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DISTINGUISHED SUBSPACES OF TOPELITZ

OPERATORS ON Nϕ –TYPE QUOTIENT MODULES
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Abstract. In this paper, we show that there always exists reducing subspace M for Sψ(z) such
that the restriction of Sψ(z) on M is unitarily equivalent to the Bergman shift when ψ(z) is a
finite Blaschke product. Moreover, we will show that only if ψ(z) is a finite Blaschke product
can Sψ(z) has distinguished reducing subspaces. We also give the form of these distinguished
reducing subspaces when ψ(z) is a finite Blaschke product. Finally, we show that every non-
trivial minimal reducing subspace S of Sψ(z) is orthogonal to the direct sum of all distinguished
subspaces when S is not a distinguished subspace of Sψ(z) .

1. Introduction

Let D2 be the open unit bidisk in the 2-dimensional complex Euclidean space, and
let Γ2 be the distinguished boundary of D2 . Let L2(Γ2) be the Lebesgue space and
H2(Γ2) be the Hardy space over Γ2 . We denote by H2(Γz) and H2(Γw) the Hardy
spaces on the unit circle Γ in variables z and w , respectively. A function ϕ(w) ∈
H2(D) is called inner if |ϕ(w)|= 1 a.e. on Γ . Let P be the orthogonal projection from
L2(Γ2) onto H2(Γ2) . For each function ψ ∈ L∞ , we define the Toeplitz operator Tψ on
H2(Γ2) by Tψ f = P(ψ f ) for f ∈H2(Γ2) . A closed subspace M of H2(Γ2) is called a
submodule if TzM ⊆ M and TwM ⊆ M . There are many conclusions about submodules
of the Hardy space over Γ2 (see [9] and [11]–[13]). In H2(Γ) , A. Beurling [2] showed
an invariant subspace M of H2(Γ) has the form M = θH2(Γ) for some inner function
θ . In H2(Γ2) , the structure of submodules is complicated. If M is a submodule of
H2(Γ2) and N = H2(Γ2)�M , then T ∗

z N ⊆N and T ∗
wN ⊆N . We called N is a quotient

module of H2(Γ2) related to M .
A reducing subspace M for an operator T on Hilbert space H is a closed subspace

M of H such that TM ⊂ M and T ∗M ⊂ M . In [6], K. Guo et al show that only
a multiplication operator by a finite Blaschke product on the Bergman space has a
unique distinguished reduced subspace, that is, the restriction of the operator on this
reduced subspace is equivalent to the Bergman shift. In [10], S. Sun et al show that
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the multiplication operator on the Bergman space is unitarily equivalent to a weighted
unilateral shift operator of finite multiplicity if and only if its symbol is a constant
multiple of the N -th power of a Möbius transform.

For a subset E of H2(Γ2) , we denote by [E] the smallest submodule of H2(Γ2)
containing E . Throughout this paper, let ϕ ∈ H∞(D) be a non-constant inner function,
and Nϕ = H2(Γ2)� [z−ϕ(w)] , a Nφ -type quotient module. A quotient module has a
very rich structure [7, 8]. In fact, Nϕ can be identified with the tensor product of two
well-known classical spaces, namely, the quotient module H2(Γ)�ϕH2(Γ) and the
Bergman space L2

a(D) . In [8], K. Izuchi and R. Yang have obtained that, if ϕ is an one
variable inner function, Nϕ is essentially reduced if and only if ϕ is a finite Blaschke
product. For a quotient module N of H2(Γ2) and a function ψ(z) ∈ H∞(D) , we define
a operator Sψ on N by

Sψ = PNTψ |N ,

where PN is the orthogonal projection from H2(Γ2) onto N . In [6], the authors show
that Sψ(z) acting on H2(Γ2)� [z−w] has the distinguished reducing subspace if and
only if ψ(z) is a finite Blaschke product. Inspired by [6], in this paper, we extend their
conclusions from H2(Γ2)� [z−w] to the setting of the Nφ -type quotient module.

In this paper, we will show that only if ψ(z) is a finite Blaschke product can Sψ(z)
on Nϕ has the distinguished subspace and completely described the form of those dis-
tinguished reducing subspaces when ψ(z) is a finite Blaschke product. The following
are our main results.

THEOREM 1.1. Let ψ be a Blaschke product of order N, There are reducing sub-
space M for Sψ(z) such that Sψ(z)|M ∼= Mz . In fact, M has only the following form

M = span{P′
n(ψ)eh : n � 0} (1)

where P′
n(ψ) =

√
n+1en(ψ(z),ψ(ϕ(w))) and eh = h(w)ψ(z)−ψ(ϕ(w))

z−ϕ(w) , h(w)∈K2
ϕ(Γw)

with ‖h‖ = 1 . And { P′
n(ψ)eh√
n+1

√
N
}∞

0 form an orthonomal basis of M.

THEOREM 1.2. Let ψ ∈ H∞(D) . Then Sψ(z) acting on Nϕ has the distinguished
reducing subspace if and only if ψ is a finite Blaschke product.

Let Mk = span{P′
n(ψ)ek : n � 0} , where ek = λk(w)ψ(z)−ψ(ϕ(w))

z−ϕ(w) , k = 1, . . . ,m .
And we denote M0 = M1⊕M2⊕·· ·⊕Mm . Then we have the following theorem.

THEOREM 1.3. Suppose that Ω is a nontrivial minimal reducing subspace for
Sψ(z) . If Ω is not a distinguished reducing subspace, then Ω is a subspace of M⊥

0 .

The paper is organized as follows. In Section 2, we give some basic facts about
the space Nϕ and the operator Sφ . In Section 3, we give the proof of Theorem 1.1 and
1.2. In Section 4, we will show that every nontrivial minimal reducing subspace Ω of
Sψ(z) which is not distinguished reducing subspace is orthogonal to M0 .
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2. Preliminaries

In this section, we lay out some basic facts about the space Nϕ and the operator
Sz . And in this paper, we denote Bergman shift and H2(Γw)�ϕ(w)H2(Γw) by Mz and
K2

ϕ(Γw) respectively.

LEMMA 2.1. ([8]) Let ϕ(w) be a one variable non-constant inner function and
{λk(w) : k = 1,2, . . . ,m} be an orthonormal basis of K2

ϕ (Γw) and

e j(z,w) =
wj +wj−1z+ . . .+ z j

√
j +1

( j = 0,1, . . .). (2)

Let

Ek, j = λk(w)e j(z,ϕ(w)). (3)

Then {Ek, j : k = 1,2, . . . ,m; j = 0,1, . . .} (m can be infinity) is an orthonormal basis
for Nϕ .

LEMMA 2.2. ([8]) There exists a unitary operator U

U : Nϕ → K2
ϕ (Γw)⊗L2

a(D)

Ek, j �→ λk(w)
√

j +1z j

such that
USz = (I⊗Mz)U.

where I is an identity map on H2(Γw)�ϕ(w)H2(Γw) .

COROLLARY 2.3. (1). For each ψ(z) ∈ H∞(D) , we have

USψ(z) = (I⊗Mψ(z))U

(2). Sz|Nϕ = Sϕ(w)|Nϕ .
(3). For each ψ(z) ∈ H∞(D) , we have

Sψ(z)|Nϕ = Sψ(ϕ(w))|Nϕ

(4). Since Nϕ is a backshift invariant subspace, then we have

T ∗
z |Nϕ = S∗z and T ∗

ϕ(w)|Nϕ = S∗ϕ(w).

Proof. We only need to prove (1).
For any ψ(z) = ∑∞

n=0 anzn ∈ H∞(D) , we have

〈Sψ(z)Ek, j,El,i〉 = 〈ψ(z)λk(w)e j(z,ϕ(w)),λl(w)ei(z,ϕ(w))〉

=
1√

j +1
√

i+1

j

∑
s=0

i

∑
t=0

〈ψ(z)λk(w)ϕ(w) j−szs,λl(w)ϕ(w)i−t zt〉

=
1√

j +1
√

i+1

j

∑
s=0

i

∑
t=0

〈λk(w),λl(w)ϕ(w)i+s− j−t 〉〈ψ(z),zt−s〉.

(4)
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Hence

〈Sψ(z)Ek, j,El,i〉 =
j +1√

j +1
√

i+1
ai− j if and only if l = k and i− j � 0.

Then we have

USψ(z)Ek, j = U
m

∑
l=1

∞

∑
i=0

〈Sψ(z)Ek, j,El,i〉El,i

= U
∞

∑
i=0

〈Sψ(z)Ek, j,Ek,i〉Ek,i

= U
∞

∑
i= j

j +1√
j +1

√
i+1

ai− jEk,i

=
√

j +1λk(w)[a0z
j +a1z

j+1 + . . .+anz
j+n + . . .]

=
√

j +1λk(w)ψ(z)z j

= (I⊗Mψ(z))UEk, j. �

(5)

PROPOSITION 2.4. If f ∈ H2(Γ2)
⋂

C(D2) and g ∈ Nϕ , then

〈 f (z,w),g(z,w)〉 = 〈 f (ϕ(w),w),g(0,w)〉.

Proof. Since f ∈ C(D2) , then there are a sequence {qn} of polynomials of z and
w converging uniformly to f (z,w) on the closed bidisk. Thus it suffices to show

〈ziwl ,λk(w)e j(z,ϕ(w))〉 = 〈ϕ(w)iwl,λk(w)e j(0,ϕ(w)〉,
for all i, l, j ∈ N , and k = 1,2, . . . ,m . So then the result follows from the following
equalities.

〈ziwl,λk(w)e j(z,ϕ(w))〉 = 〈wl ,T ∗
zi λk(w)e j(z,ϕ(w))〉

= 〈wl ,T ∗
ϕ(w)iλk(w)e j(z,ϕ(w))〉

= 〈ϕ(w)iwl ,λk(w)e j(z,ϕ(w))〉

=
1√
j +1

j

∑
s=0

〈ϕ(w)iwl ,λk(w)zsϕ(w) j−s〉

=
1√
j +1

〈ϕ(w)iwl,λk(w)ϕ(w) j〉

= 〈ϕ(w)iwl ,λk(w)e j(0,ϕ(w))〉. �

(6)

PROPOSITION 2.5. If h(z,w)∈H2(Γ2) and h∈N⊥
ϕ = [z−ϕ(w)] , then h(ϕ(w),w)

= 0 for all w ∈ D .
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Proof. Let w∈D , then for each f (z,w) ∈ (z−ϕ(w))H2(Γ2) , we have f (ϕ(w),w)
= 0. For each h ∈ N⊥

ϕ = [z− ϕ(w)] = (z−ϕ(w))H2(Γ2) , there exists a sequence
{gn} ⊆ H2(Γ2) such that ‖ h− (z−ϕ(w))gn ‖2→ 0 as n → ∞ .

Therefore

0 = 〈(z−ϕ(w))gn,kα(w)kϕ(α)(z)〉 → 〈h,kα(w)kϕ(α)(z)〉 = h(ϕ(α),α)

as n → ∞ , for each α ∈ D . �

PROPOSITION 2.6. Suppose ψ(w) ∈ H∞(D) , then we have ψ(z)−ψ(ϕ(w)) ∈
[z−ϕ(w)] .

Proof. Suppose ψ(w) = Σ∞
n=0anzn ∈ H∞(D) . It is clear that ψ(z)−ψ(ϕ(w)) ∈

H2(Γ2) . For every Ek, j ∈ Nϕ , k = 1, . . . ,m , j = 0,1, . . . , we have

〈ψ(z)−ψ(ϕ(w)),Ek, j〉 = 〈ψ(z)−ψ(ϕ(w)),
1√
j +1

λk(w)Σ j
i=0z

iϕ(w) j−i〉

=
1√
j +1

Σ j
i=0〈ψ(z),λk(w)ziϕ(w) j−i〉

− 1√
j +1

Σ j
i=0〈ψ(ϕ(w)),λk(w)ziϕ(w) j−i〉

=
1√
j +1

Σ j
i=0aiλk(0)ϕ(0) j−i

− 1√
j +1

〈Σ∞
n=0anϕ(w)n,λk(w)ϕ(w) j〉

= 0.

(7)

This completes the proof. �

3. The distinguished reducing subspace

In this section we will show that there always exists reducing subspace M for Sψ(z)
such that the restriction of Sψ(z) on M is unitarily equivalent to the Bergman shift when
ψ(z) is a finite Blaschke product. Moreover, we will give the concrete forms of these
reduced subspaces. At last, we will prove Sψ(z) acting on Nϕ has the distinguished
reducing subspace if and only if ψ is a finite Blaschke product.

PROPOSITION 3.1. For each f (z,w) ∈ H2(Γ2) , f is in Nϕ if and only if there is
a function f̃ (z,w) in D⊗K2

ϕ(Γw) such that

f (z,w) =
f̃ (z,w)− f̃ (ϕ(w),w)

z−ϕ(w)
(8)

for two points z and w with z �= ϕ(w) in the unit disk.
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Proof. Since {Ek, j : k = 1, . . . ,m; j = 0,1, . . .} is an orthonormal basis of Nϕ , then
for each f ∈ Nϕ , we can write

f (z,w) =
m

∑
k=1

∞

∑
j=0

ak jEk, j(z,w).

Let f̃ (z,w) = ∑m
k=1 ∑∞

j=0
ak j√
j+1λk(w)z j+1 . Then the equation (8) holds. Also we have

‖ f̃‖2
D⊗k2

ϕ
=

∞

∑
j=0

〈
m

∑
k=1

ak j√
j +1

λk(w),
m

∑
k=1

ak j√
j +1

λk(w)

〉
‖ z j+1 ‖2

D

=
∞

∑
j=0

m

∑
k=1

|ak j|2
j +1

( j +2)

� 2
∞

∑
j=0

m

∑
k=1

|ak j|2

= 2‖ f‖2.

(9)

Hence f̃ (z,w) in D⊗K2
ϕ(Γw) .

Conversely, if f (z,w) = f̃ (z,w)− f̃ (ϕ(w),w)
z−ϕ(w) , for some f̃ (z,w) in D⊗K2

ϕ(Γw) . Let

f̃ (z,w)= ∑m
k=1 ∑∞

j=0 ak jλk(w)z j , where ‖ f̃‖2
k2

ϕ⊗D
= ∑m

k=1 ∑∞
j=0( j+1)|ak j|2 < +∞ . Then

f (z,w) =
∑∞

j=0 ∑m
k=1 ak jλk(w)z j −∑∞

j=0 ∑m
k=1 ak jλk(w)ϕ(w) j

z−ϕ(w)

=
∞

∑
j=1

m

∑
k=1

ak jλk(w)
z j −ϕ(w) j

z−ϕ(w)

=
∞

∑
j=1

m

∑
k=1

√
jak jEk, j−1.

(10)

and ‖ f‖2
H2 = ∑m

k=1 ∑∞
j=1 | j||ak j|2 � ‖ f̃‖2

k2
ϕ⊗D

< +∞ . �

THEOREM 3.2. Let f be a nonzero function in Nϕ , ψ(z) is a function in H∞(D) .
If (ψ(z)+ ψ(ϕ(w))) f ∈ Nϕ , then

f (z,w) = ch(w)
ψ(z)−ψ(ϕ(w))

z−ϕ(w)
,

where c is a constant and h(w) ∈ K2
ϕ (Γw) with ‖h‖ = 1 .

Proof. Since f ∈ Nϕ and (ψ(z)+ ψ(ϕ(w))) f ∈ Nϕ , by Theorem 2.1, we have

f (z,w) =
f̃ (z,w)− f̃ (ϕ(w),w)

z−ϕ(w)
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for some f̃ (z,w) = ∑m
k=1 Fk(z)λk(w) ∈ D⊗K2

ϕ(Γw) , and

(ψ(z)+ ψ(ϕ(w))) f (z,w) =
g̃(z,w)− g̃(ϕ(w),w)

z−ϕ(w)

for some g̃(z,w) = ∑m
k=1 Gk(z)λk(w) ∈ D⊗K2

ϕ(Γw) . Therefore

f (z,w) =
m

∑
k=1

Fk(z)−Fk(ϕ(w))
z−ϕ(w)

λk(w)

=
m

∑
k=1

fk(z,w),
(11)

where fk(z,w) = Fk(z)−Fk(ϕ(w))
z−ϕ(w) λk(w) , and

(ψ(z)+ ψ(ϕ(w))) f (z,w) =
m

∑
k=1

Gk(z)−Gk(ϕ(w))
z−ϕ(w)

λk(w)

=
m

∑
k=1

gk(z,w).
(12)

where gk(z,w) = Gk(z)−Gk(ϕ(w))
z−ϕ(w) λk(w) . Then we have

(ψ(z)+ ψ(ϕ(w))) f (z,w) =
m

∑
k=1

(ψ(z)+ ψ(ϕ(w))) fk(z,w).

Next we want to prove (ψ(z)+ ψ(ϕ(w))) fk(z,w) = gk(z,w) . Since gk and fk are in
Nϕ , and

(ψ(z)+ ψ(ϕ(w))) fk(z,w) =
(ψ(z)+ ψ(ϕ(w)))(Fk(z)−Fk(ϕ(w)))

z−ϕ(w)
λk(w),

for each i �= j , we have gi(z,w) ⊥ g j(z,w) and gi(z,w) ⊥ f j(z,w) . Since Fk(z) =
∑∞

n=0 ak
nz

n ∈ D for every k = 1, . . . ,m , we have〈
ψ(z)

zn −ϕ(w)n

z−ϕ(w)
λi(w),ψ(z)

zm −ϕ(w)m

z−ϕ(w)
λ j(w)

〉
=

m−1

∑
t=0

n−1

∑
s=0

〈ψ(z)zsϕ(w)n−1−sλi(w),ψ(z)zt ϕ(w)m−1−tλ j(w)〉

=
m−1

∑
t=0

n−1

∑
s=0

〈ψ(z)zs,ψ(z)zt )(λi(w),ϕ(w)m+s−t−nλ j(w)〉 = 0.

(13)



286 H. ZOU AND T. YU

Let ψ(z) = ∑∞
n=0 bnzn with ∑∞

n=0 |bn|2 < +∞ . Then〈
ψ(ϕ(w))

zn −ϕ(w)n

z−ϕ(w)
λi(w),ψ(ϕ(w))

zm −ϕ(w)m

z−ϕ(w)
λ j(w)

〉
=

∞

∑
l=0

∞

∑
k=0

blbk

〈
ϕ(w)l z

n −ϕ(w)n

z−ϕ(w)
λi(w),ϕ(w)k zm −ϕ(w)m

z−ϕ(w)
λ j(w)

〉

=
∞

∑
l=0

∞

∑
k=0

blbk

m−1

∑
t=0

n−1

∑
s=0

〈ϕ(w)l zsϕ(w)n−1−sλi(w),ϕ(w)kztϕ(w)m−1−tλ j(w)〉 = 0

(14)

and 〈
ψ(z)

zn −ϕ(w)n

z−ϕ(w)
λi(w),ψ(ϕ(w))

zm −ϕ(w)m

z−ϕ(w)
λ j(w)

〉
=

∞

∑
l=0

bl

〈
ϕ(z)

zn −ϕ(w)n

z−ϕ(w)
λi(w),ϕ(w)l z

m −ϕ(w)m

z−ϕ(w)
λ j(w)

〉

=
∞

∑
l=0

bl

m−1

∑
t=0

n−1

∑
s=0

〈ϕ(z)zsϕ(w)n−1−sλi(w),ϕ(w)l ztϕ(w)m−1−tλ j(w)〉 = 0.

(15)

Hence,

〈ψ(z) fi(z,w),ψ(z) f j(z,w)〉

=
〈

ψ(z)
Fi(z)−Fi(ϕ(w))

z−ϕ(w)
λi(w),ψ(z)

Fj(z)−Fj(ϕ(w))
z−ϕ(w)

λ j(w)
〉

=
〈

ψ(z)Σ∞
n=1a

i
n
zn −ϕ(w)n

z−ϕ(w)
λi(w),ψ(z)Σ∞

m=1a
j
m

zm −ϕ(w)m

z−ϕ(w)
λ j(w)

〉
= Σ∞

n=1Σ∞
m=1a

i
na

j
m

〈
ψ(z)

zn −ϕ(w)n

z−ϕ(w)
λi(w),ψ(z)

zm −ϕ(w)m

z−ϕ(w)
λ j(w)

〉
= 0.

(16)

〈ψ(ϕ(w)) fi(z,w),ψ(ϕ(w)) f j(z,w)〉

=
〈

ψ(ϕ(w))
Fi(z)−Fi(ϕ(w))

z−ϕ(w)
λi(w),ψ(ϕ(w))

Fj(z)−Fj(ϕ(w))
z−ϕ(w)

λ j(w)
〉

=
〈

ψ(ϕ(w))Σ∞
n=1a

i
n
zn −ϕ(w)n

z−ϕ(w)
λi(w),ψ(ϕ(w))Σ∞

m=1a
j
m

zm −ϕ(w)m

z−ϕ(w)
λ j(w)

〉
= Σ∞

n=1Σ∞
m=1a

i
na

j
m

〈
ψ(ϕ(w))

zn −ϕ(w)n

z−ϕ(w)
λi(w),ψ(ϕ(w))

zm −ϕ(w)m

z−ϕ(w)
λ j(w)

〉
= 0.

(17)

Similarly,
〈ψ(z) fi(z,w),ψ(ϕ(w)) f j(z,w)〉 = 0.

So we can get, from the above discussion,

〈(ψ(z)+ ψ(ϕ(w))) fi(z,w),(ψ(z)+ ψ(ϕ(w))) f j(z,w)〉
= 〈ψ(z) fi(z,w),ψ(ϕ(w)) f j(z,w))+ (ψ(ϕ(w)) fi(z,w),ψ(z) f j(z,w)〉
= 0,

(18)



DISTINGUISHED SUBSPACES OF TOPELITZ OPERATORS ON Nϕ -TYPE QUOTIENT MODULES 287

and

〈gi(z,w),(ψ(z)+ ψ(ϕ(w))) f j(z,w)〉
= 〈gi(z,w),ψ(z) f j(z,w)〉+ 〈gi(z,w),ψ(ϕ(w))) f j(z,w)〉
= 2〈gi(z,w),ψ(z) f j(z,w)〉
= 0.

(19)

Hence

(ψ(z)+ ψ(ϕ(w))) fk(z,w) = gk(z,w)

=
Gk(z)−Gk(ϕ(w))

z−ϕ(w)
λk(w).

(20)

and

fk(z,w) =
Fk(z)−Fk(ϕ(w))

z−ϕ(w)
λk(w). (21)

In following we discuss it in two cases. Firstly we assume ψ(0) = 0. Letting z tend to
ϕ(w) in the equations (21) and (8), respectively, we get

fk(ϕ(w),w) = F ′
k(ϕ(w))λk(w),

and
2ψ(ϕ(w)) fk(ϕ(w),w) = G′

k(ϕ(w))λk(w).

Hence
2ψ(ϕ(w))F ′

k(ϕ(w)) = G′
k(ϕ(w)). (22)

Letting z = 0 in (21) and (8), we have

ψ(ϕ(w))Fk(ϕ(w)) = Gk(ϕ(w)). (23)

Taking derivatives at two sides of (23), we get

ψ ′(ϕ(w))Fk(ϕ(w))+ ψ(ϕ(w))F ′
k(ϕ(w)) = G′

k(ϕ(w)). (24)

Then by (22) and (24) we have

ψ(ϕ(w))F ′
k (ϕ(w)) = ψ ′(ϕ(w))Fk(ϕ(w)).

Hence (
ψ(z)
Fk(z)

)′∣∣∣∣
z=ϕ(w)

= 0,

and so, since ϕ is a non-constant inner function,

Fk(z) = akψ(z)

for some constant ak . Hence

fk(z,w) = ak
ψ(z)−ψ(ϕ(w))

z−ϕ(w)
λk(w)
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and

f (z,w) = ch(w)
ψ(z)−ψ(ϕ(w))

z−ϕ(w)
.

where h(w) = ∑m
k=1 akλk(w)

‖∑m
k=1 akλk(w)‖ and c = ‖∑m

k=1 akλk(w)‖ .

If ψ(0) �= 0, since (ψ(z)−ψ(0)+ ψ(ϕ(w))−ψ(0)) f = (ψ(z)+ ψ(ϕ(w))) f −
2ψ(0) f ∈ Nϕ and f ∈ Nϕ , then, through the above discussion, we can conclude

f (z,w) = ch(w)
ψ(z)−ψ(0)−ψ(ϕ(w))+ ψ(0)

z−ϕ(w)

= ch(w)
ψ(z)−ψ(ϕ(w))

z−ϕ(w)
.

(25)

This completes the proof. �

PROPOSITION 3.3. Suppose ψ is a nonconstantfinite Blaschke product, and f (z,w)
= ch(w)ψ(z)−ψ(ϕ(w))

z−ϕ(w) for some constant c and h(w) ∈ K2
ϕ (Γw) with ‖h‖= 1 . Then, for

each l � 1 , √
l +1el(ψ(z),ψ(ϕ(w))) f ∈ Nϕ .

Proof. By Theorem 3.2, let f (z,w) = ch(w)ψ(z)−ψ(ϕ(w))
z−ϕ(w) , where c is constant and

h(w) ∈ K2
ϕ (Γw) with ‖h‖ = 1. Then, for each l � 1,

√
l +1el(ψ(z),ψ(ϕ(w))) f = ch(w)

ψ(z)l+1−ψ(ϕ(w))l+1

z−ϕ(w)
∈ Nϕ . �

PROPOSITION 3.4. Let ψ(z) be an inner function satisfying ψ(z)−ψ(ϕ(w))
z−ϕ(w) ∈H2(Γ2) ,

then
ψ(z)−ψ(ϕ(w))

z−ϕ(w)
⊥ ψ(z)H2(Γ2).

Proof. Let h(z,w) = ψ(z)−ψ(ϕ(w))
z−ϕ(w) . For any polynomial p(z,w) , we have

〈h(z,rw),ψ(z)p(z,w)〉

= 〈(ψ(z)−ψ(ϕ(rw)))
∞

∑
n=0

zn+1ϕ(rw)n,ψ(z)p(z,w)〉

=
∞

∑
n=0

[〈ϕ(rw)nψ(z),zn+1ψ(z)p(z,w)〉− 〈ϕ(rw)nψ(ϕ(rw)),zn+1ψ(z)p(z,w)〉]

= 0.

(26)

This implies that h(z,rw) ⊥ ϕ(z)H2(Γ2) . Since h(z,rw) converges to h(z,w) in the
norm of H2(Γ2) as r → 1− . Hence h(z,w) ⊥ ψ(z)H2(Γ2) , that is, h(z,w) ∈ kerT ∗

ψ(z) .
This completes the proof. �
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From the above proposition and T ∗
ψ(z)|Nϕ = T ∗

ψ(ϕ(w))|Nϕ , we also can get

ψ(z)−ψ(ϕ(w))
z−ϕ(w)

⊥ ψ(ϕ(w))H2(Γ2)

when ψ(z)−ψ(ϕ(w))
z−ϕ(w) ∈ H2(Γ2) .

PROPOSITION 3.5. Suppose ψ(z) is an inner function and h(w) ∈ K2
ϕ (Γw) with

‖h‖= 1 . Then eh = h(w)ψ(z)−ψ(ϕ(w))
z−ϕ(w) is in H2(Γ2) if and only if ψ is a finite Blaschke

product. Moreover, ‖eh‖2 = N , the order of ψ .

Proof. If ψ(z) = z−a
1−az is a Blaschke product of order 1, by h(w) ∈ K2

ϕ(Γw) with
‖h‖ = 1, then

‖eh‖2 =
∫

Γ2

∣∣∣∣h(w)
ψ(z)−ψ(ϕ(w))

z−ϕ(w)

∣∣∣∣2 dm

=
∫

Γ
|h(w)|2 1−|a|2

|1−aϕ(w)|2 dm(w)
∫

Γ

1−|a|2
|1−az|2 dm(z)

= 1.

(27)

If ψ = ψ1ψ2 . . .ψN = ψ1 f is a finite Blaschke product, then

eh = h(w)
ψ(z)−ψ(ϕ(w))

z−ϕ(w)

= h(w)ψ1(z)
f (z)− f (ϕ(w))

z−ϕ(w)
+h(w) f (ϕ(w))

ψ1(z)−ψ1(ϕ(w))
z−ϕ(w)

.

(28)

Since, by Proposition 3.4,〈
h(w)ψ1(z)

f (z)− f (ϕ(w))
z−ϕ(w)

,h(w) f (ϕ(w))
ψ1(z)−ψ1(ϕ(w))

z−ϕ(w)

〉
=

〈
h(w)

f (z)− f (ϕ(w))
z−ϕ(w)

,h(w) f (ϕ(w))T ∗
ψ1(z)

ψ1(z)−ψ1(ϕ(w))
z−ϕ(w)

〉
= 0,

(29)

we have

‖eh‖2 =
∥∥∥∥h(w)ψ1

f (z)− f (ϕ(w))
z−ϕ(w)

∥∥∥∥2

+
∥∥∥∥h(w) f (ϕ(w))

ψ1(z)−ψ1(ϕ(w))
z−ϕ(w)

∥∥∥∥2

=
∥∥∥∥h(w)

f (z)− f (ϕ(w))
z−ϕ(w)

∥∥∥∥2

+
∥∥∥∥h(w)

ψ1(z)−ψ1(ϕ(w))
z−ϕ(w)

∥∥∥∥2

=
∥∥∥∥h(w)

f (z)− f (ϕ(w))
z−ϕ(w)

∥∥∥∥2

+1.

(30)
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By induction, we therefore have ‖eh‖2 = N .
If ψ(z) is a Blaschke product of infinite order. Then, similar to the above discus-

sion, we have ‖eh‖ = ∞ .
If ψ(z) is a general inner function which is not a finite Blaschke product, by

Frostman’s Theorem [5, p. 75], there exists a λ ∈ D such that ψ(z)−λ
1−λψ(z)

, denoted by

B(z) , is an infinite Blaschke product. Then ψ(z) = λ+B(z)
1+λB(z)

and

ψ(z)−ψ(ϕ(w))
z−ϕ(w)

= (1−|λ |2) B(z)−B(ϕ(w))
(z−ϕ(w))(1+ λB(z))(1+ λB(ϕ(w)))

Since λ ∈D , it is clear that h(w)ψ(z)−ψ(ϕ(w))
z−ϕ(w) ∈H2(Γ2) if and only if h(w)B(z)−B(ϕ(w))

z−ϕ(w) ∈
H2(Γ2) . Hence eh is not in H2(Γ2) in this case. �

THEOREM 3.6. Suppose ψ be a Blaschke product of order N. Then there are
reducing subspaces M for Sψ(z) such that Sψ(z)|M ∼= Mz . Moreover, each M has the
following form

M = span{P′
n(ψ)eh : n � 0} (31)

where P′
n(ψ) =

√
n+1en(ψ(z),ψ(ϕ(w))) and eh = h(w)ψ(z)−ψ(ϕ(w))

z−ϕ(w) , h(w)∈K2
ϕ(Γw)

with ‖h‖ = 1 . And { P′
n(ψ)eh√
n+1

√
N
}∞

0 form an orthonomal basis of M.

Proof. For each h(w) ∈ H2(Γw)�ϕ(w)H2(Γw) with ‖h‖ = 1, let

eh = h(w)
ψ(z)−ψ(ϕ(w))

z−ϕ(w)

and M = span{P′
n(ψ)eh : n � 0} . By Theorem 3.3, we have P′

n(ψ)eh ∈ Nϕ , and then
M is a closed subspace of Nϕ . For each n � 0,

Sψ(z)P
′
n(ψ)eh = PNϕ (ψ(z)P′

n(ψ)eh)

=
n+1
n+2

P′
n+1(ψ)eh +

1
n+2

P′
n+1(ψ)eh−PNϕ (ψ(ϕ(w))n+1eh

=
n+1
n+2

P′
n+1(ψ)eh +PNϕ

(
1

n+2
P′

n+1(ψ)eh −ψ(ϕ(w))n+1eh

)
=

n+1
n+2

P′
n+1(ψ)eh.

(32)

The last equation is obtained by P′
n+1(ψ)eh−ψ(ϕ(w))n+1eh ∈ [z−ϕ(w)] .

Since S∗ψ(z)eh = T ∗
ψ(z)eh = 0 and, for each n � 1, S∗ψ(z)P

′
n(ψ)eh = P′

n−1(ψ)eh , we

have M is a reducing subspace of Sψ(z) . Since ‖P′
n(ψ)eh‖2 = (n+1)‖eh‖2 = (n+1)N

and 〈P′
n(ψ)eh,P′

m(ψ)eh〉= 0 for all n �= m , then { P′
n(ψ)eh√
n+1

√
N
}∞

0 form an orthonomal basis

of M . Since Sψ(z)
P′
n(ψ)eh√
n+1

√
N

=
√

n+1
n+2

P′
n+1(ψ)eh√
n+2

√
N

, then M is a reducing subspace for Sψ(z)

such that Sψ(z)|M ∼= Mz .
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Suppose that M is a reducing subspace of Sψ(z) and Sψ(z)|M ∼= Mz , we will show
that M has the form of (20). Since Sψ(z)|M ∼= Mz , i.e. there exist an orthonomal basis
{Fn}∞

0 of M such that

Sψ(z)Fn =

√
n+1
n+2

Fn+1

Observe PNϕ (ψ(z)+ ψ(ϕ(w)))F0 = Sψ(z)F0 +Sψ(ϕ(w))F0 =
√

2F1 . Then

‖PNϕ (ψ(z)+ ψ(ϕ(w)))F0‖2 = 2.

We also have

‖(ψ(z)+ ψ(ϕ(w))F0‖2

= ‖ψ(z)F0‖2 +‖ψ(ϕ(w))F0‖2 + 〈Tψ(z)T
∗

ψ(ϕ(w))F0,F0〉+ 〈Tψ(ϕ(w))T
∗

ψ(z)F0,F0〉
= 2.

(33)

Thus (ψ(z)+ ψ(ϕ(w)))F0 ∈ Nϕ . Then by Theorem 2.2, we have

F0 = ch(w)
ψ(z)−ψ(ϕ(w))

z−ϕ(w)
.

for some constant c and some function h(w) ∈ H2(Γw)�ϕ(w)H2(Γw) with ‖h‖ = 1,
and so eh ∈ M1 . Then by propositon 3.3, for each l � 0, we have P′

l (ψ)eh = (l +
1)Sl

ψ(z)eh ∈ M . Therefore

M0 = span{P′
n(ψ)e : n � 0} ⊆ M.

By previous discussion, we know that M0 is a reducing subspace of Sψ(z)|M ∼= Mz . But
Mz is irreducible. Therefore we conclude M0 = M . This completes the proof. �

THEOREM 3.7. Suppose ψ ∈ H∞(D) . Then Sψ(z) acting on Nϕ has the distin-
guished reducing subspace if and only if ψ is a finite Blaschke product.

Proof. We only need to prove that if Sψ has the distinguished reducing subspace,
then ψ is a finite Blaschke product.

Assume Sψ has the distinguished reducing subspace M such that Sψ |M ∼= Mz . i.e.
there exist a unitary operator U : M → L2

a(D) such that U∗MzU = Sψ |M . Let KM
λ be

the reproducing kernel of M for λ = (λ1,λ2) ∈ D2 . Then ‖KM
λ ‖2 �= 0 except for at

most a countable set about variable λ1 . Since

|〈SψKM
λ ,KM

λ 〉| = |〈ψKM
λ ,KM

λ 〉|
= |ψ(λ1)|‖KM

λ ‖2
(34)

and ||Sψ‖ = ‖Mz‖ = 1, we have that |ψ(λ1)| � 1 except for at most a countable set,
and so ‖ψ‖∞ � 1.
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Set en = U∗e′n , where e′n(z) =
√

n+1zn for n = 0,1, . . . . Then

S∗ψ(z)e0 = U∗M∗
z Ue0 = U∗M∗

z e′0 = 0

and T ∗
ψ(ϕ(w))e0 = T ∗

ψe0 = S∗ψe0 = 0. By Corollary 3.2 (3), we have

‖PNϕ (ψ(z)+ ψ(ϕ(w)))e0‖2 = ‖2Sψ(z)e0‖2

= 4‖U∗MzUe0‖2

= 4‖Mze
′
0‖2

= 2.

(35)

and

‖(ψ(z)+ ψ(ϕ(w)))e0‖2

= ‖ψ(z)e0‖2 +‖ψ(ϕ(w))e0‖2 + 〈Tψ(z)T
∗

ψ(ϕ(w))e0,e0〉+ 〈Tψ(ϕ(w))T
∗

ψ(z)e0,e0〉
= 2.

(36)

Hence
(ψ(z)+ ψ(ϕ(w)))e0 ∈ Nϕ .

It follows from Theorem 3.2 that

e0 = ch(w)
ψ(z)−ψ(ϕ(w))

z−ϕ(w)

for some constant c and some function h(w) ∈ H2(Γw)�ϕ(w)H2(Γw) with ‖h‖ = 1.
Since

‖(ψ(z)+ ψ(ϕ(w)))e0‖2 = 2

and ‖ψ‖∞ � 1, then we have ‖ψ(z)e0‖2 = 1 and

‖ψ(z)e0‖2−‖e0‖2 =
∫

Γ2
(|ψ(z)|2 −1)|e0|2dm2 = 0.

Thus |ψ(z)| = 1 almost all on the unit circle and ψ is an inner function. Proposition
3.5 therefore implies that ψ is a finite Blaschke product. This completes the proof. �

4. Minimal reducing subspaces

In this section we will show that every nontrivial minimal reducing subspace Ω of
Sψ(z) is orthogonal to the subspace M0 if Ω is not a distinguished reducing subspace,
where M0 is the union of all distinguished reducing subspaces.

Let L0 = kerT ∗
ψ(z)∩ kerT ∗

ψ(ϕ(w))∩Nϕ , where ψ is a finite Blaschke product.

LEMMA 4.1. If M is a nontrivial reducing subspace for Sψ(z) , then the wander-
ing subspace of M is contained in L0 .
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Proof. Let M be a nontrivial reducing subspace for Sψ(z) . Since

T ∗
ψ(z)|Nϕ = T ∗

ψ(ϕ(w))|Nϕ = S∗ψ(z).

For each g ∈ M� Sψ(z)M , it is easy to see that T ∗
ψ(z)g = T ∗

ψ(ϕ(w))g = S∗ψ(z)g = 0, and
then g is in L0 . This completes the proof. �

LEMMA 4.2. If ψ is a nonconstant finite Blaschke product and M is a reducing
subspace for Sψ(z) , then S∗ψ(z)M = M.

Proof. Note that ψ(z) is a Blaschke product with finite order, the multiplicity
operator Mψ on L2

a(D) is a Fredholm operator and M∗
ψL2

a(D) = L2
a(D) . Since Sψ(z) on

Nϕ is unitarily equivalent to I⊗Mψ(z) on K2
ϕ (Γw)⊗L2

a(D) , then

S∗ψ(z)Nϕ = Nϕ .

Since M is a reducing subspace for Sψ , we have

S∗ψ(z)M = M.

This completes the proof. �

Let kψ = span{ψ l(z)ψk(ϕ(w))Nϕ : l,k � 0} , and Lψ = kerT ∗
ψ(z)∩ kerT ∗

ψ(ϕ(w)) ∩
kψ .

PROPOSITION 4.3. Suppose M is a reducing subspace for Sψ(z) , For a given g in
the wandering subspace of M , there are a unique family of functions {dl−k

g } ⊆Lψ �L0

such that

(i) P′
l (ψ(z),ψ(ϕ(w)))g+ ∑l−1

k=0 P′
k(ψ(z),ψ(ϕ(w)))dl−k

g is in M , for each l � 0 ,

(ii) P′
Nψ [P′

l (ψ(z),ψ(ϕ(w)))dk
g ] is in M for each k � 1 and l � 0 .

Proof. For a given g ∈ M� Sψ(z)M , first we will use mathematical induction to
construct a family of functions {dk

g} .
By Lemma 4.1 and g ∈ L0 , then T ∗

ψ(z)[(ψ(z) + ψ(ϕ(w))g] = T ∗
ψ(ϕ(w))[(ψ(z) +

ψ(ϕ(w))g] = g . By Lemma 4.2, there is a unique function g̃ ∈ M�L0 such that

T ∗
ψ(z)g̃ = T ∗

ψ(ϕ(w))g̃ = S∗ψ(z)g̃ = g.

This gives
T ∗

ψ(z)[g̃− (ψ(z)+ ψ(ϕ(w)))g] = g−g = 0

and
T ∗

ψ(ϕ(w))[g̃− (ψ(z)+ ψ(ϕ(w)))g] = g−g = 0.

Letting d1
g = g̃− (ψ(z)+ ψ(ϕ(w))) , then d1

g ∈ kerT ∗
ψ(z)∩ kerT ∗

ψ(ϕ(w)) and

P′
1(ψ(z),ψ(ϕ(w)))g+d1

g = (ψ(z)+ ψ(ϕ(w)))g+d1
g = g̃ ∈ M.
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Because both g̃ and g are in M , we have that d1
g ∈ kψ and hence d1

g ∈ Lψ .

Next we show that d1
g is orthogonal to L0 . Let f ∈ L0 , then we have

〈d1
g , f 〉 = 〈g̃− (ψ(z)+ ψ(ϕ(w)))g, f 〉

= 〈g̃, f 〉− 〈(ψ(z)+ ψ(ϕ(w)))g, f 〉
= 0−〈g,(T∗

ψ(z) +T ∗
ψ(ϕ(w))) f 〉

= 0.

(37)

This gives that d1
g ∈ Lψ �L0.

Assume that for n < l , there are a family of functions {dk
g}n

k=1 ∈ Lψ � L0 such
that

P′
n(ψ(z),ψ(ϕ(w)))g+

n−1

∑
k=0

P′
k(ψ(z),ψ(ϕ(w)))dn−k

g ∈ M.

Let G = P′
n(ψ(z),ψ(ϕ(w)))g + Σn−1

k=0P
′
k(ψ(z),ψ(ϕ(w)))dn−k

g . By Lemma 4.2 again,

there is a unique function G̃ ∈ M�L0 such that

S∗ψ(z)G̃ = T ∗
ψ(z)G̃ = T ∗

ψ(ϕ(w))G̃ = S∗ψ(ϕ(w))G̃ = G.

Let F = P′
n+1(ψ(z),ψ(ϕ(w)))g+ ∑n

k=1 P′
k(ψ(z),ψ(ϕ(w)))dn+1−k

g , since

T ∗
ψ(z)[P

′
k(ψ(z),ψ(ϕ(w))) f ] = T ∗

ψ(ϕ(w))[P
′
k(ψ(z),ψ(ϕ(w))) f ] = P′

k−1(ψ(z),ψ(ϕ(w))) f ,

for each f ∈ Lψ and k � 1, then

T ∗
ψ(z)F = T ∗

ψ(ϕ(w))F = G.

Thus T ∗
ψ(z)(G̃−F) = T ∗

ψ(ϕ(w))(G̃−F) = G−G = 0. So letting dn+1
g = G̃−F , then

dn+1
g ∈ kerT ∗

ψ(z)∩ kerT ∗
ψ(ϕ(w)) .

Noting G̃ is orthogonal to L0 , we have that for each f ∈ L0 ,

〈dn+1
g , f 〉 = 〈G̃, f 〉− 〈F, f 〉

= −〈P′
n+1(ψ(z),ψ(ϕ(w)))g, f 〉−

n

∑
k=1

〈P′
k(ψ(z),ψ(ϕ(w)))dn+1−k

g , f 〉

= 0.

(38)

to get that dn+1
g ∈ Lψ �L0 . Hence

P′
n+1(ψ(z),ψ(ϕ(w)))g+

n

∑
k=1

P′
k(ψ(z),ψ(ϕ(w)))dn+1−k

g +dn+1
g = G̃ ∈ M.

This gives a family of function {dk
g} ∈ Lψ �L0 , satisfying property(i) .

Lastly to finish the proof we need only to show that property (ii) holds. Since

2Sψ(z)g = PNϕ (P′
1(ψ(z),ψ(ϕ(w)))g)

= PNϕ (P′
1(ψ(z),ψ(ϕ(w))g+d1

g)−PNψ d1
g

= P′
1(ψ(z),ψ(ϕ(w)))g+d1

g −PNψ d1
g .

(39)
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we have PNψ d1
g = P′

1(ψ(z),ψ(ϕ(w)))g+d1
g −2Sψ(z)g ∈ M .

Noting that (d1
g−PNψ d1

g)∈N⊥
ϕ and [z−ϕ(w)] is an invariant subspace for analytic

Toeplitz operators, we have that

[P′
l−1(ψ(z),ψ(ϕ(w)))(d1

g −PNψ d1
g)] ∈ N⊥

ϕ ,

and so PNϕ [P′
l−1(ψ(z),ψ(ϕ(w)))(d1

g −PNψ d1
g)] = 0. Then

PNϕ [P′
l−1(ψ(z),ψ(ϕ(w))d1

g )] = PNϕ (P′
l−1(ψ(z),ψ(ϕ(w)))PNϕ d1

g)]

= lSl−1
ψ(z)PNψ d1

g ∈ M.
(40)

Assume that PNϕ [P′
l (ψ(z),ψ(ϕ(w)))dk

g ] ∈ M for k � n and any l � 0. To finish the
proof by induction we need only to show that

PNϕ [P′(ψ(z),ψ(ϕ))dn+1
g ] ∈ M,

for any l � 0. Since

(n+2)Sn+1
ψ(z)g = PNϕ [P′

n+1(ψ(z),ψ(ϕ(w)))g]

= PNϕ [P′
n+1(ψ(z),ψ(ϕ(w)))g+

n

∑
k=0

P′
k(ψ(z),ψ(ϕ(w)))dn+1−k

g ]

−PNϕ dn+1−k−PNϕ [
n

∑
k=1

P′
k(ψ(z),ψ(ϕ(w)))dn+1−k

g ]

(41)

Thus PNϕ dn+1
g = PNϕ [P′

n+1(ψ(z),ψ(ϕ(w)))g+ ∑n
k=0 P′

k(ψ(z),ψ(ϕ(w)))dn+1−k
g ]− (n+

2)Sn+1
ψ(z)g−PNϕ [∑n

k=1 P′
k(ψ(z),ψ(ϕ(w)))dn+1−k

g ] .
By property (i) we have

PNϕ [P′
n+1(ψ(z),ψ(ϕ(w)))g+

n

∑
k=0

P′
k(ψ(z),ψ(ϕ(w)))dn+1−k

g ] ∈ M.

The induction hypothesis gives that the last term is in M and the second term
belongs to M , since g ∈ M and M is a reducing subspace for Sψ(z) . So PNϕ dn+1

g ∈ M .
Therefore we conclude

PNϕ [P′
l (ψ(z),ψ(ϕ(w)))dn+1

g ] = PNϕ [P′
l (ψ(z),ψ(ϕ(w)))PNϕ dn+1

g ]

= (l +1)Sl
ψ(z)(PNϕ dn+1

g ) ∈ M.
(42)

This completes the proof. �

In particular, Nϕ is a reducing subspace of Sψ(z) . By Theorem 4.3 we immediately
get the following theorem.

PROPOSITION 4.4. For a given g ∈ L0 , there are a unique family of functions
{dk

g} ⊂ Lψ �L0 such that

P′
l (ψ(z),ψ(ϕ(w)))g+

l−1

∑
k=0

P′
k(ψ(z),ψ(ϕ(w)))dl−k

g ∈ Nϕ

for each l � 1 .



296 H. ZOU AND T. YU

The next theorem we will show that every nontrivial minimal reducing subspace
Ω of Sψ(z) is orthogonal to M0 if Ω is not in the form of Theorem 3.6.

THEOREM 4.5. Suppose that Ω is a nontrivial minimal reducing subspace for
Sψ(z) . If Ω is not distinguished reducing subspace then Ω is a subspace of M⊥

0 .

Proof. By Lemma 4.1, there is a function g ∈ Ω∩ L0 such that g = f + h for
some function f = ∑m

k=1 λkek ∈ M0∩L0 and h ∈ M⊥
0 ∩L0 , where λk , k = 1, . . . ,m , are

constant. By proposition 3.3, P′
1(ψ(z),ψ(ϕ(w)))g+ d1

g ∈ Ω . Here d1
g is the function

constructed in proposition 4.3. Let

G = S∗ψ(z)[Sψ(z)g]−
1
2
g ∈ Ω.

Since P′
l (ψ(z),ψ(ϕ(w))) f ∈ Nϕ , we obtain

Sψ(z) f =
P′

1(ψ(z),ψ(ϕ(w)))
2

f .

Here

G = S∗ψ(z)[Sψ(z)( f +h)]− 1
2
( f +h)

=
(

S∗ψ(z)Sψ(z) f − 1
2

f

)
+S∗ψ(z)Sψ(z)h−

h
2

= S∗ψ(z)Sψ(z)h−
1
2
h

=
1
2
{S∗ψ(z)[PNϕ (P′

1(ψ(z),ψ(ϕ(w)))h+d1
h −d1

h)]−h}

=
1
2
{S∗ψ(z)[P

′
1(ψ(z),ψ(ϕ(w)))h+d1

h ]−S∗ψ(z)PNϕ d1
h)]−h}

=
1
2
{h−S∗ψ(z)PNϕ d1

h −h}

= −1
2
S∗ψ(z)PNϕ d1

h .

(43)

The sixth equality holds because that P′
1(ψ(z),ψ(ϕ(w)))h + d1

h ∈ Nϕ , the seventh
equality follows from that d1

h ∈ Lψ � L0 . We claim that G �= 0, if this is not true,
we would have 1

2S∗ψ(z)PNϕ d1
h = 0. This gives that PNϕ d1

h ∈ L0 , and

0 = 〈PNϕ d1
h ,d

1
h〉

= 〈PNϕ d1
h ,P

′
1(ψ(z),ψ(ϕ(w)))h+d1

h〉
= 〈d1

h ,P
′
1(ψ(z),ψ(ϕ(w)))h+d1

h〉
= 〈d1

h ,d
1
h〉

=‖ d1
h ‖2 .

(44)
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This gives that d1
h = 0. Thus we have that P′

1(ψ(z),ψ(ϕ(w)))h ∈ Nϕ . By theorem
3.2, h ∈ M0 . This contradicts that h ∈ M⊥

0 . By proposition 4.3, PNϕ d1
h ∈ M⊥

0 and so
G = − 1

2S∗ψ(z)PNϕ d1
h .

This implies that G ∈ Ω∩M⊥
0 . We conclude that Ω∩M⊥

0 = Ω , since Ω is mini-
mal. Hence Ω is a subspace of M⊥

0 . �
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