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INEQUALITIES ON 2× 2 BLOCK ACCRETIVE MATRICES
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Abstract. A 2×2 block matrix

(
A X
Y ∗ B

)
is accretive partial transpose (APT) if both

(
A X
Y ∗ B

)

and

(
A Y ∗
X B

)
are accretive. This article presents some inequalities related to this class of ma-

trices. One of our results refines a recent inequality in [Oper. Matrices, 15 (2021) 581–587].

1. Introduction

Let Mn be the set of all n×n complex matrices. If A ∈ Mn is positive semidef-
inite (definite), then we write A � 0 (A > 0) . For two Hermitian matrices A,B of the
same size, A � B (A > B) means that A−B � 0 (A−B > 0) . We say that A ∈ Mn is

accretive if its real part ReA :=
A+A∗

2
is positive definite, where A∗ means the conju-

gate transpose of A . It is known that for every A � 0, there exists a unique B � 0 such
that B2 = A [5, Theorem 7.2.6] and we denote A1/2 = B . If all eigenvalues of A are
real, then they are arranged nonincreasingly λ1(A) � . . . � λn(A); the singular values
of A ∈ Mn , denoted by s j(X) , are similarly arranged. Note that the singular values of

A are the eigenvalues of |A| , where |A| = (A∗A)
1
2 , i.e., s j(A) = λ j(|A|) , j = 1, . . . ,n .

The geometric mean of two positive definite matrices A,C ∈ Mn is defined by

A�C := A
1
2

(
A− 1

2CA− 1
2

) 1
2
A

1
2 . (1)

It is known that the notion of geometric mean could be extended to cover all positive
semidefinite matrices; see [2, p. 107]. Recently, Drury [3] defined the geometric mean
of two accretive matrices via the following formula

A�C =
(

2
π

∫ ∞

0
(tA+ t−1C)−1 dt

t

)−1

,

and proved the relationship (1) is also valid for two accretive matrices A,C ∈ Mn. The
readers can consult [3] for more properties.
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For the 2×2 block matrix

M =
(

A B
B∗ C

)
∈ M2n

with each block in Mn , its partial transpose is defined by

Mτ :=
(

A B∗
B C

)
.

A matrix M is called partial positive transpose (PPT) if M and Mτ are positive semidef-
inite. We extend the notion to accretive matrices. If

M =
(

A X
Y ∗ C

)
∈ M2n

and

Mτ :=
(

A Y ∗
X C

)

are both accretive, then we say that M is APT (i.e., accretive partial transpose). Clearly,
the class of APT matrices includes the class of PPT matrices. Lee [6] obtained a matrix
inequality involving the off-diagonal block of a PPT matrix and the geometric mean of
its diagonal blocks.

THEOREM 1.1. [6, Theorem 2.1] Let

(
A B
B∗ C

)
∈ M2n be PPT. Then, for some

unitary matrix V ∈ Mn,

|B| � A�C+V ∗(A�C)V
2

.

Recently, Fu et al.[4] presented a stronger result.

THEOREM 1.2. [4, Theorem 2.3] Let

(
A B
B∗ C

)
∈ M2n be PPT. Then

|B| � (A�C)�(V ∗(A�C)V ), |B∗| � (A�C)�(V (A�C)V ∗),

where V ∈ Mn is any unitary matrix such that B = V |B|.

When

(
A B
B∗ C

)
∈ M2n is positive semidefinite, Fu et al.[4, Theorem 2.2] also

obtained that

|B| � (V ∗AV )�C, |B| � A�(VCV ∗). (2)

Liu et al. [8] extended Theorem 1.1 to the case of APT matrices.
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THEOREM 1.3. [8, Theorem 3.4] Let

(
A X
Y ∗ C

)
∈ M2n be APT. Then, for some

unitary matrix V ∈ Mn,

|X +Y | � Re (A�C+V ∗(A�C)V ) .

The main objective of this paper is to offer a refined result of Theorem 1.3.
In Section 2, we first present an inequality on 2× 2 block accretive matrices. It

will then be applied to obtain a refinement of Theorem1.3. As a consequence, a singular
values inequality is given. At last, we will give an alternative proof of the inequality
A�A∗ � ReA when A ∈ Mn is an accretive matrix.

2. Main results

We first summarize some properties of the geometric mean of positive semidefinite
matrices; see [2, Chapter 4].

PROPOSITION 2.1. Let A,C � 0. Then

(i) A�C = A1/2UC1/2 for some unitary matrix U .

(ii) (A�C)−1 = A−1�C−1 when A,C > 0 .

(iii) X∗AX�X∗CX � X∗(A�C)X with equality holds if X is nonsingular.

(iv) A�C = max

{
X : X = X∗,

(
A X
X C

)
� 0

}
.

For a general 2×2 block accretive matrix, we give the following two inequalities
on its off-diagonal block and the geometric mean of its diagonal blocks.

THEOREM 2.2. Let

(
A X
Y ∗ C

)
∈ M2n be accretive. Then

∣∣∣∣X +Y
2

∣∣∣∣ � (U∗(ReA)U)�ReC and

∣∣∣∣X
∗ +Y ∗

2

∣∣∣∣ � ReA�(U(ReC)U∗),

where U ∈ Mn is any unitary matrix such that
X +Y

2
= U

∣∣∣∣X +Y
2

∣∣∣∣ .

Proof. Since

(
A X
Y ∗ C

)
is accretive, Re

(
A X
Y ∗ C

)
=

⎛
⎜⎝ ReA

X +Y
2

X∗+Y ∗

2
ReC

⎞
⎟⎠ is posi-

tive definite. Hence by (2), we have
∣∣∣∣X +Y

2

∣∣∣∣ � (U∗(ReA)U)�ReC,
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and ∣∣∣∣X
∗+Y ∗

2

∣∣∣∣ � ReA�(U(ReC)U∗). �

It is clear that U in Theorem 2.2 is the unitary matrix in the polar decomposition

of
X +Y

2
.

Theorem 2.2 leads us to an improvement of Theorem 1.3.

THEOREM 2.3. Let

(
A X
Y ∗ C

)
∈ M2n be APT. Then

∣∣∣∣X +Y
2

∣∣∣∣ � (ReA�ReC)�(U∗(ReA�ReC)U),

and ∣∣∣∣X
∗ +Y∗

2

∣∣∣∣ � (ReA�ReC)�(U(ReA�ReC)U∗),

where U ∈ Mn is any unitary matrix such that
X +Y

2
= U

∣∣∣∣X +Y
2

∣∣∣∣ .

Proof. Since

(
A X
Y ∗ C

)
and

(
A Y ∗
X C

)
are accretive,

Re

(
A X
Y ∗ C

)
=

⎛
⎜⎝ ReA

X +Y
2

X∗ +Y∗

2
ReC

⎞
⎟⎠ and Re

(
A Y ∗
X C

)
=

⎛
⎜⎝ ReA

X∗ +Y∗

2
X +Y

2
ReC

⎞
⎟⎠

are positive definite. This means that Re

(
A X
Y ∗ C

)
is PPT.

By Theorem 1.2, we have∣∣∣∣X +Y
2

∣∣∣∣ � (ReA�ReC)�(U∗(ReA�ReC)U),

and ∣∣∣∣X
∗ +Y∗

2

∣∣∣∣ � (ReA�ReC)�(U(ReA�ReC)U∗). �

REMARK 1. It is apparent that if

(
A X
Y ∗ C

)
is PPT (i.e., X = Y ), Theorem 2.3

becomes Theorem 1.2.

COROLLARY 2.4. Let

(
A X
Y ∗ C

)
∈ M2n be APT. Then

k

∏
j=1

s j

(
X +Y

2

)
�

k

∏
j=1

s j(A�C), k = 1, . . . ,n.
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Proof. By Theorem 2.3 and Proposition 2.1 (i), it is easy to obtain that

k

∏
j=1

s j

(
X +Y

2

)
�

k

∏
j=1

s j((ReA�ReC)�(U∗(ReA�ReC)U))

�
k

∏
j=1

s j((ReA�ReC)
1
2W (U∗(ReA�ReC)U)

1
2 ),

where W is any unitary matrix such that

(ReA�ReC)�(U∗(ReA�ReC)U) = (ReA�ReC)
1
2W (U∗(ReA�ReC)U)

1
2 .

Applying Horn inequality [9, p. 80] here, we have

k

∏
j=1

s j

(
X +Y

2

)
�

k

∏
j=1

s j((ReA�ReC)
1
2 )s j((ReA�ReC)

1
2 )

=
k

∏
j=1

s j((ReA�ReC)).

The result follows from inequality ReA�ReC � Re (A�C) [7, Theorem 1.1] and the
Fan-Hoffman inequality [1, p. 73]. �

Note that Corollary 2.4 is first given by Liu et al. [8, Theorem 2.1].
Next, we give an alternative proof of the inequality due to Liu et al. [8].

THEOREM 2.5. [8, Proposition 4.1] If A∈ Mn is accretive, then A�A∗ � ReA.

Proof. It is clear that A�A∗ is Hermitian and accretive. Thus, A�A∗ is positive
definite.

Using Proposition 2.1 (ii) and (iii),

A�A∗ −A∗(A�A∗)−1A = A�A∗ − (A∗A−1A)�(A∗(A∗)−1A) = 0.

So M =
(

A�A∗ A
A∗ A�A∗

)
is positive semidefinite. Similarly, Mτ =

(
A�A∗ A∗

A A�A∗

)
is

also positive semidefinite. This means that M is PPT. Therefore,

M +Mτ

2
=

(
A�A∗ ReA
ReA A�A∗

)
� 0.

By Proposition 2.1 (iv), ReA � A�A∗ . �

REMARK 2. We give a concise proof of Theorem 2.5 without using inner product,
which is different from that in [8]. It is more concise.
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