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Abstract. In this paper, we extend a remarkable norm inequality of Ando and Hiai in 1994 about
comparing the power of geometric mean and the geometric mean of powers of two positive
semidefinite matrices to the case of sectorial matrices. To this end, we develop several new
matrix inequalities that compare the real part of sectorial matrices.

1. Introduction

Comparing norms of matrices is a fundamental problem in matrix analysis. Recent
studies about the applications of matrix norms in various scenarios can be found in, for
example, [1, 20, 21, 22]. We denote by Mn the set of all complex matrices of order n .
If A ∈ Mn is (Hermitian) positive semidefinite, then Ar , where r > 0, is well defined
via the usual functional calculus. When 0 � α � 1, the α -power mean of positive
definite A,B ∈ Mn is defined and denoted by

A�αB = A1/2(A−1/2BA1/2)αA1/2.

Furthermore, A�αB for positive semidefinite A,B ∈ Mn is defined by

A�αB = lim
ε→0+

(A+ εI)�α(B+ εI),

where the limit process is in the strong operator topology. If α = 1/2, we simply
write A�B for A�1/2B . The norm we consider in this paper is unitarily invariant, that
is, ‖UAV‖ = ‖A‖ for any A,U,V ∈ Mn with U,V being unitary. In particular, the fre-
quently used spectral/operator norm, Hilbert-Schmidx/Frobenius norm, trace/nuclear
norm belong to the class of unitarily invariant norms.

In 1994, Ando and Hiai [3] proved the following remarkable norm inequality.

THEOREM 1.1. Let A,B ∈ Mn be positive semidefinite and let 0 � α � 1 . Then

‖(A�αB)r‖ � ‖Ar�αBr‖, 0 � r � 1.
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Ando and Hiai stated their result in the form of weakly log majorization between
eigenvalues, but the above statement is of no loss of generality to their result [3, The-
orem 2.3]. This can be seen by using a standard argument in matrix analysis via the
anti-symmetric product; see [4, p. 18] or [9] for details. The main result of the paper is
an extension of Theorem 1.1 to a larger class of matrices, namely, sectorial matrices to
be introduced below.

Recall that the field of values (or numerical range) of A ∈ Mn is defined as the set
on the complex plane

W (A) = {u∗Au| u∗u = 1, u ∈ C
n}.

Also, we define the set on the complex plane

Sθ = {z ∈ C : ℜz > 0, |ℑz| � (ℜz) tanθ}
for a fixed θ ∈ [0,π/2) . It is easy to observe that the shape of Sθ is a sector on
the complex plane. The larger class of matrices we focus in the paper is matrices A
with W (A) ⊂ Sθ . This class of matrices has attracted quite a number of researchers
recently [2, 5, 8, 10, 13, 14, 16, 17, 18, 19, 6, 7, 15]. Part of the reason is that sectorial
matrices are considered as a very natural generalization of positive definite matrices.
One obvious fact is that W (A) ⊂ S0 if and only if A is positive definite. Therefore,
by adjusting the angle θ , one considerably relax the restrictive positive definiteness
requirement. For any A ∈ Mn , its real (or Hermitian) part is denoted by ℜA := (A+
A∗)/2, where A∗ means the conjugate transpoes of A . It is easy to oberve that if
W (A) ⊂ Sθ , then ℜA is positive definite. For two Hermitian matrices A,B ∈ Mn , if
A−B is positive semidefinite then we write A � B (or B � A).

Now we introduce the geometric mean for two sectorial matrices and to be con-
sistent we keep using the notation A�B and A�αB . In his study of principal powers of
matrices with positive definite real part, Drury [6] first brought in the following defini-
tion: Let A,B ∈ Mn with ℜA,ℜB being positive definite. Then

A�B =
(

2
π

∫ ∞

0
(xA+ x−1B−1)−1 dx

x

)−1

.

A weighted version was then considered by Raissouli, Moslehian and Furuichi
[12]: For A,B ∈ Mn with ℜA,ℜB being positive definite,

A�αB =
sinαπ

π

∫ ∞

0
xα−1(A−1 + xB−1)−1dx. (1)

It is worth mentioning that when α = 1/2, Raissouli, Moslehian and Furuichi’s
definition (1) coincides with the aforementionedDrury’s definition; see [12, Proposition
2.1].

One of the remarkable properties about the geometric mean is the following in-
equality [12, Theorem 2.4]: Let A,B ∈ Mn with ℜA,ℜB being positive definite. Then
it holds

(ℜA)�α (ℜB) � ℜ(A�αB), (2)

while when α = 1/2, this was previously obtained in [11].
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2. Auxiliary results

As Theorem 1.1 involves fractional power of matrices, we need to record a formula
to facilitate our derivations in the sequel. It follows from (1) that if A ∈ Mn with ℜA
being positive definite, then for any 0 � r � 1, it holds

Ar = I�rA =
sinαπ

π

∫ ∞

0
xα−1(I + xA−1)−1dx. (3)

Clearly, the formula was known for positive definite matrices.
We present several lemmas for later development.

LEMMA 2.1. [8, Lemma 2.4] Let A ∈ Mn . If ℜA is positive definite, then

ℜA−1 � (ℜA)−1.

We also have a reverse inequality, as stated below.

LEMMA 2.2. [10, Lemma 3] Let A ∈ Mn . If W (A) ⊂ Sθ , then

(secθ )2ℜA−1 � (ℜA)−1.

LEMMA 2.3. [6, Corollary 2.4] Let A ∈ Mn . If W (A) ⊂ Sθ , then

W (Ar) ⊂ Srθ

for any 0 � r � 1 .

LEMMA 2.4. [15, Lemma 3.1] Let A ∈ Mn . If W (A) ⊂ Sθ , then

cosθ‖A‖ � ‖ℜA‖.
A reverse inequality corresponding to Lemma 2.4 is well known.

LEMMA 2.5. [4, p. 74] Let A ∈ Mn . Then

‖A‖ � ‖ℜA‖.

PROPOSITION 2.6. Let A ∈ Mn . If W (A) ⊂ Sθ , then for any 0 � r � 1 it holds

ℜAr � (secθ )2(ℜA)r.

Proof. First of all, by Lemma 2.1,

ℜ(I + xA−1)−1 � (I + xℜA−1)−1. (4)

On the other hand, by Lemma 2.2,

ℜI + xℜA−1 � I +(cosθ )2(ℜA)−1

� (cosθ )2(I + x(ℜA)−1),
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and hence

ℜ(I + xA−1)−1 � (secθ )2(I + x(ℜA)−1)−1. (5)

(4) and (5) together imply

ℜ(A−1 + x2A)−1 � (secθ )2(I + x(ℜA)−1)−1.

Now by (3),

ℜAr =
sinrπ

π

∫ ∞

0
ℜ(I + xA−1)−1x−r dx

� sinrπ
π

∫ ∞

0
(secθ )2(I + x(ℜA)−1)−1x−r dx

= (secθ )2(ℜA)r.

The proof is complete. �

The next result is a complement of Proposition 2.6.

PROPOSITION 2.7. Let A ∈ Mn . If W (A) ⊂ Sθ , then for any 0 � r � 1 , it holds

ℜAr � (ℜA)r.

Proof. By (2),

ℜ(I�rA) � I�r(ℜA),

which is equivalent to the claimed inequality. �

The next result gives a reverse of (2).

PROPOSITION 2.8. Let A,B ∈ Mn . If W (A),W (B) ⊂ Sθ , then for any 0 � α it
holds

ℜ(A�αB) � (secθ )2((ℜA)�α (ℜB)).

Proof. First of all, by Lemma 2.1,

ℜ(A−1 + xB−1)−1 � (ℜA−1 + xℜB−1)−1.

By Lemma 2.2,

ℜA−1 + xℜB−1 � (cosθ )2((ℜA)−1 + x(ℜB)−1).

Thus we have

ℜ(A−1 + xB−1)−1 � (secθ )2((ℜA)−1 + x(ℜB)−1)−1.
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Hence,

ℜ(A�αB) =
sinαπ

π

∫ ∞

0
ℜ(A−1 + xB−1)−1xα−1dx

� sinαπ
π

∫ ∞

0
(secθ )2((ℜA)−1 + x(ℜB)−1)−1xα−1dx

= (secθ )2((ℜA)�α (ℜB)).

The proof is complete. �
Proposition 2.8 could be regarded as a generalization of Proposition 2.6. The

reason we present Proposition 2.6 instead of viewing it as a corollary of Proposition
2.8 is that it reflects the true exploring path order of the authors and it would be of
independent interest.

3. Main Theorem

We are in a position to state and prove the main result.

THEOREM 3.1. Let A,B ∈ Mn . If W (A),W (B) ⊂ Sθ , then for any 0 � α � 1 , it
holds

‖(A�αB)r‖ � (secθ )4+2r sec(rθ )‖Ar�αBr‖, 0 � r � 1.

Proof. First of all, note that there is closure property by taking inverse and sum-
mation of sectorial matrices [8, 14], one observes from (1) that

W (A�αB) ⊂ Sθ .

With this and Lemma 2.3, we have

W ((A�αB)r) ⊂ Srθ .

Now by Lemma 2.4, we get

‖(A�αB)r‖ � sec(rθ )‖ℜ(A�αB)r‖. (6)

We estimate

‖ℜ(A�αB)r‖ � (secθ )2‖(ℜ(A�αB))r‖ by Proposition 2.6

� (secθ )2‖
(
(secθ )2((ℜA)�α(ℜB))

)r‖ by Proposition 2.8

= (secθ )2+2r‖
(
(ℜA)�α(ℜB)

)r‖
� (secθ )2+2r‖(ℜA)r�α(ℜB)r‖ by Theorem 1.1

� (secθ )2+2r‖
(
(secθ )2ℜAr

)
�α

(
(secθ )2ℜBr

)
‖ by Proposition 2.7

= (secθ )4+2r‖(ℜAr)�α(ℜBr)‖
� (secθ )4+2r‖ℜ(Ar�αBr)‖ by (2)

� (secθ )4+2r‖Ar�αBr‖.
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That is,

‖ℜ(A�αB)r‖ � (secθ )4+2r‖Ar�αBr‖. (7)

The desired result follows from (6) and (7). �

Just like that in [10], we remark that the question of the optimality of the coeffi-
cient, i.e., (secθ )4+2r sec(rθ ) , in the theorem deserves further investigtion.
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