DISTINGUISHED SUBSPACES OF TOPELITZ OPERATORS ON N_{φ}-TYPE QUOTIENT MODULES

Hong Zou and Tao Yu*

(Communicated by G. Misra)

Abstract

In this paper, we show that there always exists reducing subspace M for $S_{\psi(z)}$ such that the restriction of $S_{\psi(z)}$ on M is unitarily equivalent to the Bergman shift when $\psi(z)$ is a finite Blaschke product. Moreover, we will show that only if $\psi(z)$ is a finite Blaschke product can $S_{\psi(z)}$ has distinguished reducing subspaces. We also give the form of these distinguished reducing subspaces when $\psi(z)$ is a finite Blaschke product. Finally, we show that every nontrivial minimal reducing subspace S of $S_{\psi(z)}$ is orthogonal to the direct sum of all distinguished subspaces when S is not a distinguished subspace of $S_{\psi(z)}$.

1. Introduction

Let \mathbb{D}^{2} be the open unit bidisk in the 2 -dimensional complex Euclidean space, and let Γ^{2} be the distinguished boundary of \mathbb{D}^{2}. Let $L^{2}\left(\Gamma^{2}\right)$ be the Lebesgue space and $H^{2}\left(\Gamma^{2}\right)$ be the Hardy space over Γ^{2}. We denote by $H^{2}\left(\Gamma_{z}\right)$ and $H^{2}\left(\Gamma_{w}\right)$ the Hardy spaces on the unit circle Γ in variables z and w, respectively. A function $\varphi(w) \in$ $H^{2}(\mathbb{D})$ is called inner if $|\varphi(w)|=1$ a.e. on Γ. Let P be the orthogonal projection from $L^{2}\left(\Gamma^{2}\right)$ onto $H^{2}\left(\Gamma^{2}\right)$. For each function $\psi \in L^{\infty}$, we define the Toeplitz operator T_{ψ} on $H^{2}\left(\Gamma^{2}\right)$ by $T_{\psi} f=P(\psi f)$ for $f \in H^{2}\left(\Gamma^{2}\right)$. A closed subspace M of $H^{2}\left(\Gamma^{2}\right)$ is called a submodule if $T_{z} M \subseteq M$ and $T_{w} M \subseteq M$. There are many conclusions about submodules of the Hardy space over Γ^{2} (see [9] and [11]-[13]). In $H^{2}(\Gamma)$, A. Beurling [2] showed an invariant subspace M of $H^{2}(\Gamma)$ has the form $M=\theta H^{2}(\Gamma)$ for some inner function θ. In $H^{2}\left(\Gamma^{2}\right)$, the structure of submodules is complicated. If M is a submodule of $H^{2}\left(\Gamma^{2}\right)$ and $N=H^{2}\left(\Gamma^{2}\right) \ominus M$, then $T_{z}^{*} N \subseteq N$ and $T_{w}^{*} N \subseteq N$. We called N is a quotient module of $H^{2}\left(\Gamma^{2}\right)$ related to M.

A reducing subspace M for an operator T on Hilbert space H is a closed subspace M of H such that $T M \subset M$ and $T^{*} M \subset M$. In [6], K. Guo et al show that only a multiplication operator by a finite Blaschke product on the Bergman space has a unique distinguished reduced subspace, that is, the restriction of the operator on this reduced subspace is equivalent to the Bergman shift. In [10], S. Sun et al show that

[^0]the multiplication operator on the Bergman space is unitarily equivalent to a weighted unilateral shift operator of finite multiplicity if and only if its symbol is a constant multiple of the N-th power of a Möbius transform.

For a subset E of $H^{2}\left(\Gamma^{2}\right)$, we denote by $[E]$ the smallest submodule of $H^{2}\left(\Gamma^{2}\right)$ containing E. Throughout this paper, let $\varphi \in H^{\infty}(\mathbb{D})$ be a non-constant inner function, and $N_{\varphi}=H^{2}\left(\Gamma^{2}\right) \ominus[z-\varphi(w)]$, a N_{ϕ}-type quotient module. A quotient module has a very rich structure $[7,8]$. In fact, N_{φ} can be identified with the tensor product of two well-known classical spaces, namely, the quotient module $H^{2}(\Gamma) \ominus \varphi H^{2}(\Gamma)$ and the Bergman space $L_{a}^{2}(\mathbb{D})$. In [8], K. Izuchi and R. Yang have obtained that, if φ is an one variable inner function, N_{φ} is essentially reduced if and only if φ is a finite Blaschke product. For a quotient module N of $H^{2}\left(\Gamma^{2}\right)$ and a function $\psi(z) \in H^{\infty}(\mathbb{D})$, we define a operator S_{ψ} on N by

$$
S_{\psi}=\left.P_{N} T_{\psi}\right|_{N}
$$

where P_{N} is the orthogonal projection from $H^{2}\left(\Gamma^{2}\right)$ onto N. In [6], the authors show that $S_{\psi(z)}$ acting on $H^{2}\left(\Gamma^{2}\right) \ominus[z-w]$ has the distinguished reducing subspace if and only if $\psi(z)$ is a finite Blaschke product. Inspired by [6], in this paper, we extend their conclusions from $H^{2}\left(\Gamma^{2}\right) \ominus[z-w]$ to the setting of the N_{ϕ}-type quotient module.

In this paper, we will show that only if $\psi(z)$ is a finite Blaschke product can $S_{\psi(z)}$ on N_{φ} has the distinguished subspace and completely described the form of those distinguished reducing subspaces when $\psi(z)$ is a finite Blaschke product. The following are our main results.

THEOREM 1.1. Let ψ be a Blaschke product of order N, There are reducing subspace M for $S_{\psi(z)}$ such that $\left.S_{\psi(z)}\right|_{M} \cong M_{z}$. In fact, M has only the following form

$$
\begin{equation*}
M=\overline{\operatorname{span}}\left\{P_{n}^{\prime}(\psi) e_{h}: n \geqslant 0\right\} \tag{1}
\end{equation*}
$$

where $P_{n}^{\prime}(\psi)=\sqrt{n+1} e_{n}(\psi(z), \psi(\varphi(w)))$ and $e_{h}=h(w) \frac{\psi(z)-\psi(\varphi(w))}{z-\varphi(w)}, h(w) \in K_{\varphi}^{2}\left(\Gamma_{w}\right)$ with $\|h\|=1$. And $\left\{\frac{P_{n}^{\prime}(\psi) e_{h}}{\sqrt{n+1} \sqrt{N}}\right\}_{0}^{\infty}$ form an orthonomal basis of M.

THEOREM 1.2. Let $\psi \in H^{\infty}(\mathbb{D})$. Then $S_{\psi(z)}$ acting on N_{φ} has the distinguished reducing subspace if and only if ψ is a finite Blaschke product.

Let $M_{k}=\overline{\operatorname{span}}\left\{P_{n}^{\prime}(\psi) e_{k}: n \geqslant 0\right\}$, where $e_{k}=\lambda_{k}(w) \frac{\psi(z)-\psi(\varphi(w))}{z-\varphi(w)}, k=1, \ldots, m$. And we denote $M_{0}=M_{1} \oplus M_{2} \oplus \cdots \oplus M_{m}$. Then we have the following theorem.

THEOREM 1.3. Suppose that Ω is a nontrivial minimal reducing subspace for $S_{\psi(z)}$. If Ω is not a distinguished reducing subspace, then Ω is a subspace of M_{0}^{\perp}.

The paper is organized as follows. In Section 2, we give some basic facts about the space N_{φ} and the operator S_{ϕ}. In Section 3, we give the proof of Theorem 1.1 and 1.2. In Section 4, we will show that every nontrivial minimal reducing subspace Ω of $S_{\psi(z)}$ which is not distinguished reducing subspace is orthogonal to M_{0}.

2. Preliminaries

In this section, we lay out some basic facts about the space N_{φ} and the operator S_{z}. And in this paper, we denote Bergman shift and $H^{2}\left(\Gamma_{w}\right) \ominus \varphi(w) H^{2}\left(\Gamma_{w}\right)$ by M_{z} and $K_{\varphi}^{2}\left(\Gamma_{w}\right)$ respectively.

LEMMA 2.1. ([8]) Let $\varphi(w)$ be a one variable non-constant inner function and $\left\{\lambda_{k}(w): k=1,2, \ldots, m\right\}$ be an orthonormal basis of $K_{\varphi}^{2}\left(\Gamma_{w}\right)$ and

$$
\begin{equation*}
e_{j}(z, w)=\frac{w^{j}+w^{j-1} z+\ldots+z^{j}}{\sqrt{j+1}}(j=0,1, \ldots) \tag{2}
\end{equation*}
$$

Let

$$
\begin{equation*}
E_{k, j}=\lambda_{k}(w) e_{j}(z, \varphi(w)) \tag{3}
\end{equation*}
$$

Then $\left\{E_{k, j}: k=1,2, \ldots, m ; j=0,1, \ldots\right\}$ (m can be infinity) is an orthonormal basis for N_{φ}.

Lemma 2.2. ([8]) There exists a unitary operator U

$$
\begin{gathered}
U: N_{\varphi} \rightarrow K_{\varphi}^{2}\left(\Gamma_{w}\right) \otimes L_{a}^{2}(\mathbb{D}) \\
E_{k, j} \mapsto \lambda_{k}(w) \sqrt{j+1} z^{j}
\end{gathered}
$$

such that

$$
U S_{z}=\left(I \otimes M_{z}\right) U
$$

where I is an identity map on $H^{2}\left(\Gamma_{w}\right) \ominus \varphi(w) H^{2}\left(\Gamma_{w}\right)$.
Corollary 2.3. (1). For each $\psi(z) \in H^{\infty}(\mathbb{D})$, we have

$$
U S_{\psi(z)}=\left(I \otimes M_{\psi(z)}\right) U
$$

(2). $\left.S_{z}\right|_{N_{\varphi}}=\left.S_{\varphi(w)}\right|_{N_{\varphi}}$.
(3). For each $\psi(z) \in H^{\infty}(\mathbb{D})$, we have

$$
\left.S_{\psi(z)}\right|_{N_{\varphi}}=\left.S_{\psi(\varphi(w))}\right|_{N_{\varphi}}
$$

(4). Since N_{φ} is a backshift invariant subspace, then we have

$$
\left.T_{z}^{*}\right|_{N_{\varphi}}=S_{z}^{*} \text { and }\left.T_{\varphi(w)}^{*}\right|_{N_{\varphi}}=S_{\varphi(w)}^{*}
$$

Proof. We only need to prove (1).
For any $\psi(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \in H^{\infty}(\mathbb{D})$, we have

$$
\begin{align*}
\left\langle S_{\psi(z)} E_{k, j}, E_{l, i}\right\rangle & =\left\langle\psi(z) \lambda_{k}(w) e_{j}(z, \varphi(w)), \lambda_{l}(w) e_{i}(z, \varphi(w))\right\rangle \\
& =\frac{1}{\sqrt{j+1} \sqrt{i+1}} \sum_{s=0}^{j} \sum_{t=0}^{i}\left\langle\psi(z) \lambda_{k}(w) \varphi(w)^{j-s} z^{s}, \lambda_{l}(w) \varphi(w)^{i-t} z^{t}\right\rangle \tag{4}\\
& =\frac{1}{\sqrt{j+1} \sqrt{i+1}} \sum_{s=0}^{j} \sum_{t=0}^{i}\left\langle\lambda_{k}(w), \lambda_{l}(w) \varphi(w)^{i+s-j-t}\right\rangle\left\langle\psi(z), z^{t-s}\right\rangle
\end{align*}
$$

Hence

$$
\left\langle S_{\psi(z)} E_{k, j}, E_{l, i}\right\rangle=\frac{j+1}{\sqrt{j+1} \sqrt{i+1}} a_{i-j} \text { if and only if } l=k \text { and } i-j \geqslant 0
$$

Then we have

$$
\begin{align*}
U S_{\psi(z)} E_{k, j} & =U \sum_{l=1}^{m} \sum_{i=0}^{\infty}\left\langle S_{\psi(z)} E_{k, j}, E_{l, i}\right\rangle E_{l, i} \\
& =U \sum_{i=0}^{\infty}\left\langle S_{\psi(z)} E_{k, j}, E_{k, i}\right\rangle E_{k, i} \\
& =U \sum_{i=j}^{\infty} \frac{j+1}{\sqrt{j+1} \sqrt{i+1}} a_{i-j} E_{k, i} \tag{5}\\
& =\sqrt{j+1} \lambda_{k}(w)\left[a_{0} z^{j}+a_{1} z^{j+1}+\ldots+a_{n} z^{j+n}+\ldots\right] \\
& =\sqrt{j+1} \lambda_{k}(w) \psi(z) z^{j} \\
& =\left(I \otimes M_{\psi(z)}\right) U E_{k, j} .
\end{align*}
$$

PROPOSITION 2.4. If $f \in H^{2}\left(\Gamma^{2}\right) \cap C\left(\overline{\mathbb{D}^{2}}\right)$ and $g \in N_{\varphi}$, then

$$
\langle f(z, w), g(z, w)\rangle=\langle f(\varphi(w), w), g(0, w)\rangle
$$

Proof. Since $f \in \mathbb{C}\left(\overline{\mathbb{D}^{2}}\right)$, then there are a sequence $\left\{q_{n}\right\}$ of polynomials of z and w converging uniformly to $f(z, w)$ on the closed bidisk. Thus it suffices to show

$$
\left\langle z^{i} w^{l}, \lambda_{k}(w) e_{j}(z, \varphi(w))\right\rangle=\left\langle\varphi(w)^{i} w^{l}, \lambda_{k}(w) e_{j}(0, \varphi(w)\rangle\right.
$$

for all $i, l, j \in \mathbb{N}$, and $k=1,2, \ldots, m$. So then the result follows from the following equalities.

$$
\begin{align*}
\left\langle z^{i} w^{l}, \lambda_{k}(w) e_{j}(z, \varphi(w))\right\rangle & =\left\langle w^{l}, T_{z^{i}}^{*} \lambda_{k}(w) e_{j}(z, \varphi(w))\right\rangle \\
& =\left\langle w^{l}, T_{\varphi(w)^{i}}^{*} \lambda_{k}(w) e_{j}(z, \varphi(w))\right\rangle \\
& =\left\langle\varphi(w)^{i} w^{l}, \lambda_{k}(w) e_{j}(z, \varphi(w))\right\rangle \\
& =\frac{1}{\sqrt{j+1}} \sum_{s=0}^{j}\left\langle\varphi(w)^{i} w^{l}, \lambda_{k}(w) z^{s} \varphi(w)^{j-s}\right\rangle \tag{6}\\
& =\frac{1}{\sqrt{j+1}}\left\langle\varphi(w)^{i} w^{l}, \lambda_{k}(w) \varphi(w)^{j}\right\rangle \\
& =\left\langle\varphi(w)^{i} w^{l}, \lambda_{k}(w) e_{j}(0, \varphi(w))\right\rangle
\end{align*}
$$

PROPOSITION 2.5. If $h(z, w) \in H^{2}\left(\Gamma^{2}\right)$ and $h \in N_{\varphi}^{\perp}=[z-\varphi(w)]$, then $h(\varphi(w), w)$ $=0$ for all $w \in \mathbb{D}$.

Proof. Let $w \in \mathbb{D}$, then for each $f(z, w) \in(z-\varphi(w)) H^{2}\left(\Gamma^{2}\right)$, we have $f(\varphi(w), w)$ $=0$. For each $h \in N_{\varphi}^{\perp}=[z-\varphi(w)]=\overline{(z-\varphi(w)) H^{2}\left(\Gamma^{2}\right)}$, there exists a sequence $\left\{g_{n}\right\} \subseteq H^{2}\left(\Gamma^{2}\right)$ such that $\left\|h-(z-\varphi(w)) g_{n}\right\|^{2} \rightarrow 0$ as $n \rightarrow \infty$.

Therefore

$$
0=\left\langle(z-\varphi(w)) g_{n}, k_{\alpha}(w) k_{\varphi(\alpha)}(z)\right\rangle \rightarrow\left\langle h, k_{\alpha}(w) k_{\varphi(\alpha)}(z)\right\rangle=h(\varphi(\alpha), \alpha)
$$

as $n \rightarrow \infty$, for each $\alpha \in \mathbb{D}$.

Proposition 2.6. Suppose $\psi(w) \in H^{\infty}(\mathbb{D})$, then we have $\psi(z)-\psi(\varphi(w)) \in$ $[z-\varphi(w)]$.

Proof. Suppose $\psi(w)=\sum_{n=0}^{\infty} a_{n} z^{n} \in H^{\infty}(\mathbb{D})$. It is clear that $\psi(z)-\psi(\varphi(w)) \in$ $H^{2}\left(\Gamma^{2}\right)$. For every $E_{k, j} \in N_{\varphi}, k=1, \ldots, m, j=0,1, \ldots$, we have

$$
\begin{align*}
\left\langle\psi(z)-\psi(\varphi(w)), E_{k, j}\right\rangle & =\left\langle\psi(z)-\psi(\varphi(w)), \frac{1}{\sqrt{j+1}} \lambda_{k}(w) \Sigma_{i=0}^{j} z^{i} \varphi(w)^{j-i}\right\rangle \\
& =\frac{1}{\sqrt{j+1}} \Sigma_{i=0}^{j}\left\langle\psi(z), \lambda_{k}(w) z^{i} \varphi(w)^{j-i}\right\rangle \\
& -\frac{1}{\sqrt{j+1}} \Sigma_{i=0}^{j}\left\langle\psi(\varphi(w)), \lambda_{k}(w) z^{i} \varphi(w)^{j-i}\right\rangle \tag{7}\\
& =\frac{1}{\sqrt{j+1}} \Sigma_{i=0}^{j} a_{i} \overline{\lambda_{k}(0) \varphi(0)^{j-i}} \\
& -\frac{1}{\sqrt{j+1}}\left\langle\Sigma_{n=0}^{\infty} a_{n} \varphi(w)^{n}, \lambda_{k}(w) \varphi(w)^{j}\right\rangle \\
& =0
\end{align*}
$$

This completes the proof.

3. The distinguished reducing subspace

In this section we will show that there always exists reducing subspace M for $S_{\psi(z)}$ such that the restriction of $S_{\psi(z)}$ on M is unitarily equivalent to the Bergman shift when $\psi(z)$ is a finite Blaschke product. Moreover, we will give the concrete forms of these reduced subspaces. At last, we will prove $S_{\psi(z)}$ acting on N_{φ} has the distinguished reducing subspace if and only if ψ is a finite Blaschke product.

Proposition 3.1. For each $f(z, w) \in H^{2}\left(\Gamma^{2}\right), f$ is in N_{φ} if and only if there is a function $\widetilde{f}(z, w)$ in $\mathfrak{D} \otimes K_{\varphi}^{2}\left(\Gamma_{w}\right)$ such that

$$
\begin{equation*}
f(z, w)=\frac{\widetilde{f}(z, w)-\widetilde{f}(\varphi(w), w)}{z-\varphi(w)} \tag{8}
\end{equation*}
$$

for two points z and w with $z \neq \varphi(w)$ in the unit disk.

Proof. Since $\left\{E_{k, j}: k=1, \ldots, m ; j=0,1, \ldots\right\}$ is an orthonormal basis of N_{φ}, then for each $f \in N_{\varphi}$, we can write

$$
f(z, w)=\sum_{k=1}^{m} \sum_{j=0}^{\infty} a_{k j} E_{k, j}(z, w)
$$

Let $\widetilde{f}(z, w)=\sum_{k=1}^{m} \sum_{j=0}^{\infty} \frac{a_{k j}}{\sqrt{j+1}} \lambda_{k}(w) z^{j+1}$. Then the equation (8) holds. Also we have

$$
\begin{align*}
\|\widetilde{f}\|_{\mathfrak{D} \otimes k_{\varphi}^{2}}^{2} & =\sum_{j=0}^{\infty}\left\langle\sum_{k=1}^{m} \frac{a_{k j}}{\sqrt{j+1}} \lambda_{k}(w), \sum_{k=1}^{m} \frac{a_{k j}}{\sqrt{j+1}} \lambda_{k}(w)\right\rangle\left\|z^{j+1}\right\|_{\mathfrak{D}}^{2} \\
& =\sum_{j=0}^{\infty} \sum_{k=1}^{m} \frac{\left|a_{k j}\right|^{2}}{j+1}(j+2) \tag{9}\\
& \leqslant 2 \sum_{j=0}^{\infty} \sum_{k=1}^{m}\left|a_{k j}\right|^{2} \\
& =2\|f\|^{2}
\end{align*}
$$

Hence $\widetilde{f}(z, w)$ in $\mathfrak{D} \otimes K_{\varphi}^{2}\left(\Gamma_{w}\right)$.
Conversely, if $f(z, w)=\frac{\tilde{f}(z, w)-\widetilde{f}(\varphi(w), w)}{z-\varphi(w)}$, for some $\widetilde{f}(z, w)$ in $\mathfrak{D} \otimes K_{\varphi}^{2}\left(\Gamma_{w}\right)$. Let $\widetilde{f}(z, w)=\sum_{k=1}^{m} \sum_{j=0}^{\infty} a_{k j} \lambda_{k}(w) z^{j}$, where $\|\widetilde{f}\|_{k_{\varphi}^{2} \otimes \mathfrak{D}}^{2}=\sum_{k=1}^{m} \sum_{j=0}^{\infty}(j+1)\left|a_{k j}\right|^{2}<+\infty$. Then

$$
\begin{align*}
f(z, w) & =\frac{\sum_{j=0}^{\infty} \sum_{k=1}^{m} a_{k j} \lambda_{k}(w) z^{j}-\sum_{j=0}^{\infty} \sum_{k=1}^{m} a_{k j} \lambda_{k}(w) \varphi(w)^{j}}{z-\varphi(w)} \\
& =\sum_{j=1}^{\infty} \sum_{k=1}^{m} a_{k j} \lambda_{k}(w) \frac{z^{j}-\varphi(w)^{j}}{z-\varphi(w)} \tag{10}\\
& =\sum_{j=1}^{\infty} \sum_{k=1}^{m} \sqrt{j} a_{k j} E_{k, j-1}
\end{align*}
$$

and $\|f\|_{H^{2}}^{2}=\sum_{k=1}^{m} \sum_{j=1}^{\infty}\left|j\left\|\left.a_{k j}\right|^{2} \leqslant\right\| \widetilde{f} \|_{k_{\varphi}^{2} \otimes \mathfrak{D}}^{2}<+\infty\right.$.

THEOREM 3.2. Let f be a nonzero function in $N_{\varphi}, \psi(z)$ is a function in $H^{\infty}(\mathbb{D})$. If $(\psi(z)+\psi(\varphi(w))) f \in N_{\varphi}$, then

$$
f(z, w)=\operatorname{ch}(w) \frac{\psi(z)-\psi(\varphi(w))}{z-\varphi(w)}
$$

where c is a constant and $h(w) \in K_{\varphi}^{2}\left(\Gamma_{w}\right)$ with $\|h\|=1$.
Proof. Since $f \in N_{\varphi}$ and $(\psi(z)+\psi(\varphi(w))) f \in N_{\varphi}$, by Theorem 2.1, we have

$$
f(z, w)=\frac{\widetilde{f}(z, w)-\widetilde{f}(\varphi(w), w)}{z-\varphi(w)}
$$

for some $\widetilde{f}(z, w)=\sum_{k=1}^{m} F_{k}(z) \lambda_{k}(w) \in \mathfrak{D} \otimes K_{\varphi}^{2}\left(\Gamma_{w}\right)$, and

$$
(\psi(z)+\psi(\varphi(w))) f(z, w)=\frac{\widetilde{g}(z, w)-\widetilde{g}(\varphi(w), w)}{z-\varphi(w)}
$$

for some $\widetilde{g}(z, w)=\sum_{k=1}^{m} G_{k}(z) \lambda_{k}(w) \in \mathfrak{D} \otimes K_{\varphi}^{2}\left(\Gamma_{w}\right)$. Therefore

$$
\begin{align*}
f(z, w) & =\sum_{k=1}^{m} \frac{F_{k}(z)-F_{k}(\varphi(w))}{z-\varphi(w)} \lambda_{k}(w) \tag{11}\\
& =\sum_{k=1}^{m} f_{k}(z, w)
\end{align*}
$$

where $f_{k}(z, w)=\frac{F_{k}(z)-F_{k}(\varphi(w))}{z-\varphi(w)} \lambda_{k}(w)$, and

$$
\begin{align*}
(\psi(z)+\psi(\varphi(w))) f(z, w) & =\sum_{k=1}^{m} \frac{G_{k}(z)-G_{k}(\varphi(w))}{z-\varphi(w)} \lambda_{k}(w) \\
& =\sum_{k=1}^{m} g_{k}(z, w) \tag{12}
\end{align*}
$$

where $g_{k}(z, w)=\frac{G_{k}(z)-G_{k}(\varphi(w))}{z-\varphi(w)} \lambda_{k}(w)$. Then we have

$$
(\psi(z)+\psi(\varphi(w))) f(z, w)=\sum_{k=1}^{m}(\psi(z)+\psi(\varphi(w))) f_{k}(z, w) .
$$

Next we want to prove $(\psi(z)+\psi(\varphi(w))) f_{k}(z, w)=g_{k}(z, w)$. Since g_{k} and f_{k} are in N_{φ}, and

$$
(\psi(z)+\psi(\varphi(w))) f_{k}(z, w)=\frac{(\psi(z)+\psi(\varphi(w)))\left(F_{k}(z)-F_{k}(\varphi(w))\right)}{z-\varphi(w)} \lambda_{k}(w)
$$

for each $i \neq j$, we have $g_{i}(z, w) \perp g_{j}(z, w)$ and $g_{i}(z, w) \perp f_{j}(z, w)$. Since $F_{k}(z)=$ $\sum_{n=0}^{\infty} a_{n}^{k} z^{n} \in \mathfrak{D}$ for every $k=1, \ldots, m$, we have

$$
\begin{align*}
& \left\langle\psi(z) \frac{z^{n}-\varphi(w)^{n}}{z-\varphi(w)} \lambda_{i}(w), \psi(z) \frac{z^{m}-\varphi(w)^{m}}{z-\varphi(w)} \lambda_{j}(w)\right\rangle \\
& =\sum_{t=0}^{m-1} \sum_{s=0}^{n-1}\left\langle\psi(z) z^{s} \varphi(w)^{n-1-s} \lambda_{i}(w), \psi(z) z^{t} \varphi(w)^{m-1-t} \lambda_{j}(w)\right\rangle \tag{13}\\
& =\sum_{t=0}^{m-1} \sum_{s=0}^{n-1}\left\langle\psi(z) z^{s}, \psi(z) z^{t}\right)\left(\lambda_{i}(w), \varphi(w)^{m+s-t-n} \lambda_{j}(w)\right\rangle=0
\end{align*}
$$

Let $\psi(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$ with $\sum_{n=0}^{\infty}\left|b_{n}\right|^{2}<+\infty$. Then

$$
\begin{align*}
& \left\langle\psi(\varphi(w)) \frac{z^{n}-\varphi(w)^{n}}{z-\varphi(w)} \lambda_{i}(w), \psi(\varphi(w)) \frac{z^{m}-\varphi(w)^{m}}{z-\varphi(w)} \lambda_{j}(w)\right\rangle \\
& =\sum_{l=0}^{\infty} \sum_{k=0}^{\infty} b_{l} \overline{b_{k}}\left\langle\varphi(w)^{l} \frac{z^{n}-\varphi(w)^{n}}{z-\varphi(w)} \lambda_{i}(w), \varphi(w)^{k} \frac{z^{m}-\varphi(w)^{m}}{z-\varphi(w)} \lambda_{j}(w)\right\rangle \tag{14}\\
& =\sum_{l=0}^{\infty} \sum_{k=0}^{\infty} b_{l} \overline{b_{k}} \sum_{t=0}^{m-1} \sum_{s=0}^{n-1}\left\langle\varphi(w)^{l} z^{s} \varphi(w)^{n-1-s} \lambda_{i}(w), \varphi(w)^{k} z^{t} \varphi(w)^{m-1-t} \lambda_{j}(w)\right\rangle=0
\end{align*}
$$

and

$$
\begin{align*}
& \left\langle\psi(z) \frac{z^{n}-\varphi(w)^{n}}{z-\varphi(w)} \lambda_{i}(w), \psi(\varphi(w)) \frac{z^{m}-\varphi(w)^{m}}{z-\varphi(w)} \lambda_{j}(w)\right\rangle \\
& =\sum_{l=0}^{\infty} \overline{b_{l}}\left\langle\varphi(z) \frac{z^{n}-\varphi(w)^{n}}{z-\varphi(w)} \lambda_{i}(w), \varphi(w)^{l} \frac{z^{m}-\varphi(w)^{m}}{z-\varphi(w)} \lambda_{j}(w)\right\rangle \tag{15}\\
& =\sum_{l=0}^{\infty} \overline{b_{l}} \sum_{t=0}^{m-1} \sum_{s=0}^{n-1}\left\langle\varphi(z) z^{s} \varphi(w)^{n-1-s} \lambda_{i}(w), \varphi(w)^{l} z^{t} \varphi(w)^{m-1-t} \lambda_{j}(w)\right\rangle=0 .
\end{align*}
$$

Hence,

$$
\begin{align*}
& \left\langle\psi(z) f_{i}(z, w), \psi(z) f_{j}(z, w)\right\rangle \\
& =\left\langle\psi(z) \frac{F_{i}(z)-F_{i}(\varphi(w))}{z-\varphi(w)} \lambda_{i}(w), \psi(z) \frac{F_{j}(z)-F_{j}(\varphi(w))}{z-\varphi(w)} \lambda_{j}(w)\right\rangle \\
& =\left\langle\psi(z) \Sigma_{n=1}^{\infty} a_{n}^{i} \frac{z^{n}-\varphi(w)^{n}}{z-\varphi(w)} \lambda_{i}(w), \psi(z) \Sigma_{m=1}^{\infty} a_{m}^{j} \frac{z^{m}-\varphi(w)^{m}}{z-\varphi(w)} \lambda_{j}(w)\right\rangle \tag{16}\\
& =\Sigma_{n=1}^{\infty} \Sigma_{m=1}^{\infty} a_{n}^{i} \overline{a_{m}^{j}}\left\langle\psi(z) \frac{z^{n}-\varphi(w)^{n}}{z-\varphi(w)} \lambda_{i}(w), \psi(z) \frac{z^{m}-\varphi(w)^{m}}{z-\varphi(w)} \lambda_{j}(w)\right\rangle=0 .
\end{align*}
$$

$\left\langle\psi(\varphi(w)) f_{i}(z, w), \psi(\varphi(w)) f_{j}(z, w)\right\rangle$

$$
\begin{align*}
& =\left\langle\psi(\varphi(w)) \frac{F_{i}(z)-F_{i}(\varphi(w))}{z-\varphi(w)} \lambda_{i}(w), \psi(\varphi(w)) \frac{F_{j}(z)-F_{j}(\varphi(w))}{z-\varphi(w)} \lambda_{j}(w)\right\rangle \\
& =\left\langle\psi(\varphi(w)) \Sigma_{n=1}^{\infty} a_{n}^{i} \frac{z^{n}-\varphi(w)^{n}}{z-\varphi(w)} \lambda_{i}(w), \psi(\varphi(w)) \Sigma_{m=1}^{\infty} a_{m}^{j} \frac{z^{m}-\varphi(w)^{m}}{z-\varphi(w)} \lambda_{j}(w)\right\rangle \tag{17}\\
& =\Sigma_{n=1}^{\infty} \Sigma_{m=1}^{\infty} a_{n}^{i} \overline{a_{m}^{j}}\left\langle\psi(\varphi(w)) \frac{z^{n}-\varphi(w)^{n}}{z-\varphi(w)} \lambda_{i}(w), \psi(\varphi(w)) \frac{z^{m}-\varphi(w)^{m}}{z-\varphi(w)} \lambda_{j}(w)\right\rangle \\
& =0 .
\end{align*}
$$

Similarly,

$$
\left\langle\psi(z) f_{i}(z, w), \psi(\varphi(w)) f_{j}(z, w)\right\rangle=0
$$

So we can get, from the above discussion,

$$
\begin{align*}
& \left\langle(\psi(z)+\psi(\varphi(w))) f_{i}(z, w),(\psi(z)+\psi(\varphi(w))) f_{j}(z, w)\right\rangle \\
& =\left\langle\psi(z) f_{i}(z, w), \psi(\varphi(w)) f_{j}(z, w)\right)+\left(\psi(\varphi(w)) f_{i}(z, w), \psi(z) f_{j}(z, w)\right\rangle \tag{18}\\
& =0
\end{align*}
$$

and

$$
\begin{align*}
& \left\langle g_{i}(z, w),(\psi(z)+\psi(\varphi(w))) f_{j}(z, w)\right\rangle \\
& \left.=\left\langle g_{i}(z, w), \psi(z) f_{j}(z, w)\right\rangle+\left\langle g_{i}(z, w), \psi(\varphi(w))\right) f_{j}(z, w)\right\rangle \tag{19}\\
& =2\left\langle g_{i}(z, w), \psi(z) f_{j}(z, w)\right\rangle \\
& =0
\end{align*}
$$

Hence

$$
\begin{align*}
(\psi(z)+\psi(\varphi(w))) f_{k}(z, w) & =g_{k}(z, w) \\
& =\frac{G_{k}(z)-G_{k}(\varphi(w))}{z-\varphi(w)} \lambda_{k}(w) . \tag{20}
\end{align*}
$$

and

$$
\begin{equation*}
f_{k}(z, w)=\frac{F_{k}(z)-F_{k}(\varphi(w))}{z-\varphi(w)} \lambda_{k}(w) . \tag{21}
\end{equation*}
$$

In following we discuss it in two cases. Firstly we assume $\psi(0)=0$. Letting z tend to $\varphi(w)$ in the equations (21) and (8), respectively, we get

$$
f_{k}(\varphi(w), w)=F_{k}^{\prime}(\varphi(w)) \lambda_{k}(w)
$$

and

$$
2 \psi(\varphi(w)) f_{k}(\varphi(w), w)=G_{k}^{\prime}(\varphi(w)) \lambda_{k}(w)
$$

Hence

$$
\begin{equation*}
2 \psi(\varphi(w)) F_{k}^{\prime}(\varphi(w))=G_{k}^{\prime}(\varphi(w)) \tag{22}
\end{equation*}
$$

Letting $z=0$ in (21) and (8), we have

$$
\begin{equation*}
\psi(\varphi(w)) F_{k}(\varphi(w))=G_{k}(\varphi(w)) \tag{23}
\end{equation*}
$$

Taking derivatives at two sides of (23), we get

$$
\begin{equation*}
\psi^{\prime}(\varphi(w)) F_{k}(\varphi(w))+\psi(\varphi(w)) F_{k}^{\prime}(\varphi(w))=G_{k}^{\prime}(\varphi(w)) \tag{24}
\end{equation*}
$$

Then by (22) and (24) we have

$$
\psi(\varphi(w)) F_{k}^{\prime}(\varphi(w))=\psi^{\prime}(\varphi(w)) F_{k}(\varphi(w))
$$

Hence

$$
\left.\left(\frac{\psi(z)}{F_{k}(z)}\right)^{\prime}\right|_{z=\varphi(w)}=0
$$

and so, since φ is a non-constant inner function,

$$
F_{k}(z)=a_{k} \psi(z)
$$

for some constant a_{k}. Hence

$$
f_{k}(z, w)=a_{k} \frac{\psi(z)-\psi(\varphi(w))}{z-\varphi(w)} \lambda_{k}(w)
$$

and

$$
f(z, w)=\operatorname{ch}(w) \frac{\psi(z)-\psi(\varphi(w))}{z-\varphi(w)}
$$

where $h(w)=\frac{\sum_{k=1}^{m} a_{k} \lambda_{k}(w)}{\left\|\sum_{k=1}^{m} a_{k} \lambda_{k}(w)\right\|}$ and $c=\left\|\sum_{k=1}^{m} a_{k} \lambda_{k}(w)\right\|$.
If $\psi(0) \neq 0$, since $(\psi(z)-\psi(0)+\psi(\varphi(w))-\psi(0)) f=(\psi(z)+\psi(\varphi(w))) f-$ $2 \psi(0) f \in N_{\varphi}$ and $f \in N_{\varphi}$, then, through the above discussion, we can conclude

$$
\begin{align*}
f(z, w) & =\operatorname{ch}(w) \frac{\psi(z)-\psi(0)-\psi(\varphi(w))+\psi(0)}{z-\varphi(w)} \\
& =\operatorname{ch}(w) \frac{\psi(z)-\psi(\varphi(w))}{z-\varphi(w)} . \tag{25}
\end{align*}
$$

This completes the proof.

Proposition 3.3. Suppose ψ is a nonconstant finite Blaschke product, and $f(z, w)$ $=\operatorname{ch}(w) \frac{\psi(z)-\psi(\varphi(w))}{z-\varphi(w)}$ for some constant c and $h(w) \in K_{\varphi}^{2}\left(\Gamma_{w}\right)$ with $\|h\|=1$. Then, for each $l \geqslant 1$,

$$
\sqrt{l+1} e_{l}(\psi(z), \psi(\varphi(w))) f \in N_{\varphi}
$$

Proof. By Theorem 3.2, let $f(z, w)=\operatorname{ch}(w) \frac{\psi(z)-\psi(\varphi(w))}{z-\varphi(w)}$, where c is constant and $h(w) \in K_{\varphi}^{2}\left(\Gamma_{w}\right)$ with $\|h\|=1$. Then, for each $l \geqslant 1$,

$$
\sqrt{l+1} e_{l}(\psi(z), \psi(\varphi(w))) f=\operatorname{ch}(w) \frac{\psi(z)^{l+1}-\psi(\varphi(w))^{l+1}}{z-\varphi(w)} \in N_{\varphi}
$$

PROPOSITION 3.4. Let $\psi(z)$ be an inner function satisfying $\frac{\psi(z)-\psi(\varphi(w))}{z-\varphi(w)} \in H^{2}\left(\Gamma^{2}\right)$, then

$$
\frac{\psi(z)-\psi(\varphi(w))}{z-\varphi(w)} \perp \psi(z) H^{2}\left(\Gamma^{2}\right)
$$

Proof. Let $h(z, w)=\frac{\psi(z)-\psi(\varphi(w))}{z-\varphi(w)}$. For any polynomial $p(z, w)$, we have

$$
\begin{align*}
& \langle h(z, r w), \psi(z) p(z, w)\rangle \\
& =\left\langle(\psi(z)-\psi(\varphi(r w))) \sum_{n=0}^{\infty} \bar{z}^{n+1} \varphi(r w)^{n}, \psi(z) p(z, w)\right\rangle \\
& =\sum_{n=0}^{\infty}\left[\left\langle\varphi(r w)^{n} \psi(z), z^{n+1} \psi(z) p(z, w)\right\rangle-\left\langle\varphi(r w)^{n} \psi(\varphi(r w)), z^{n+1} \psi(z) p(z, w)\right\rangle\right] \tag{26}\\
& =0
\end{align*}
$$

This implies that $h(z, r w) \perp \varphi(z) H^{2}\left(\Gamma^{2}\right)$. Since $h(z, r w)$ converges to $h(z, w)$ in the norm of $H^{2}\left(\Gamma^{2}\right)$ as $r \rightarrow 1^{-}$. Hence $h(z, w) \perp \psi(z) H^{2}\left(\Gamma^{2}\right)$, that is, $h(z, w) \in \operatorname{ker} T_{\psi(z)}^{*}$. This completes the proof.

From the above proposition and $\left.T_{\psi(z)}^{*}\right|_{N_{\varphi}}=\left.T_{\psi(\varphi(w))}^{*}\right|_{N_{\varphi}}$, we also can get

$$
\frac{\psi(z)-\psi(\varphi(w))}{z-\varphi(w)} \perp \psi(\varphi(w)) H^{2}\left(\Gamma^{2}\right)
$$

when $\frac{\psi(z)-\psi(\varphi(w))}{z-\varphi(w)} \in H^{2}\left(\Gamma^{2}\right)$.
Proposition 3.5. Suppose $\psi(z)$ is an inner function and $h(w) \in K_{\varphi}^{2}\left(\Gamma_{w}\right)$ with $\|h\|=1$. Then $e_{h}=h(w) \frac{\psi(z)-\psi(\varphi(w))}{z-\varphi(w)}$ is in $H^{2}\left(\Gamma^{2}\right)$ if and only if ψ is a finite Blaschke product. Moreover, $\left\|e_{h}\right\|^{2}=N$, the order of ψ.

Proof. If $\psi(z)=\frac{z-a}{1-\bar{a} z}$ is a Blaschke product of order 1, by $h(w) \in K_{\varphi}^{2}\left(\Gamma_{w}\right)$ with $\|h\|=1$, then

$$
\begin{align*}
\left\|e_{h}\right\|^{2} & =\int_{\Gamma^{2}}\left|h(w) \frac{\psi(z)-\psi(\varphi(w))}{z-\varphi(w)}\right|^{2} d m \\
& =\int_{\Gamma}|h(w)|^{2} \frac{1-|a|^{2}}{|1-\bar{a} \varphi(w)|^{2}} d m(w) \int_{\Gamma} \frac{1-|a|^{2}}{|1-\bar{a} z|^{2}} d m(z) \tag{27}\\
& =1
\end{align*}
$$

If $\psi=\psi_{1} \psi_{2} \ldots \psi_{N}=\psi_{1} f$ is a finite Blaschke product, then

$$
\begin{align*}
e_{h} & =h(w) \frac{\psi(z)-\psi(\varphi(w))}{z-\varphi(w)} \\
& =h(w) \psi_{1}(z) \frac{f(z)-f(\varphi(w))}{z-\varphi(w)}+h(w) f(\varphi(w)) \frac{\psi_{1}(z)-\psi_{1}(\varphi(w))}{z-\varphi(w)} \tag{28}
\end{align*}
$$

Since, by Proposition 3.4,

$$
\begin{align*}
& \left\langle h(w) \psi_{1}(z) \frac{f(z)-f(\varphi(w))}{z-\varphi(w)}, h(w) f(\varphi(w)) \frac{\psi_{1}(z)-\psi_{1}(\varphi(w))}{z-\varphi(w)}\right\rangle \\
& =\left\langle h(w) \frac{f(z)-f(\varphi(w))}{z-\varphi(w)}, h(w) f(\varphi(w)) T_{\psi_{1}(z)}^{*} \frac{\psi_{1}(z)-\psi_{1}(\varphi(w))}{z-\varphi(w)}\right\rangle \tag{29}\\
& =0
\end{align*}
$$

we have

$$
\begin{align*}
\left\|e_{h}\right\|^{2} & =\left\|h(w) \psi_{1} \frac{f(z)-f(\varphi(w))}{z-\varphi(w)}\right\|^{2}+\left\|h(w) f(\varphi(w)) \frac{\psi_{1}(z)-\psi_{1}(\varphi(w))}{z-\varphi(w)}\right\|^{2} \\
& =\left\|h(w) \frac{f(z)-f(\varphi(w))}{z-\varphi(w)}\right\|^{2}+\left\|h(w) \frac{\psi_{1}(z)-\psi_{1}(\varphi(w))}{z-\varphi(w)}\right\|^{2} \tag{30}\\
& =\left\|h(w) \frac{f(z)-f(\varphi(w))}{z-\varphi(w)}\right\|^{2}+1
\end{align*}
$$

By induction, we therefore have $\left\|e_{h}\right\|^{2}=N$.
If $\psi(z)$ is a Blaschke product of infinite order. Then, similar to the above discussion, we have $\left\|e_{h}\right\|=\infty$.

If $\psi(z)$ is a general inner function which is not a finite Blaschke product, by Frostman's Theorem [5, p. 75], there exists a $\lambda \in \mathbb{D}$ such that $\frac{\psi(z)-\lambda}{1-\bar{\lambda} \psi(z)}$, denoted by $B(z)$, is an infinite Blaschke product. Then $\psi(z)=\frac{\lambda+B(z)}{1+\bar{\lambda} B(z)}$ and

$$
\frac{\psi(z)-\psi(\varphi(w))}{z-\varphi(w)}=\left(1-|\lambda|^{2}\right) \frac{B(z)-B(\varphi(w))}{(z-\varphi(w))(1+\bar{\lambda} B(z))(1+\bar{\lambda} B(\varphi(w)))}
$$

Since $\lambda \in \mathbb{D}$, it is clear that $h(w) \frac{\psi(z)-\psi(\varphi(w))}{z-\varphi(w)} \in H^{2}\left(\Gamma^{2}\right)$ if and only if $h(w) \frac{B(z)-B(\varphi(w))}{z-\varphi(w)} \in$ $H^{2}\left(\Gamma^{2}\right)$. Hence e_{h} is not in $H^{2}\left(\Gamma^{2}\right)$ in this case.

THEOREM 3.6. Suppose ψ be a Blaschke product of order N. Then there are reducing subspaces M for $S_{\psi(z)}$ such that $\left.S_{\psi(z)}\right|_{M} \cong M_{z}$. Moreover, each M has the following form

$$
\begin{equation*}
M=\overline{\operatorname{span}}\left\{P_{n}^{\prime}(\psi) e_{h}: n \geqslant 0\right\} \tag{31}
\end{equation*}
$$

where $P_{n}^{\prime}(\psi)=\sqrt{n+1} e_{n}(\psi(z), \psi(\varphi(w)))$ and $e_{h}=h(w) \frac{\psi(z)-\psi(\varphi(w))}{z-\varphi(w)}, h(w) \in K_{\varphi}^{2}\left(\Gamma_{w}\right)$ with $\|h\|=1$. And $\left\{\frac{P_{n}^{\prime}(\psi) e_{h}}{\sqrt{n+1} \sqrt{N}}\right\}_{0}^{\infty}$ form an orthonomal basis of M.

Proof. For each $h(w) \in H^{2}\left(\Gamma_{w}\right) \ominus \varphi(w) H^{2}\left(\Gamma_{w}\right)$ with $\|h\|=1$, let

$$
e_{h}=h(w) \frac{\psi(z)-\psi(\varphi(w))}{z-\varphi(w)}
$$

and $M=\overline{\operatorname{span}}\left\{P_{n}^{\prime}(\psi) e_{h}: n \geqslant 0\right\}$. By Theorem 3.3, we have $P_{n}^{\prime}(\psi) e_{h} \in N_{\varphi}$, and then M is a closed subspace of N_{φ}. For each $n \geqslant 0$,

$$
\begin{align*}
S_{\psi(z)} P_{n}^{\prime}(\psi) e_{h} & =P_{N_{\varphi}}\left(\psi(z) P_{n}^{\prime}(\psi) e_{h}\right) \\
& =\frac{n+1}{n+2} P_{n+1}^{\prime}(\psi) e_{h}+\frac{1}{n+2} P_{n+1}^{\prime}(\psi) e_{h}-P_{N_{\varphi}}\left(\psi(\varphi(w))^{n+1} e_{h}\right. \\
& =\frac{n+1}{n+2} P_{n+1}^{\prime}(\psi) e_{h}+P_{N_{\varphi}}\left(\frac{1}{n+2} P_{n+1}^{\prime}(\psi) e_{h}-\psi(\varphi(w))^{n+1} e_{h}\right) \tag{32}\\
& =\frac{n+1}{n+2} P_{n+1}^{\prime}(\psi) e_{h}
\end{align*}
$$

The last equation is obtained by $P_{n+1}^{\prime}(\psi) e_{h}-\psi(\varphi(w))^{n+1} e_{h} \in[z-\varphi(w)]$.
Since $S_{\psi(z)}^{*} e_{h}=T_{\psi(z)}^{*} e_{h}=0$ and, for each $n \geqslant 1, S_{\psi(z)}^{*} P_{n}^{\prime}(\psi) e_{h}=P_{n-1}^{\prime}(\psi) e_{h}$, we have M is a reducing subspace of $S_{\psi(z)}$. Since $\left\|P_{n}^{\prime}(\psi) e_{h}\right\|^{2}=(n+1)\left\|e_{h}\right\|^{2}=(n+1) N$ and $\left\langle P_{n}^{\prime}(\psi) e_{h}, P_{m}^{\prime}(\psi) e_{h}\right\rangle=0$ for all $n \neq m$, then $\left\{\frac{P_{n}^{\prime}(\psi) e_{h}}{\sqrt{n+1} \sqrt{N}}\right\}_{0}^{\infty}$ form an orthonomal basis of M. Since $S_{\psi(z)} \frac{P_{n}^{\prime}(\psi) e_{h}}{\sqrt{n+1} \sqrt{N}}=\sqrt{\frac{n+1}{n+2}} \frac{P_{n+1}^{\prime}(\psi) e_{h}}{\sqrt{n+2} \sqrt{N}}$, then M is a reducing subspace for $S_{\psi(z)}$ such that $\left.S_{\psi(z)}\right|_{M} \cong M_{z}$.

Suppose that M is a reducing subspace of $S_{\psi(z)}$ and $\left.S_{\psi(z)}\right|_{M} \cong M_{z}$, we will show that M has the form of (20). Since $\left.S_{\psi(z)}\right|_{M} \cong M_{z}$, i.e. there exist an orthonomal basis $\left\{F_{n}\right\}_{0}^{\infty}$ of M such that

$$
S_{\psi(z)} F_{n}=\sqrt{\frac{n+1}{n+2}} F_{n+1}
$$

Observe $P_{N_{\varphi}}(\psi(z)+\psi(\varphi(w))) F_{0}=S_{\psi(z)} F_{0}+S_{\psi(\varphi(w))} F_{0}=\sqrt{2} F_{1}$. Then

$$
\left\|P_{N_{\varphi}}(\psi(z)+\psi(\varphi(w))) F_{0}\right\|^{2}=2
$$

We also have

$$
\begin{align*}
& \|\left(\psi(z)+\psi(\varphi(w)) F_{0} \|^{2}\right. \\
& =\left\|\psi(z) F_{0}\right\|^{2}+\left\|\psi(\varphi(w)) F_{0}\right\|^{2}+\left\langle T_{\psi(z)} T_{\psi(\varphi(w))}^{*} F_{0}, F_{0}\right\rangle+\left\langle T_{\psi(\varphi(w))} T_{\psi(z)}^{*} F_{0}, F_{0}\right\rangle \tag{33}\\
& =2
\end{align*}
$$

Thus $(\psi(z)+\psi(\varphi(w))) F_{0} \in N_{\varphi}$. Then by Theorem 2.2, we have

$$
F_{0}=\operatorname{ch}(w) \frac{\psi(z)-\psi(\varphi(w))}{z-\varphi(w)}
$$

for some constant c and some function $h(w) \in H^{2}\left(\Gamma_{w}\right) \ominus \varphi(w) H^{2}\left(\Gamma_{w}\right)$ with $\|h\|=1$, and so $e_{h} \in M_{1}$. Then by propositon 3.3, for each $l \geqslant 0$, we have $P_{l}^{\prime}(\psi) e_{h}=(l+$ 1) $S_{\psi(z)}^{l} e_{h} \in M$. Therefore

$$
M_{0}=\overline{\operatorname{span}}\left\{P_{n}^{\prime}(\psi) e: n \geqslant 0\right\} \subseteq M
$$

By previous discussion, we know that M_{0} is a reducing subspace of $\left.S_{\psi(z)}\right|_{M} \cong M_{z}$. But M_{z} is irreducible. Therefore we conclude $M_{0}=M$. This completes the proof.

THEOREM 3.7. Suppose $\psi \in H^{\infty}(\mathbb{D})$. Then $S_{\psi(z)}$ acting on N_{φ} has the distinguished reducing subspace if and only if ψ is a finite Blaschke product.

Proof. We only need to prove that if S_{ψ} has the distinguished reducing subspace, then ψ is a finite Blaschke product.

Assume S_{ψ} has the distinguished reducing subspace M such that $\left.S_{\psi}\right|_{M} \cong M_{z}$. i.e. there exist a unitary operator $U: M \rightarrow L_{a}^{2}(\mathbb{D})$ such that $U^{*} M_{z} U=\left.S_{\psi}\right|_{M}$. Let K_{λ}^{M} be the reproducing kernel of M for $\lambda=\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{D}^{2}$. Then $\left\|K_{\lambda}^{M}\right\|^{2} \neq 0$ except for at most a countable set about variable λ_{1}. Since

$$
\begin{align*}
\left|\left\langle S_{\psi} K_{\lambda}^{M}, K_{\lambda}^{M}\right\rangle\right| & =\left|\left\langle\psi K_{\lambda}^{M}, K_{\lambda}^{M}\right\rangle\right| \tag{34}\\
& =\left|\psi\left(\lambda_{1}\right)\right|\left\|K_{\lambda}^{M}\right\|^{2}
\end{align*}
$$

and $\left|\mid S_{\psi}\|=\| M_{z} \|=1\right.$, we have that $| \psi\left(\lambda_{1}\right) \mid \leqslant 1$ except for at most a countable set, and so $\|\psi\|_{\infty} \leqslant 1$.

Set $e_{n}=U^{*} e_{n}^{\prime}$, where $e_{n}^{\prime}(z)=\sqrt{n+1} z^{n}$ for $n=0,1, \ldots$. Then

$$
S_{\psi(z)}^{*} e_{0}=U^{*} M_{z}^{*} U e_{0}=U^{*} M_{z}^{*} e_{0}^{\prime}=0
$$

and $T_{\psi(\varphi(w))}^{*} e_{0}=T_{\psi}^{*} e_{0}=S_{\psi}^{*} e_{0}=0$. By Corollary 3.2 (3), we have

$$
\begin{align*}
\left\|P_{N_{\varphi}}(\psi(z)+\psi(\varphi(w))) e_{0}\right\|^{2} & =\left\|2 S_{\psi(z)} e_{0}\right\|^{2} \\
& =4\left\|U^{*} M_{z} U e_{0}\right\|^{2} \tag{35}\\
& =4\left\|M_{z} e_{0}^{\prime}\right\|^{2} \\
& =2 .
\end{align*}
$$

and

$$
\begin{align*}
& \left\|(\psi(z)+\psi(\varphi(w))) e_{0}\right\|^{2} \\
& =\left\|\psi(z) e_{0}\right\|^{2}+\left\|\psi(\varphi(w)) e_{0}\right\|^{2}+\left\langle T_{\psi(z)} T_{\psi(\varphi(w))}^{*} e_{0}, e_{0}\right\rangle+\left\langle T_{\psi(\varphi(w))} T_{\psi(z)}^{*} e_{0}, e_{0}\right\rangle \tag{36}\\
& =2
\end{align*}
$$

Hence

$$
(\psi(z)+\psi(\varphi(w))) e_{0} \in N_{\varphi}
$$

It follows from Theorem 3.2 that

$$
e_{0}=\operatorname{ch}(w) \frac{\psi(z)-\psi(\varphi(w))}{z-\varphi(w)}
$$

for some constant c and some function $h(w) \in H^{2}\left(\Gamma_{w}\right) \ominus \varphi(w) H^{2}\left(\Gamma_{w}\right)$ with $\|h\|=1$. Since

$$
\left\|(\psi(z)+\psi(\varphi(w))) e_{0}\right\|^{2}=2
$$

and $\|\psi\|_{\infty} \leqslant 1$, then we have $\left\|\psi(z) e_{0}\right\|^{2}=1$ and

$$
\left\|\psi(z) e_{0}\right\|^{2}-\left\|e_{0}\right\|^{2}=\int_{\Gamma^{2}}\left(|\psi(z)|^{2}-1\right)\left|e_{0}\right|^{2} d m_{2}=0
$$

Thus $|\psi(z)|=1$ almost all on the unit circle and ψ is an inner function. Proposition 3.5 therefore implies that ψ is a finite Blaschke product. This completes the proof.

4. Minimal reducing subspaces

In this section we will show that every nontrivial minimal reducing subspace Ω of $S_{\psi(z)}$ is orthogonal to the subspace M_{0} if Ω is not a distinguished reducing subspace, where M_{0} is the union of all distinguished reducing subspaces.

Let $L_{0}=\operatorname{ker} T_{\psi(z)}^{*} \cap \operatorname{ker} T_{\psi(\varphi(w))}^{*} \cap N_{\varphi}$, where ψ is a finite Blaschke product.
LEMMA 4.1. If M is a nontrivial reducing subspace for $S_{\psi(z)}$, then the wandering subspace of M is contained in L_{0}.

Proof. Let M be a nontrivial reducing subspace for $S_{\psi(z)}$. Since

$$
\left.T_{\psi(z)}^{*}\right|_{N_{\varphi}}=\left.T_{\psi(\varphi(w))}^{*}\right|_{N_{\varphi}}=S_{\psi(z)}^{*}
$$

For each $g \in M \ominus S_{\psi(z)} M$, it is easy to see that $T_{\psi(z)}^{*} g=T_{\psi(\varphi(w))}^{*} g=S_{\psi(z)}^{*} g=0$, and then g is in L_{0}. This completes the proof.

Lemma 4.2. If ψ is a nonconstant finite Blaschke product and M is a reducing subspace for $S_{\psi(z)}$, then $S_{\psi(z)}^{*} M=M$.

Proof. Note that $\psi(z)$ is a Blaschke product with finite order, the multiplicity operator M_{ψ} on $L_{a}^{2}(\mathbb{D})$ is a Fredholm operator and $M_{\psi}^{*} L_{a}^{2}(\mathbb{D})=L_{a}^{2}(\mathbb{D})$. Since $S_{\psi(z)}$ on N_{φ} is unitarily equivalent to $I \otimes M_{\psi(z)}$ on $K_{\varphi}^{2}\left(\Gamma_{w}\right) \otimes L_{a}^{2}(\mathbb{D})$, then

$$
S_{\psi(z)}^{*} N_{\varphi}=N_{\varphi}
$$

Since M is a reducing subspace for S_{ψ}, we have

$$
S_{\psi(z)}^{*} M=M
$$

This completes the proof.
Let $k_{\psi}=\overline{\operatorname{span}}\left\{\psi^{l}(z) \psi^{k}(\varphi(w)) N_{\varphi}: l, k \geqslant 0\right\}$, and $\mathfrak{L}_{\psi}=\operatorname{ker} T_{\psi(z)}^{*} \cap \operatorname{ker} T_{\psi(\varphi(w))}^{*} \cap$ k_{ψ}.

Proposition 4.3. Suppose M is a reducing subspace for $S_{\psi(z)}$, For a given g in the wandering subspace of M, there are a unique family of functions $\left\{d_{g}^{l-k}\right\} \subseteq \mathfrak{L}_{\psi} \ominus L_{0}$ such that
(i) $P_{l}^{\prime}(\psi(z), \psi(\varphi(w))) g+\sum_{k=0}^{l-1} P_{k}^{\prime}(\psi(z), \psi(\varphi(w))) d_{g}^{l-k}$ is in M, for each $l \geqslant 0$,
(ii) $P_{N_{\psi}}^{\prime}\left[P_{l}^{\prime}(\psi(z), \psi(\varphi(w))) d_{g}^{k}\right]$ is in M for each $k \geqslant 1$ and $l \geqslant 0$.

Proof. For a given $g \in M \ominus S_{\psi(z)} M$, first we will use mathematical induction to construct a family of functions $\left\{d_{g}^{k}\right\}$.

By Lemma 4.1 and $g \in L_{0}$, then $T_{\psi(z)}^{*}\left[(\psi(z)+\psi(\varphi(w)) g]=T_{\psi(\varphi(w))}^{*}[(\psi(z)+\right.$ $\psi(\varphi(w)) g]=g$. By Lemma 4.2, there is a unique function $\widetilde{g} \in M \ominus L_{0}$ such that

$$
T_{\psi(z)}^{*} \widetilde{g}=T_{\psi(\varphi(w))}^{*} \widetilde{g}=S_{\psi(z)}^{*} \widetilde{g}=g
$$

This gives

$$
T_{\psi(z)}^{*}[\widetilde{g}-(\psi(z)+\psi(\varphi(w))) g]=g-g=0
$$

and

$$
T_{\psi(\varphi(w))}^{*}[\widetilde{g}-(\psi(z)+\psi(\varphi(w))) g]=g-g=0
$$

Letting $d_{g}^{1}=\widetilde{g}-(\psi(z)+\psi(\varphi(w)))$, then $d_{g}^{1} \in \operatorname{ker} T_{\psi(z)}^{*} \cap \operatorname{ker} T_{\psi(\varphi(w))}^{*}$ and

$$
P_{1}^{\prime}(\psi(z), \psi(\varphi(w))) g+d_{g}^{1}=(\psi(z)+\psi(\varphi(w))) g+d_{g}^{1}=\widetilde{g} \in M
$$

Because both \widetilde{g} and g are in M, we have that $d_{g}^{1} \in k_{\psi}$ and hence $d_{g}^{1} \in \mathfrak{L}_{\psi}$.
Next we show that d_{g}^{1} is orthogonal to L_{0}. Let $f \in L_{0}$, then we have

$$
\begin{align*}
\left\langle d_{g}^{1}, f\right\rangle & =\langle\widetilde{g}-(\psi(z)+\psi(\varphi(w))) g, f\rangle \\
& =\langle\widetilde{g}, f\rangle-\langle(\psi(z)+\psi(\varphi(w))) g, f\rangle \\
& =0-\left\langle g,\left(T_{\psi(z)}^{*}+T_{\psi(\varphi(w))}^{*}\right) f\right\rangle \tag{37}\\
& =0 .
\end{align*}
$$

This gives that $d_{g}^{1} \in \mathfrak{L}_{\psi} \ominus L_{0}$.
Assume that for $n<l$, there are a family of functions $\left\{d_{g}^{k}\right\}_{k=1}^{n} \in \mathfrak{L}_{\psi} \ominus L_{0}$ such that

$$
P_{n}^{\prime}(\psi(z), \psi(\varphi(w))) g+\sum_{k=0}^{n-1} P_{k}^{\prime}(\psi(z), \psi(\varphi(w))) d_{g}^{n-k} \in M
$$

Let $G=P_{n}^{\prime}(\psi(z), \psi(\varphi(w))) g+\sum_{k=0}^{n-1} P_{k}^{\prime}(\psi(z), \psi(\varphi(w))) d_{g}^{n-k}$. By Lemma 4.2 again, there is a unique function $\widetilde{G} \in M \ominus L_{0}$ such that

$$
S_{\psi(z)}^{*} \widetilde{G}=T_{\psi(z)}^{*} \widetilde{G}=T_{\psi(\varphi(w))}^{*} \widetilde{G}=S_{\psi(\varphi(w))}^{*} \widetilde{G}=G
$$

Let $F=P_{n+1}^{\prime}(\psi(z), \psi(\varphi(w))) g+\sum_{k=1}^{n} P_{k}^{\prime}(\psi(z), \psi(\varphi(w))) d_{g}^{n+1-k}$, since
$T_{\psi(z)}^{*}\left[P_{k}^{\prime}(\psi(z), \psi(\varphi(w))) f\right]=T_{\psi(\varphi(w))}^{*}\left[P_{k}^{\prime}(\psi(z), \psi(\varphi(w))) f\right]=P_{k-1}^{\prime}(\psi(z), \psi(\varphi(w))) f$, for each $f \in \mathfrak{L}_{\psi}$ and $k \geqslant 1$, then

$$
T_{\psi(z)}^{*} F=T_{\psi(\varphi(w))}^{*} F=G
$$

Thus $T_{\psi(z)}^{*}(\widetilde{G}-F)=T_{\psi(\varphi(w))}^{*}(\widetilde{G}-F)=G-G=0$. So letting $d_{g}^{n+1}=\widetilde{G}-F$, then $d_{g}^{n+1} \in \operatorname{ker}_{\psi(z)}^{*} \cap \operatorname{ker} T_{\psi(\varphi(w))}^{*}$.

Noting \widetilde{G} is orthogonal to L_{0}, we have that for each $f \in L_{0}$,

$$
\begin{aligned}
\left\langle d_{g}^{n+1}, f\right\rangle & =\langle\widetilde{G}, f\rangle-\langle F, f\rangle \\
& =-\left\langle P_{n+1}^{\prime}(\psi(z), \psi(\varphi(w))) g, f\right\rangle-\sum_{k=1}^{n}\left\langle P_{k}^{\prime}(\psi(z), \psi(\varphi(w))) d_{g}^{n+1-k}, f\right\rangle \\
& =0
\end{aligned}
$$

to get that $d_{g}^{n+1} \in \mathfrak{L}_{\psi} \ominus L_{0}$. Hence

$$
P_{n+1}^{\prime}(\psi(z), \psi(\varphi(w))) g+\sum_{k=1}^{n} P_{k}^{\prime}(\psi(z), \psi(\varphi(w))) d_{g}^{n+1-k}+d_{g}^{n+1}=\widetilde{G} \in M
$$

This gives a family of function $\left\{d_{g}^{k}\right\} \in \mathfrak{L}_{\psi} \ominus L_{0}$, satisfying property (i).
Lastly to finish the proof we need only to show that property (ii) holds. Since

$$
\begin{align*}
2 S_{\psi(z)} g & =P_{N_{\varphi}}\left(P_{1}^{\prime}(\psi(z), \psi(\varphi(w))) g\right) \\
& =P_{N_{\varphi}}\left(P_{1}^{\prime}\left(\psi(z), \psi(\varphi(w)) g+d_{g}^{1}\right)-P_{N_{\psi}} d_{g}^{1}\right. \tag{39}\\
& =P_{1}^{\prime}(\psi(z), \psi(\varphi(w))) g+d_{g}^{1}-P_{N_{\psi}} d_{g}^{1} .
\end{align*}
$$

we have $P_{N_{\psi}} d_{g}^{1}=P_{1}^{\prime}(\psi(z), \psi(\varphi(w))) g+d_{g}^{1}-2 S_{\psi(z)} g \in M$.
Noting that $\left(d_{g}^{1}-P_{N_{\psi}} d_{g}^{1}\right) \in N_{\varphi}^{\perp}$ and $[z-\varphi(w)]$ is an invariant subspace for analytic Toeplitz operators, we have that

$$
\left[P_{l-1}^{\prime}(\psi(z), \psi(\varphi(w)))\left(d_{g}^{1}-P_{N_{\psi}} d_{g}^{1}\right)\right] \in N_{\varphi}^{\perp}
$$

and so $P_{N_{\varphi}}\left[P_{l-1}^{\prime}(\psi(z), \psi(\varphi(w)))\left(d_{g}^{1}-P_{N_{\psi}} d_{g}^{1}\right)\right]=0$. Then

$$
\begin{align*}
P_{N_{\varphi}}\left[P_{l-1}^{\prime}\left(\psi(z), \psi(\varphi(w)) d_{g}^{1}\right)\right] & \left.=P_{N_{\varphi}}\left(P_{l-1}^{\prime}(\psi(z), \psi(\varphi(w))) P_{N_{\varphi}} d_{g}^{1}\right)\right] \\
& =l S_{\psi(z)}^{l-1} P_{N_{\psi}} d_{g}^{1} \in M \tag{40}
\end{align*}
$$

Assume that $P_{N_{\varphi}}\left[P_{l}^{\prime}(\psi(z), \psi(\varphi(w))) d_{g}^{k}\right] \in M$ for $k \leqslant n$ and any $l \geqslant 0$. To finish the proof by induction we need only to show that

$$
P_{N_{\varphi}}\left[P^{\prime}(\psi(z), \psi(\varphi)) d_{g}^{n+1}\right] \in M
$$

for any $l \geqslant 0$. Since

$$
\begin{align*}
(n+2) S_{\psi(z)}^{n+1} g= & P_{N_{\varphi}}\left[P_{n+1}^{\prime}(\psi(z), \psi(\varphi(w))) g\right] \\
= & P_{N_{\varphi}}\left[P_{n+1}^{\prime}(\psi(z), \psi(\varphi(w))) g+\sum_{k=0}^{n} P_{k}^{\prime}(\psi(z), \psi(\varphi(w))) d_{g}^{n+1-k}\right] \tag{41}\\
& -P_{N_{\varphi}} d^{n+1-k}-P_{N_{\varphi}}\left[\sum_{k=1}^{n} P_{k}^{\prime}(\psi(z), \psi(\varphi(w))) d_{g}^{n+1-k}\right]
\end{align*}
$$

Thus $P_{N_{\varphi}} d_{g}^{n+1}=P_{N_{\varphi}}\left[P_{n+1}^{\prime}(\psi(z), \psi(\varphi(w))) g+\sum_{k=0}^{n} P_{k}^{\prime}(\psi(z), \psi(\varphi(w))) d_{g}^{n+1-k}\right]-(n+$ 2) $S_{\psi(z)}^{n+1} g-P_{N_{\varphi}}\left[\sum_{k=1}^{n} P_{k}^{\prime}(\psi(z), \psi(\varphi(w))) d_{g}^{n+1-k}\right]$.

By property (i) we have

$$
P_{N_{\varphi}}\left[P_{n+1}^{\prime}(\psi(z), \psi(\varphi(w))) g+\sum_{k=0}^{n} P_{k}^{\prime}(\psi(z), \psi(\varphi(w))) d_{g}^{n+1-k}\right] \in M
$$

The induction hypothesis gives that the last term is in M and the second term belongs to M, since $g \in M$ and M is a reducing subspace for $S_{\psi(z)}$. So $P_{N_{\varphi}} d_{g}^{n+1} \in M$. Therefore we conclude

$$
\begin{align*}
P_{N_{\varphi}}\left[P_{l}^{\prime}(\psi(z), \psi(\varphi(w))) d_{g}^{n+1}\right] & =P_{N_{\varphi}}\left[P_{l}^{\prime}(\psi(z), \psi(\varphi(w))) P_{N_{\varphi}} d_{g}^{n+1}\right] \\
& =(l+1) S_{\psi(z)}^{l}\left(P_{N_{\varphi}} d_{g}^{n+1}\right) \in M . \tag{42}
\end{align*}
$$

This completes the proof.
In particular, N_{φ} is a reducing subspace of $S_{\psi(z)}$. By Theorem 4.3 we immediately get the following theorem.

Proposition 4.4. For a given $g \in L_{0}$, there are a unique family of functions $\left\{d_{g}^{k}\right\} \subset \mathfrak{L}_{\psi} \ominus L_{0}$ such that

$$
P_{l}^{\prime}(\psi(z), \psi(\varphi(w))) g+\sum_{k=0}^{l-1} P_{k}^{\prime}(\psi(z), \psi(\varphi(w))) d_{g}^{l-k} \in N_{\varphi}
$$

for each $l \geqslant 1$.

The next theorem we will show that every nontrivial minimal reducing subspace Ω of $S_{\psi(z)}$ is orthogonal to M_{0} if Ω is not in the form of Theorem 3.6.

THEOREM 4.5. Suppose that Ω is a nontrivial minimal reducing subspace for $S_{\psi(z)}$. If Ω is not distinguished reducing subspace then Ω is a subspace of M_{0}^{\perp}.

Proof. By Lemma 4.1, there is a function $g \in \Omega \cap L_{0}$ such that $g=f+h$ for some function $f=\sum_{k=1}^{m} \lambda_{k} e_{k} \in M_{0} \cap L_{0}$ and $h \in M_{0}^{\perp} \cap L_{0}$, where $\lambda_{k}, k=1, \ldots, m$, are constant. By proposition 3.3, $P_{1}^{\prime}(\psi(z), \psi(\varphi(w))) g+d_{g}^{1} \in \Omega$. Here d_{g}^{1} is the function constructed in proposition 4.3. Let

$$
G=S_{\psi(z)}^{*}\left[S_{\psi(z) g}\right]-\frac{1}{2} g \in \Omega
$$

Since $P_{l}^{\prime}(\psi(z), \psi(\varphi(w))) f \in N_{\varphi}$, we obtain

$$
S_{\psi(z)} f=\frac{P_{1}^{\prime}(\psi(z), \psi(\varphi(w)))}{2} f
$$

Here

$$
\begin{align*}
G & =S_{\psi(z)}^{*}\left[S_{\psi(z)}(f+h)\right]-\frac{1}{2}(f+h) \\
& =\left(S_{\psi(z)}^{*} S_{\psi(z)} f-\frac{1}{2} f\right)+S_{\psi(z)}^{*} S_{\psi(z)} h-\frac{h}{2} \\
& =S_{\psi(z)}^{*} S_{\psi(z)} h-\frac{1}{2} h \\
& =\frac{1}{2}\left\{S_{\psi(z)}^{*}\left[P_{N_{\varphi}}\left(P_{1}^{\prime}(\psi(z), \psi(\varphi(w))) h+d_{h}^{1}-d_{h}^{1}\right)\right]-h\right\} \tag{43}\\
& \left.\left.=\frac{1}{2}\left\{S_{\psi(z)}^{*}\left[P_{1}^{\prime}(\psi(z), \psi(\varphi(w))) h+d_{h}^{1}\right]-S_{\psi(z)}^{*} P_{N_{\varphi}} d_{h}^{1}\right)\right]-h\right\} \\
& =\frac{1}{2}\left\{h-S_{\psi(z)}^{*} P_{N_{\varphi}} d_{h}^{1}-h\right\} \\
& =-\frac{1}{2} S_{\psi(z)}^{*} P_{N_{\varphi}} d_{h}^{1} .
\end{align*}
$$

The sixth equality holds because that $P_{1}^{\prime}(\psi(z), \psi(\varphi(w))) h+d_{h}^{1} \in N_{\varphi}$, the seventh equality follows from that $d_{h}^{1} \in \mathfrak{L}_{\psi} \ominus L_{0}$. We claim that $G \neq 0$, if this is not true, we would have $\frac{1}{2} S_{\psi(z)}^{*} P_{N_{\varphi}} d_{h}^{1}=0$. This gives that $P_{N_{\varphi}} d_{h}^{1} \in L_{0}$, and

$$
\begin{align*}
0 & =\left\langle P_{N_{\varphi}} d_{h}^{1}, d_{h}^{1}\right\rangle \\
& =\left\langle P_{N_{\varphi}} d_{h}^{1}, P_{1}^{\prime}(\psi(z), \psi(\varphi(w))) h+d_{h}^{1}\right\rangle \\
& =\left\langle d_{h}^{1}, P_{1}^{\prime}(\psi(z), \psi(\varphi(w))) h+d_{h}^{1}\right\rangle \tag{44}\\
& =\left\langle d_{h}^{1}, d_{h}^{1}\right\rangle \\
& =\left\|d_{h}^{1}\right\|^{2} .
\end{align*}
$$

This gives that $d_{h}^{1}=0$. Thus we have that $P_{1}^{\prime}(\psi(z), \psi(\varphi(w))) h \in N_{\varphi}$. By theorem 3.2, $h \in M_{0}$. This contradicts that $h \in M_{0}^{\perp}$. By proposition 4.3, $P_{N_{\varphi}} d_{h}^{1} \in M_{0}^{\perp}$ and so $G=-\frac{1}{2} S_{\psi(z)}^{*} P_{N_{\varphi}} d_{h}^{1}$.

This implies that $G \in \Omega \cap M_{0}^{\perp}$. We conclude that $\Omega \cap M_{0}^{\perp}=\Omega$, since Ω is minimal. Hence Ω is a subspace of M_{0}^{\perp}.

REFERENCES

[1] F. AZARIKEy, Y. Lu and R. Yang, Numerical invariants of homogeneous submodules in $H^{2}(\mathbb{D})$, New York J. of Math., 23 (2017), 505-526.
[2] A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math., (1949), 81: 239-255.
[3] K. Bickel and C. Liaw, Properties of Beurling-type submodules via Agler decompositions, J. Funct. Anal., 272 (2017), 83-111.
[4] R. G. Douglas and K. Yan, On the rigidity of Hardy submodules [J], Integr. Equ. Oper. Theory, 13 (1999), 350-363.
[5] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
[6] K. Guo, S. Sun, D. Zheng and C. Zhong, Multiplication operators on the Bergman space via the Hardy space of bidisk, J. Reine. Angew. Math., 628 (2009), 129-168.
[7] K. Izuchi and R. Yang, Strictly contractive compression on backward shift invariant subspaces over the torus, Acta Sci. Math. (Szeged) 70 (2004) 727-749.
[8] K. Izuchi and R. Yang, N_{φ} type quotient modules on the torus, New York J. Math., 14 (2008) 431-457.
[9] W. Rudin, Function theory in Polydiscs [M], New York: Benjamin, 1969.
[10] S. Sun, D. Zheng and C. Zhong, Multiplication operators on the Bergman space and weighted shifts, J. Operator Theory, 59 (2008), 435-454.
[11] R. YANG, Hilbert-Schmidt submodules and issues of equivalence [J], J. Operator Theory, 53 (2005), 169-184.
[12] R. YANG, Operator theory in the Hardy space over the bidisk (III) [J], Journal of Functional Analysis, 186 (2001), 521-545.
[13] R. Yang, Operator theory in the Hardy space over the bidisk (II) [J], Integer. Equ. and Oper. Theory, 42 (2002), 99-124.

Hong Zou School of Mathematical Sciences Dalian University of Technology

Dalian, 116024, China
e-mail: zhhappy@mail.dlut.edu.cn
Tao Yu
School of Mathematical Sciences
Dalian University of Technology
Dalian, 116024, China
e-mail: tyu@dlut.edu.cn

[^0]: Mathematics subject classification (2020): 47B35, 47B10.
 Keywords and phrases: Bergman space, Blaschke product, distinguished reducing subspace, Hardy space.

 The work is supported by National Nature Science Foundation of China (grant no. 11971087).

 * Corresponding author.

