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ON AN INEQUALITY CONJECTURED BY BESENYEI AND PETZ

AYÇA İLERI ∗ AND SELÇUK DEMIR

(Communicated by I. Klep)

Abstract. In this paper we investigate the inequality Tr(T ⊗ I2)ρ12(logq ρ12 − logq ρ1 ⊗ I2 −
I1 ⊗ logq ρ2) � 0 , where ρ12 is a density matrix and 0 � T ∈ Mm(C) . This inequality was
conjectured by Besenyei and Petz in 2013, where it was proved to hold for the density matrices
in M2(C)⊗M2(C) . Here we prove this inequality for the density matrices in Mm(C)⊗Mn(C)
using some elementary matrix methods. We also obtain some new inequalities related to the
operators (matrices) in this inequality.

1. Introduction

Entropy is an important notion in both classical and quantum information theories.
Strong subadditivity is a basic ingredient in quantum information theory which is used
in topological entanglement theory, conformal field theory and in some other research
areas [8].

Entropy was first introduced by Claude Shannon [12] as a concept in mathematics.
The Shannon entropy of a discrete random variable X with possible values {x1, . . . ,xm}
and probability distribution p(x) = P(X = x) is defined as

H(X) = −
m

∑
i=1

p(xi) log p(xi)

If Y is another random variable with possible values {y1,y2, . . . ,yn} , then the joint
entropy of the pair (X ,Y ) is defined as

H(X ,Y ) = −
m

∑
i=1

n

∑
j=1

p(xi,y j) log p(xi,y j).

If Z is another random variable with possible values in {z1,z2, . . . ,zr} , H(X ,Y,Z) is
defined similarly. It is known that Shannon entropy satisfies the following [11]:

H(X ,Y,Z)+H(Y) � H(X ,Y )+H(Y,Z).
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This property is called the stong subadditivity inequality. It implies the following sub-
additivity:

H(X ,Y ) � H(X)+H(Y).

If we put pi jk = p(xi,y j,zk) , strong subadditivity is equivalent to

∑
i, j,k

pi jk(log pi jk + log p− j−− log pi j−− log p− jk) � 0.

where
pi j− = ∑

k

pi jk, p− j− = ∑
i,k

pi jk, p− jk = ∑
i

pi jk

are marjinal distributions.
The q -extention (or one-parameter extension) of the Shannon entropy is the Tsallis

entropy. Define the q -logarithm function logq : R+ −→ R as

logq x =
xq−1−1

q−1
(q �= 1) (1)

Then the Tsallis entropy [3, 6, 10] is defined as

Hq(X) = −
n

∑
i=1

p(xi) logq p(xi) =
1

1−q

n

∑
i=1

(p(xi)q − p(xi)).

It is known that Tsallis entropy is strongly subadditive for q � 1 [6, 10]. Hence it is also
subadditive. In [3] a new type of inequality which can be considered as ’partial (strong)
subadditivity’ is introduced and proved for both Shannon and Tsallis entropies. The
partial strong subadditivity of the Shannon entropy is defined as the following form:

For fixed 1 � j � n and 1 � k � r we have

m

∑
i=1

pi jk(log pi jk + log p− j−− log pi j−− log p− jk) � 0.

In the same paper the quantum analogue of the partial subadditivity is also dis-
cussed.

Here we are intrested in the quantum versions of the above entropies. In the quan-
tum world, instead of probability distributions one uses matrices(or states):

Let H be a finite dimensional Hilbert space and 0 � ρ ∈ B(H ) be a state (or
a density matrix, namely 0 � ρ ∈ Mn(C),Trρ = 1). Then the von Neumann entropy
[3, 4, 7] is defined by

S(ρ) = −Trρ logρ .

One should note that the composite systems are described by the tensor product of the
corresponding Hilbert spaces and marginal distributions by the partial traces of density
matrices, which is called reduced densities [11]. Von Neumann entropy is the quan-
tum analogue of Shannon entropy. It is known that von Neumann entropy is strongly
subadditive [9]. Hence it is subadditive.



ON AN INEQUALITY CONJECTURED BY BESENYEI AND PETZ 301

Almost at the same time with the paper [3] was published, Kim proved an oper-
ator extension of the strong subadditivity of von Neumann entropy which is a kind of
partial strong subadditivity [8]. In fact it is the operator version of the partial (strong)
subadditivity of Shannon entropy. The importance of partial (strong) subadditivity is
that it implies (strong) subadditivity.

A one-parameter extension of the von Neumann entropy is the (quantum) Tsallis
entropy [3, 7, 10]. From now on when we say Tsallis entropy we mean the quantum
Tsallis entropy. It is defined by the formula

Sq(ρ) = −Trρ logq(ρ) (q > 1)

The von Neumann entropy is the limit of the Tsallis entropy as q → 1 [7]. It is
known that the Tsallis entropy is subadditive [1], but not strongly subadditive [10]. The
general picture is as follows:

PSSA

��

�� SSA

��
PSA �� SA

with the abbreviations:
SSA: strong subaddivity
SA: subadditivty
PSSA: partial strong subadditivity,
PSA: partial subaddivity

The above narrative can be summarized in the following table:

SA PSA SSA PSSA
Shannon Yes Yes Yes Yes
Tsallis Yes Yes Yes Yes
von Neumann Yes Yes Yes Partly
quantum Tsallis Yes ? No No

In [3] the following inequality related to the partial subadditivity of the quantum
Tsallis entropy is conjectured: If ρ12 is a density operator in B(H )⊗B(K ) with
reduced densities ρ1 and ρ2 , one has

Tr(T ⊗ I2)ρ12(logq ρ12− logq(ρ1⊗ I2)− I1⊗ logq ρ2) � 0

whenever T � 0 and q > 1.
This conjecture was proved in the same article for the following cases:

1. ρ12 = ρ1⊗ρ2 (The case of product states), and

2. The case m = n = 2 when q = 2. (dim(H ) = m and dim(K ) = n )
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In this article first we present a proof of this inequality for arbitrary m and n when q =
2. This completes the table above when q = 2. Then, motivated by this proof and some
numerical examples we conjecture an operator inequality which can be considered to
be a kind of partial subadditivity of Tsallis entropy. We also obtain some new results
related to the operators in this inequality.

2. Main results

Let ρ12 be a density matrix in the tensor product space Mm(C)⊗Mn(C) . Then
the reduced densities ρ1 ∈ Mm(C) and ρ2 ∈ Mn(C) are defined by the equalities

Tr(Y ⊗ I2)ρ12 = Tr(Yρ1) Tr(I1⊗X)ρ12 = Tr(Xρ2)

for X ∈ Mm(C) , Y ∈ Mn(C) . For m = 2, n = 2

ρ12 =
[

A B
B∗ C

]
(A,B,C ∈ M2(C))

and

ρ1 = Tr2 ρ12 =
[

TrA TrB
TrB∗ TrC

]
, ρ2 = Tr1 ρ12 = A+C

where ρ1,ρ2 ∈ M2(C) (see in [3]).
The subadditivity of the Tsallis entropy is

Sq(ρ12) � Sq(ρ1)+Sq(ρ2)

or, equivalently

Trρ12(logq ρ12− logq ρ1⊗ I2− I1⊗ logq ρ2) � 0.

The following inequality was conjectured in [3]:

Tr(T ⊗ I2)ρ12(logq ρ12− logq ρ1⊗ I2− I1⊗ logq ρ2) � 0 (2)

for all 0 � T ∈ Mm(C) . In the same paper there is a proof of this inequality for any
product state and in the case q = 2, ρ12 ∈M2(C)⊗M2(C) . Here we prove the inequal-
ity (2) for the density matrices in Mm(C)⊗Mn(C)and q = 2:

THEOREM 1. Let ρ12 ∈Mm(C)⊗Mn(C) be a density matrix, ρ1 ∈ Mm(C) ,ρ2 ∈
Mn(C) be its reduced densities and 0 � T ∈ Mm(C) . Then

Tr(T ⊗ I2)ρ12(log2 ρ12− log2 ρ1⊗ I− I⊗ log2 ρ2) � 0.

or equivalently

TrTρ1 +Tr(T ⊗ I2)ρ2
12−TrTρ2

1 −Tr(T ⊗ρ2)ρ12 � 0. (3)
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Proof. We will prove the inequality (3). One can write the density matrix ρ12 as
a block matrix:

ρ12 =

⎡
⎢⎢⎢⎢⎢⎣

A11 A12 A13 . . . A1m

A∗
12 A22 A23 . . . A2m

A∗
13 A∗

23 A33 . . . A3m
...

...
...

. . .
...

A∗
1m A∗

2m A∗
3m . . . Amm

⎤
⎥⎥⎥⎥⎥⎦

Then

ρ1 =

⎡
⎢⎢⎢⎢⎢⎣

TrA11 TrA12 TrA13 . . . TrA1m

TrA∗
12 TrA22 TrA23 . . . TrA2m

TrA∗
13 TrA∗

23 TrA33 . . . TrA3m
...

...
...

. . .
...

TrA∗
1m TrA∗

2m TrA∗
3m . . . TrAmm

⎤
⎥⎥⎥⎥⎥⎦

, ρ2 = A11 +A22 + . . .+Amm.

Since the inequality (3) is unitarily invariant, we may suppose that T is a diagonal
matrix with nonnegative diagonal entries t11,t22, . . . ,tmm . After some calculations we
obtain the following formulas:

TrTρ1 =
m

∑
i=1

tii TrAii (4)

Tr(T ⊗ I)ρ12
2 =

m

∑
i=1

tii Tr(A2
ii)+ ∑

j>i
(tii + t j j)TrA∗

i jAi j (5)

TrTρ2
1 =

m

∑
i=1

tii(TrAii)2 + ∑
j>i

(tii + t j j)|TrAi j|2 (6)

Tr(T ⊗ρ2)ρ12 =
m

∑
i=1

tii Tr(A2
ii)+ ∑

j>i

(tii + t j j)TrAiiA j j (7)

where i, j = 1, . . . ,m . By using the formulas (4), (5), (6), (7); the left hand side of the
inequality (3) becomes

∑
j>i

(tii + t j j)
[
TrA∗

i jAi j −|TrAi j|2−TrAiiA j j

]
+

m

∑
i=1

tii
[
TrAii − (TrAii)2

]

Here we will use the formula TrA11 +TrA22 + . . .+TrAmm = 1 and TrAii− (TrAii)2 =
∑m

j=1
i�= j

TrAii TrAj j ∀i . Then we substitute this formula into the sum

m

∑
i=1

tii
[
TrAii − (TrAii)2

]
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and we obtain
m

∑
i=1

tii
[ m

∑
j=1
i�= j

TrAii TrAj j

]
= ∑

j>i

(tii + t j j)TrAii TrAj j

Then,

TrTρ1 +Tr(T ⊗ I2)ρ2
12−TrTρ2

1 −Tr(T ⊗ρ2)ρ12

is equal to

∑
j>i

(tii + t j j)
[
TrA∗

i jAi j −|TrAi j|2−TrAiiA j j +TrAii TrAj j

]
.

Now we will show that

(tii + t j j)
[
TrA∗

i jAi j −|TrAi j|2 −TrAiiA j j +TrAii TrAj j

]
� 0, j > i.

Since t11, t22, . . . ,tmm � 0 then tii + t j j � 0 for any i, j . Also since ρ12 � 0, the

principal submatrix

[
Aii Ai j

A∗
i j A j j

]
� 0. The proof of the trace inequality

TrA∗
i jAi j −|TrAi j|2 −TrAiiA j j +TrAii TrAj j � 0, j > i

follows from the theorem in [2]. Hence,

∑
j>i

(tii + t j j)
[
TrA∗

i jAi j −|TrAi j|2−TrAiiA j j +TrAii TrAj j

]
� 0

This completes the proof. �

COROLLARY 1. In the above theorem putting T = |ψ〉〈ψ | , where |ψ〉 ∈ Cm is
any vector, we obtain the following inequality

〈ψ |Tr2 ρ12(log2 ρ12− log2 ρ1⊗ I− I⊗ log2 ρ2)|ψ〉 � 0

which means that the operator

Tr2 ρ12(log2 ρ12− log2 ρ1⊗ I− I⊗ log2 ρ2)

is positive semidefinite on Cm .

This corollary shows that the partial trace of the operator ρ12(log2 ρ12− log2 ρ1⊗
I − I ⊗ log2 ρ2) is positive semidefinite on Cm . In fact this operator has some other
properties not only for q = 2 but also for q ∈ (1,∞) . Hence in the rest of the paper we
concentrate on the operator

ρ12(logq ρ12− logq ρ1⊗ I− I⊗ logq ρ2), (q > 1) (8)

which is equaivalent to

1
q−1

[ρq
12−ρ12(I1⊗ρq−1

2 )−ρ12(ρq−1
1 ⊗ I2)+ ρ12] (9)

by (1).
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LEMMA 1. Partial traces

Tr2 ρ12(logq ρ12− logq ρ1⊗ I− I⊗ logq ρ2) ∈ Mm(C) (10)

Tr1 ρ12(logq ρ12− logq ρ1⊗ I− I⊗ logq ρ2) ∈ Mn(C) (11)

of the operator (8) are Hermitian.

We need the following proposition to prove the lemma:

PROPOSITION 1. Let ρ12 ∈ Mm(C)⊗Mn(C) be a density matrix, ρ1 ∈ Mm(C) ,
ρ2 ∈ Mn(C) be its reduced densities and q ∈ (1,∞) . Then the operators Tr2 ρ12(I1 ⊗
ρq−1

2 ) , Tr1 ρ12(ρq−1
1 ⊗ I2) are positive semidefinite.

Proof. We will show that

〈x,Tr2 ρ12(I1⊗ρq−1
2 )x〉 � 0, ∀x ∈ C

m

Let { f j}n
j=1 be an orthonormal basis of Cn . By the definiton of the partial trace [5] we

have

〈x,Tr2 ρ12(I1⊗ρq−1
2 )x〉 =

n

∑
j=1

〈(x⊗ f j),ρ12(I1⊗ρq−1
2 )(x⊗ f j)〉

This definition is independent of the choice of the orthonormal basis. Thus we may
assume that the basis { f j}n

j=1 consists of the eigenvectors of the density operator ρ2 .
Writing ρ2 = ∑ j λ j| f j〉〈 f j| we have

〈x,Tr2 ρ12(I1⊗ρq−1
2 )x〉 =

n

∑
j=1

〈(x⊗ f j),ρ12(I1⊗ρq−1
2 )(x⊗ f j)〉

=
n

∑
j=1

〈(x⊗ f j),ρ12(x⊗ρq−1
2 f j)〉

=
n

∑
j=1

λ q−1
j 〈(x⊗ f j),ρ12(x⊗ f j)〉

where 0 � λ j ∈ sp(ρ2) ∀ j . And 〈(x⊗ f j),ρ12(x⊗ f j)〉 � 0 for all j since ρ12 is
positive. Hence

〈x,Tr2 ρ12(I1⊗ρq−1
2 )x〉 � 0, ∀x ∈ C

m

The positivity of the operator Tr1 ρ12(ρ
q−1
1 ⊗I2) can be proved in an analoguos way. �

Proof (of Lemma 1). In order to show the assertion, we will prove that the partial
traces of the operator (9) are Hermitian. Hence we will show that the operators

Tr1(ρ
q
12−ρ12(I1⊗ρq−1

2 )−ρ12(ρ
q−1
1 ⊗ I2)+ ρ12) (12)
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Tr2(ρq
12−ρ12(I1⊗ρq−1

2 )−ρ12(ρq−1
1 ⊗ I2)+ ρ12) (13)

are Hermitian.
We will only prove that the operator (13) is Hermitian, the Hermitianness of (12) can
be proved in an anologous way. By the linearity of partial trace, the operator (13) is
equal to

Tr2 ρq
12−Tr2 ρ12(I1⊗ρq−1

2 )−ρq
1 + ρ1 (14)

In (14) the operators Tr2 ρq
12 , ρq

1 and ρ1 are all Hermitian. So, we only have to show

that Tr2 ρ12(I1 ⊗ ρq−1
2 ) is Hermitian. But in the above proposition we proved that

Tr2 ρ12(I1⊗ρq−1
2 ) � 0. Hence the operator (13) is Hermitian. �

The most important problem that remains is to understand the case of q > 1 with
q �= 2. It seems that some new ideas are needed for a general solution. Having this in
mind we performed some numerical computations in Wolfram Mathematica 12. These
examples suggest that the operators Tr2 ρ12(logq ρ12 − logq ρ1 ⊗ I − I ⊗ logq ρ2) and
Tr1 ρ12(logq ρ12− logq ρ1⊗ I− I⊗ logq ρ2) are not only Hermitian but also positive. If
it is true, this would imply the partial subadditivity of the Tsallis entropy. Hence our
future work will be to investigate this claim.
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