be nonsingular diagonal matrices with the inertia
matrix J . Then there exist permutation matrices P and Q such that

G(D1,D2) = {|D1|−1/2PT AQ|D2|−1/2 : A ∈ Γn(J)}.
This characterization shows that G(D1,D2) is in fact nonempty.
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Proof. Since J is the inertia matrix for D1 and D2 , there exist permutation matri-
ces P and Q such that D1 = |D1|PT JP and D2 = |D2|QT JQ .

Then J = P|D1|−1/2D1|D1|−1/2PT = Q|D2|−1/2D2|D2|−1/2QT . These imply that

A ∈ Γn(J) ⇔ A−T = JAJ

⇔ A−T = P|D1|−1/2D1|D1|−1/2PT AQ|D2|−1/2D2|D2|−1/2QT

⇔ (|D1|−1/2PT AQ|D2|−1/2)−T = D1(|D1|−1/2PTAQ|D2|−1/2)D2

⇔ |D1|−1/2PT AQ|D2|−1/2 ∈ G(D1,D2).

Let X = |D1|−1/2PT and Y = Q|D2|−1/2 . We have shown that

A ∈ Γn(J) ⇔ XAY ∈ G(D1,D2).

Now, by use of this fact we have

B ∈ G(D1,D2) ⇔ X(X−1BY−1)Y ∈ G(D1,D2)
⇔ X−1BY−1 ∈ Γn(J)
⇔ B ∈ XΓn(J)Y.

Therefore

G(D1,D2) = XΓn(J)Y = {|D1|−1/2PT AQ|D2|−1/2 : A ∈ Γn(J)}. �

We will now incorporate the hyperbolic CS Decomposition for Γn(J) into a sim-
plified version of G(D1,D2) . Assume q � p , the common inertia matrix J of D1 and
D2 has the form (

Ip 0
0 −Iq

)

and that D1 and D2 have the form (
+p 0
0 −q

)
,

where +p (−q) denotes an order p (q) diagonal matrix with positive (negative) diag-
onal entries. Then P = Q = I , D1 = |D1|J , and D2 = |D2|J . Using Proposition 1.1 on
the CS Decomposition, we then have the following result.

COROLLARY 2.3. With the above notation,

G(D1,D2) =
{
|D1|−1/2(U1 ⊕U2)

((
C −S
−S C

)
⊕ Iq−p

)
(V1⊕V2)|D2|−1/2

}
.

where U1,V1 ∈ Op , U2,V2 ∈ Oq and C,S ∈ Mp are nonnegative diagonal matrices
such that C2−S2 = Ip .
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Let A be an n×n nonsingular real matrix with Singular Value Decomposition

A = UΣW

where U and W are orthogonal matrices, and Σ is a diagonal matrix with positive
diagonal entries.. So, AWT = UΣ . Now, it is easy to see that UΣ ∈ G(I,Σ−2) . (Also:
since U is an orthogonal matrix, U is a G-matrix; multiplying U by the nonsingular
diagonal matrix Σ we still have a G-matrix.) Hence, AWT = B , where B ∈ G(I,Σ−2) ,
so that A = BW . We thus arrive at the following result.

PROPOSITION 2.4. Every n× n nonsingular real matrix is a product of a G-
matrix and an orthogonal matrix. In particular, if UΣW is a Singular Value Decompo-
sition of a nonsingular matrix A, then UΣ is a G-matrix.

Let Pn denote the set of permutation matrices of order n.

LEMMA 2.5. Let D1 and D2 be n× n real nonsingular diagonal matrices. If
D1PnD2 ⊆ On , then there is a positive number d such that

D1 = d

⎛
⎜⎝

±1 0
. . .

0 ±1

⎞
⎟⎠ , D2 =

1
d

⎛
⎜⎝

±1 0
. . .

0 ±1

⎞
⎟⎠ .

Proof. For i, j = 1, . . . ,n , let the ith diagonal entry of D1 be d1
i and similarly

jth diagonal entry of D2 be d2
j . Let Pi j be the permutation matrix obtained from the

identity matrix by interchanging the ith and jth rows. The norm of the jth column of
D1Pi jD2 is |d1

i d2
j | . By the assumption of D1PnD2 ⊆ On , we have |d1

i d
2
j | = 1 for all

i, j = 1, . . . ,n . Letting d = |d1
1 | , then the result is achieved. �

COROLLARY 2.6. Let D1 and D2 be n×n real nonsingular diagonal matrices.
Then D1OnD2 = On if and only if there is a positive number d such that

D1 = d

⎛
⎜⎝

±1 0
. . .

0 ±1

⎞
⎟⎠ , D2 =

1
d

⎛
⎜⎝

±1 0
. . .

0 ±1

⎞
⎟⎠ .

Proof. The proof of sufficiency is clear. For the proof of the necessity, suppose
that D1OnD2 = On . Then we have D1PnD2 ⊆On . By the use of Lemma 2.5 the result
is obtained. �

3. Relationships between the G-classes

Given a fixed n× n inertia matrix J , we have various G-classes associated with
J . We define the following relation on the collection of the n×n G-classes:

G(D1,D2) ∼ G(D3,D4)
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if and only if each class is associated with the same J , i.e. the inertia matrix of D1 ,
D2 , D3 , D4 is J . (Note that G(J,J) is in the same equivalence class.) It is clear that
∼ is an equivalence relation on the collection of the n×n G-classes.

We first consider G(D1,D2) ∼ G(D3,D4) in the specific case where the common
inertia matrix of D1 , D2 , D3 , D4 is ±I , and we give the condition for equality of the
two classes.

THEOREM 3.1. Assume D1 , D2 , D3 and D4 are real nonsingular diagonal ma-
trices with the inertia matrix I or −I . Then

G(D1,D2) = G(D3,D4)

if and only if there exists a positive number d such that D3 = dD1 and D4 = 1
d D2 .

Proof. Since G(D1,D2) = G(−D1,−D2) , we can assume without loss of gener-
ality that the common inertia matrix is I . We have by using Theorem 2.2 that

G(D1,D2) = G(D3,D4) ⇔ D−1/2
1 OnD

−1/2
2 = D−1/2

3 OnD
−1/2
4

⇔ D1/2
3 D−1/2

1 OnD
−1/2
2 D1/2

4 = On,

which by Corollary 2.6 holds

⇔ D1/2
3 D−1/2

1 = kI,D−1/2
2 D1/2

4 =
1
k
I,

where k is a positive number. Then for d = k2 , the latter two equations become

D3D
−1
1 = dI,D−1

2 D4 =
1
d

I,

which then completes the proof. �
We next consider a second case where G(D1,D2) ∼ G(D3,D4) .

Let J =
(

Ip 0
0 −Iq

)
. For A ∈ Mn , we say that A is conformal to J if A =(

A1 0
0 A2

)
with A1 ∈ Mp and A2 ∈ Mq .

THEOREM 3.2. Let q � p, J = Ip⊕ (−Iq) and, suppose D1 , D2 , D3 and D4 are
real nonsingular diagonal matrices with the inertia matrix J such that Di = |Di|J for
i = 1, . . . ,4 . Then

G(D1,D2) = G(D3,D4)

if and only if there exists a positive number d such that D3 = dD1 and D4 = 1
d D2 .

Proof. The proof of the sufficiency is straightforward. Suppose D3 = dD1 and
D4 = 1

d D2 . Hence if A ∈ G(D3,D4) , then A ∈ G(D1,D2) . Similarly G(D1,D2) ⊆
G(D3,D4) .
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To prove the necessity, suppose

G(D1,D2) = G(D3,D4).

By using Theorem 2.2 we have

|D1|−1/2 Γn(J) |D2|−1/2 = |D3|−1/2 Γn(J) |D4|−1/2.

That is equivalent to

|D3|1/2|D1|−1/2 Γn(J) |D2|−1/2|D4|1/2 = Γn(J). (3.1)

The set of P⊕Q such that P ∈ Pp and Q ∈ Pq is a subset of Γn(J) . So

|D3|1/2|D1|−1/2(P⊕Q) |D2|−1/2|D4|1/2 ∈ Γn(J),

for all P∈Pp and Q∈Pq . Matrices of the form |D3|1/2|D1|−1/2(P⊕Q) |D2|−1/2|D4|1/2

are conformal to J . That is to say, they have the form

B =
(

B1 0
0 B2

)

where B1 is p× p and B2 is q× q . Since B ∈ Γn(J) , BJBT = J . Thus we have
B1 ∈ Op and B2 ∈ Oq . That implies

|D3|1/2|D1|−1/2(P⊕Q) |D2|−1/2|D4|1/2 ∈ Op⊕Oq.

By applying Lemma 2.5 to each part of the latter direct sum, there are positive numbers
k1 and k2 such that

|D3|1/2|D1|−1/2 = k1Ip⊕ k2Iq, |D2|−1/2|D4|1/2 =
1
k1

Ip⊕ 1
k2

Iq.

Next we show that k1 = k2. Let C = 2Ip and S =
√

3Ip . Then by Proposition 1.1,

(
C −S
−S C

)
⊕ Iq−p ∈ Γn(J).

From Equation 3.1, we have

(k1Ip⊕ k2Iq)
((

C −S
−S C

)
⊕ Iq−p

)(
1
k1

Ip⊕ 1
k2

Iq

)
∈ Γn(J).

Hence, letting

A = (k1Ip⊕ k2Iq)
((

C −S
−S C

)
⊕ Iq−p

)(
1
k1

Ip⊕ 1
k2

Iq

)
,
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and multiplying this expression out we obtain

A =

(
C − k1

k2
S

− k2
k1

S C

)
⊕ Iq−p

From ATJA = J it can be seen that ( k1
k2

)2 = 1. So k1 = k2. Letting k = k1 = k2 and

d = k2 , then |D3||D1|−1 = dI and |D2|−1|D4| = 1
d I .

We can observe that Di = |Di|J for i = 1, . . . ,4 if and only if D1 , D2 , D3 , D4 all
have the same sign pattern (the corresponding (i, i) entries have the same sign) as J .
So, |D3||D1|−1 = dI and |D2|−1|D4|= 1

d I are equivalent to D3 = dD1 and D4 = 1
d D2 ,

respectively. �
Suppose D1 , D2 , D3 , D4 have the same sign pattern, but not all + or all − on the

diagonals (the case where the common inertia matrix is ±I is covered in Theorem 3.1).
Assume G(D1,D2) = G(D3,D4) . Since G(D1,D2) = G(−D3,−D4) , we can assume
that the number q of negative diagonal entries is greater than or equal to the number p
of positive diagonal entries. With A ∈ G(D1,D2) and P a permutation matrix, we have

(PT AP)−T = (PT D1P)(PT AP)(PTD2P)

and similarly for G(D3,D4) . Let P be the permutation matrix such that all PT DiP
have the p positive diagonal entries in the upper left corner so that J = Ip ⊕ (−I)q is
the common inertia matrix of D1 , D2 , D3 , D4 . Similar to the proof of Theorem 3.2
we would reach

|PTD3P| |PT D1P|−1 = dI,

so that |D3| |D1|−1 = dI , and |PT D2P|−1|PT D4P|= 1
d I so that |D2|−1 |D4|= 1

d I . Since
D1 , D2 , D3 , D4 have the same sign pattern, these are equivalent to D3 = dD1 and
D4 = 1

d D2 . Thus, we have the final culminating result.

COROLLARY 3.3. Suppose D1 , D2 , D3 , and D4 are real n×n nonsingular di-
agonal matrices with the same sign pattern. Then

G(D1,D2) = G(D3,D4)

if and only if there exists a positive number d such that D3 = dD1 and D4 = 1
d D2 .

For the general case, when Di = |Di|PT
i JPi with Pi ∈ Pn , for i = 1, . . . ,4, we

can have different scenarios depending on the Pi . Note that the selection of the Pi is
not unique. Without loss of generality we can consider permutations Pi such that if
Pi permutes row i to row j , then it permutes row j to row i . Thus without loss of
generality we can assume that such permutation matrices are equal to their transposes.

One of the cases is that all but one of the Pi are I . Suppose P1 = P2 = P3 = I and
P4 �= I . For simplicity assume J is the same as in Theorem 3.2. Then G(D1,D2) �=
G(D3,D4) . Otherwise, by applying Theorem 2.2, we have

|D3|1/2|D1|−1/2 Γn(J) |D2|−1/2|D4|1/2PT
4 = Γn(J).
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Note that P4 is not conformal to J . That’s true because there are at least two diagonal
entries of D4 say d4

i and d4
j such that their signs are different from the sings of the

corresponding entries in J . Let’s say that permutation matrix P4 exchanges the rows
and columns of these entries. By knowing the form of J , either i � p and j > p , or
i > p and j � p . Thus if P4 is partitioned such that

P4 =
(

P11 P12

P21 P22

)
,

where P11 is p× p , then we have P12 = PT
21 �= 0. Since I ∈ Γn(J) , we have

|D3|1/2|D1|−1/2 I |D2|−1/2|D4|1/2P4 ∈ Γn(J).

If
A = |D3|1/2|D1|−1/2 I |D2|−1/2|D4|1/2P4,

then A has the same partitioned form as P4 . From AT JA = J we would have P12 =
PT

21 = 0 which doesn’t hold. Thus, indeed, G(D1,D2) �= G(D3,D4)!
With having the same inertia matrix J , two G-classes do not necessarily have

nonempty intersection. Consider G(I, I) = On and G(2I, I) . We can observe by using
Theorem 2.2 that

G(I, I)∩G(2I, I) = /0.

The following is an example of two 2×2 G-classes with finite intersection.

EXAMPLE 3.4. Let D1 =
(

1 0
0 1

2

)
, D2 =

(
1 0
0 2

)
, D3 =

(
1
3 0
0 1

)
, and D4 =

(
3 0
0 1

)
.

Then I is the inertia matrix of D1 , D2 , D3 and D4 . By Theorem 3.1, G(D1,D2) �=
G(D3,D4) . Suppose A∈G(D1,D2)∩G(D3,D4) . By Theorem 2.2, there are V,W ∈O2

such that
A = D−1/2

1 VD−1/2
2 = D−1/2

3 WD−1/2
4 .

That implies

D1/2
3 D−1/2

1 VD−1/2
2 D1/2

4 ∈ O2.

Thus v1,2 = v2,1 = 0. So A only can be of the form(±1 0
0 ±1

)
.

The following question arises.

OPEN QUESTION. Do there exist two n× n G-classes having finite intersection
when n � 3.

REMARK 3.5. Of course, there are other similar questions for G-matrices with a
common inertia matrix. One could also consider various relationships between n×n G-
classes G(D1,D2) and G(D3,D4) with inertia matrices J1 and J2 respectively, where
J1 �= J2 .The latter becomes more difficult to analyze.
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4. The connected components and sign patterns

In this section we show that G(D1,D2) has two or four connected components in
Mn . Also we show that

Gn =
⋃

D1,D2

G(D1,D2),

the set of all n×n G-matrices, has two connected components in Mn . Let On be the set
of all n× n orthogonal matrices, O+

n be the set of all n× n orthogonal matrices with
determinant 1, and O−

n be the set of all n× n orthogonal matrices with determinant
−1.

PROPOSITION 4.1. [13, Theorem 3.67] For every n � 1 , On has two connected
components, O+

n and O−
n .

PROPOSITION 4.2. [11, Theorem 3.5] Let J be an n× n signature matrix. If
J �= ±I then Γn(J) has four connected components.

COROLLARY 4.3. For every n×n signature matrix J , On ∪Γn(J) has two con-
nected components.

Proof. Since every component of Γn(J) has some orthogonal matrices (this is
because each component has signature matrices, which in fact are orthogonal matrices),
by the use of Proposition 4.1, the result is obtained. �

THEOREM 4.4. Let D1 and D2 be nonsingular diagonal matrices with the inertia
matrix J .

(i) If J �= ±I , then G(D1,D2) has four connected components.

(ii) If J = ±I , G(D1,D2) has two connected components.

Proof. Let P and Q be as in the proof of Theorem 2.2. Consider the linear oper-
ator T : Mn −→ Mn defined by

T (A) = |D1|−1/2PT AQ|D2|−1/2.

Both T and T−1 are continuous and T (Γn(J)) = G(D1,D2) by Theorem 2.2. So the
number of connected components of Γn(J) and G(D1,D2) are the same. Now, by the
use of Propositions 4.1, 4.2, the proof is complete. �

THEOREM 4.5. The set Gn of all n× n G-matrices has two connected compo-
nents.

Proof. We present the proof in two steps.
Step 1: First we show that every component of G(D1,D2) intersects one of the

components of G(|D1|, |D2|) and hence G(D1,D2)
⋃

G(|D1|, |D2|) has two connected
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components, when J �= ±I is the inertia matrix of D1 and D2 (if J = ±I we have
G(D1,D2) = G(|D1|, |D2|). By Theorem 2.2, there exist permutation matrices P and
Q such that

G(D1,D2) = {|D1|−1/2PT AQ|D2|−1/2 : A ∈ Γn(J)},
G(|D1|, |D2|) = {|D1|−1/2PT AQ|D2|−1/2 : A ∈ On}.

We know that (see [11, Proposition 3.8] ) every component of Γn(J) has 2n−2 signa-
ture matrices say J1, . . . ,J2n−2 . So the corresponding component of G(D1,D2) has the
following matrices:

|D1|−1/2PT J1Q|D2|−1/2, . . . , |D1|−1/2PT J2n−2Q|D2|−1/2.

On the other hand it is clear that

|D1|−1/2PT J1Q|D2|−1/2, . . . , |D1|−1/2PT J2n−2Q|D2|−1/2 ∈ G(|D1|, |D2|).
So, the first part of the claim is proved. Since G(|D1|, |D2|) = T (On) , where T is the
linear operator in the proof of Theorem 4.4, G(|D1|, |D2|) has two connected compo-
nents. By these two facts we obtain that G(D1,D2)∪G(|D1|, |D2|) has two connected
components.

Step 2: Let Dn and D+
n be the sets of all n× n diagonal matrices with nonzero

and positive diagonal entries respectively. It is clear that Dn and D+
n are connected

sets. For every D1,D2 ∈ D+
n , we have G(D1,D2) = D−1/2

1 O+
n D−1/2

2 ∪̇D−1/2
1 O−

n D−1/2
2 .

Then we have

G
+
n :=

⋃
D1,D2∈D

+
n

G(D1,D2) = [
⋃

D1,D2∈D
+
n

D−1/2
1 O+

n D−1/2
2 ]∪̇[

⋃
D1,D2∈D

+
n

D−1/2
1 O−

n D−1/2
2 ].

Since D+
n , O+

n and O−
n are connected sets,⋃

D1,D2∈D
+
n

D−1/2
1 O+

n D−1/2
2 ,

⋃
D1,D2∈D

+
n

D−1/2
1 O−

n D−1/2
2

are disjoint connected sets. Then G+
n has two connected components.

For every D1,D2 ∈ Dn , by the use of Step 1, every component of G(D1,D2)
intersects one of the components of G+

n . By Step 2, G+
n has two connected components

and hence Gn has two connected components. �
Finally in this section, we make another connection with the connected compo-

nents of Γn(J) .

LEMMA 4.6. [11, Proposition 3.6] Let J be an n× n signature matrix and J �=
±I . Then for every i (2 � i � 4) , the component Ci of Γn(J) is homeomorphic and
group isomorphic to C1 .

As in the proof of Theorem 4.4, let P and Q be as in the proof of Theorem 2.2.
Consider the linear operator T : Mn −→Mn defined by T (A)= |D1|−1/2PTAQ|D2|−1/2 .
Both T and T−1 are continuous and T (Γn(J)) = G(D1,D2) by Theorem 2.2. We thus
obtain the following result on the connected components of G(D1,D2) .
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PROPOSITION 4.7. If J is the inertia matrix of D1 , D2 and J �= I , then the four
connected components of G(D1,D2) are homeomorphic.

The second part of this section will be some observations on sign pattern matrices.
In qualitative and combinatorial matrix theory, we study properties of a matrix based
on combinatorial information, such as the signs of the entries in the matrix. An m×n
matrix whose entries are from the set {+,−,0} is called a sign pattern matrix (or a sign
pattern). A sign pattern is said to be full if it does not have a 0 entry. For a real matrix
B , sgn(B) is the sign pattern matrix obtained by replacing each positive (respectively,
negative, zero) entry of B by + (respectively, − , 0). For a sign pattern matrix A , the
sign pattern class of A is defined by

Q(A) = {B : sgn(B) = A}.

A sign pattern matrix P is called a permutation sign pattern if exactly one entry in
each row and column is equal to + and all the other entries are 0. A permutation equiv-
alence of the n×n sign pattern A has the form PAQ , where P and Q are permutation
patterns.

Suppose P is a property referring to a real matrix. A sign pattern A is said to
allow P if some real matrix in Q(A) has property P . We can then speak of the set or
class of sign patterns allowing P as the class of sign pattern A with property P .

Theorem 1.8 in [6] is a general result which says the following: the set of all n×n
sign patterns that allow a G-matrix is the same as the set of all permutation equivalences
of the n× n sign patterns allowing J -orthogonality. However, from our Theorem 2.2
we obtain the following specific result.

THEOREM 4.8. The set of sign patterns of the matrices in an n× n G-class
G(D1,D2) is the same as a permutation equivalence of the set of sign patterns of the
J -orthogonal matrices in Γn(J) , where J is the common inertia matrix of D1 and D2 .

Then, from our equivalence relation ∼ we obtain:

COROLLARY 4.9. If G(D1,D2) ∼ G(D3,D4) , then the set of sign patterns of the
matrices in G(D1,D2) is the same as a permutation equivalence of the set of sign
patterns of the matrices in G(D3,D4) .

We next recall Theorem 3.2 from [3]: the class of sign patterns of n× n nonsin-
gular Cauchy matrices is the same as the class of n× n sign patterns each of which is
permutation equivalent to a “staircase pattern”. Using this and the previous corollary
we have the next result.

COROLLARY 4.10. If G(D1,D2) ∼ G(D3,D4) , and the class of sign patterns
of G(D1,D2) contains a sign pattern of a nonsigular Cauchy matrix, then so does
G(D3,D4) .
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We take this opportunity to recall the following.

Open questions. Does every full n×n sign pattern allow a J -orthogonal matrix?
As shown in [6] and [7] the answer is yes for n � 4. For n > 4, we can more generally
ask the following: does every n×n full sign pattern even allow a G-matrix?
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