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PROPER NONNEGATIVE SPLITTINGS OVER

PROPER CONES OF RECTANGULAR MATRICES
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Abstract. In this paper, we further investigate the proper nonnegative splittings of rectangular
matrices. The concept of proper nonnegative splittings over proper cones of rectangular matrices
is proposed. Convergence results for the proper double nonnegative splitting over proper cones of
a rectangular matrix are established, and comparison theorems for the spectral radii of matrices
arising from proper nonnegative splittings over proper cones of the same rectangular matrix or
different rectangular matrices are presented. The results obtained in this paper extend the results
of proper nonnegative splittings over field to ones over proper cones of rectangular matrices. For
ill-posed linear systems, the regularized iterative method based on splittings over proper cones
is introduced, and the application of research results of proper nonnegative splittings over proper
cones in the ill-posed linear system is given.

1. Introduction

The rectangular linear system of the form

Ax = b, (1)

where A ∈ Rm×n , x ∈ Rn and b ∈ Rm , appears in many areas of applications, for
example, finite difference discretization of partial differential equations with suitable
boundary conditions. There are two forms of splitting iteration methods for solving the
rectangular linear system (1):

(1). If A has the single splitting [5]

A = U −V (2)

with U, V ∈ Rm×n , then the approximate solution xk+1 of (1) is generated by

xk+1 = U†Vxk +U†b, (3)

where U† is the Moore-Penrose inverse of U [2, 33], the matrix U†V is called
the iteration matrix of (3). The splitting (2) is called a proper single splitting
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if R(A) = R(U) and N(A) = N(U) [5], where R(·) and N(·) denote the range
space and the null space of a given matrix, respectively. The uniqueness of proper
single splittings was provided in [21]. Let ρ(C) be the spectral radius of the real
square matrix C , then for the proper single splitting A = U −V , the iteration
scheme (3) converges to A†b , the least squares solution of minimum norm for
any initial vector x0 if and only if ρ(U†V ) < 1 [5, Corollary 1]. Notice that
if A = U −V is not a proper single splitting, the iteration scheme (3) may not
converge to A†b for any initial vector x0 even for ρ(U†V ) < 1, see [5, 19]. If
the iteration scheme (3) is convergent, then we say that the proper single splitting
A = U −V is a convergent splitting. The convergence of the iteration scheme
(3) for proper single splittings over field of A has been studied extensively in
[5, 10, 16, 17, 19, 20, 23]. The convergence of the iteration scheme (3) for proper
single splittings over proper cones of A has been studied in [5, 8].

(2). If A has the double splitting

A = P−R−S (4)

with P, R, S ∈ Rm×n , then the approximate solution xk+1 of (1) is generated by
[17]

xk+1 = P†Rxk +P†Sxk−1 +P†b, k = 1,2, · · · . (5)

It should be noted that the concept of double splittings was first introduced by
Woźnicki in [32] for a nonsingular matrix, and was extended to rectangular ma-
trices in [17, 19]. The iteration scheme (5) can be rewritten in the following
equivalent form(

xk+1

xk

)
=
(

P†R P†S
I 0

)(
xk

xk−1

)
+
(

P†b
0

)
, k = 1,2, · · · , (6)

here I is the identity matrix with a compatible size, and

W =
(

P†R P†S
I 0

)

is the iteration matrix of (6). The splitting (4) is called a proper double splitting
if R(A) = R(P) and N(A) = N(P) [17]. For the proper double splitting A =
P−R− S , the iterative method (5) or (6) converges to the unique least squares
solution of minimum norm of (1) if and only if ρ(W ) < 1. The convergence
of the iteration scheme (6) for proper double splittings over field of A has been
studied in [17, 19, 27].

Comparison theorems between the spectral radii of iteration matrices are useful
tools to analyze the convergent rate of iteration methods or to judge the effectiveness
of preconditioners [11, 17, 18, 20, 25]. Some comparison theorems for proper single
splittings of a semimonotone matrix are established recently in [4, 17, 19], and that for
proper single splittings of different semimonotone matrices are proposed in [4, 16, 20].
Comparison theorems for proper double splittings of a rectangular matrix can be found
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in [1, 4], and that for proper double splittings of different rectangular matrices can be
found in [4, 16, 17, 19].

The motivation of this paper is based on the following three facts: (i) most results
of proper nonnegative splittings over field of rectangular matrices are still valid even if
some conditions are not satisfied; (ii) the results of splittings of nonsingular matrices
can be extended to the splittings over proper cones of nonsingular matrices [14, 33].
Moreover, we know from [14, 15, 33] that the results that do not satisfy the conditions
of splittings over field may satisfy the conditions of the splittings over proper cones
for nonsingular matrices. So we mainly consider the proper nonnegative splittings over
proper cones of rectangular matrices in this paper. There are a few results for proper
single splittings over proper cones of A ∈ Rm×n in [5, 8], but few results for proper
double splittings over proper cones of A ∈ Rm×n .

The remainder of the paper is organized as follows. In Section 2, we give some
relevant definitions and notations, which are used in the sequence of this paper. In Sec-
tion 3, we present comparison theorems of proper single nonnegative splittings over
proper cones of rectangular matrices. In Section 4, some convergence and compari-
son results for proper double nonnegative splittings over proper cones of rectangular
matrices are presented. In Section 5, the application of research results of proper non-
negative splittings over proper cones in the ill-posed linear system is given. We give
some conclusions in Section 6.

2. Preliminaries

In this section, we will provide some definitions and notations which are useful in
the later analysis.

Firstly, let us recall that a nonempty subset K of Rn is a convex cone if K+K ⊆K
and αK ⊆ K for all 0 � α . The convex cone K is said to be proper if it is closed,
pointed (K ∩−K = {0} ) and has nonempty interior (usually denotes by intK ) [6].
It should be noted that both the nonnegative cone Rn

+ and the ice cream cone {x ∈
Rn|(x2

2 + x2
3 + · · ·+ x2

n)
1
2 � x1} are particular proper cones.

Secondly, we will review some concepts for the nonnegativity of squares matrices.
An n×n real matrix A is called nonnegative (respectively, positive) if A � 0 (respec-
tively, A > 0). For n× n real matrices A and B we denote A−B � 0 (respectively,
A−B > 0) by A � B (respectively, A > B). These can be immediately applied to vec-
tors by identifying them with n× 1 matrices. The matrix A ∈ Rn×n is said to be a
monotone matrix, if A−1 exists and A−1 � 0 [1]. These concepts have been extended
to proper cones in [6, 8, 9, 14, 15, 33].

Let K be a proper cone in Rn , a vector x∈ Rn is called nonnegative (respectively,
positive) over the proper cone K if x belongs to K (respectively, x belongs to intK
) and is denoted as x �K 0 (respectively, x >K 0). If x, y ∈ Rn satisfy x− y �K 0
(respectively, x−y >K 0), which is denoted as x �K y (respectively, x >K y). A matrix
A∈ Rn×n is called nonnegative (respectively, positive) over the proper cone K if AK ⊆
K (respectively, A(K−{0})⊆ intK ) and is denoted as A �K 0 (respectively, A >K 0).
For A, B ∈ Rn×n , A �K B (respectively, A >K B) means A−B �K 0 (respectively,
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A−B >K 0). Let π(K) denote the set of matrices A ∈ Rn×n for which AK ⊆ K [6],
A ∈ Rn×n is nonnegative over the proper cone K is equivalent to A ∈ π(K) , and A ∈
Rn×n is a monotone matrix over the proper cone K if A−1 �K 0, i.e., A−1 ∈ π(K)
[14]. The properties of nonnegative matrices over a proper cone are similar to that of
nonnegative matrices, see for example [6, 14, 22]. Next, let K1 be a proper cone in
Rn , and we give the definition of the nonnegative splitting over the proper cone K1 of
A ∈ Rn×n .

DEFINITION 1. Let K1 be a proper cone in Rn , A be a nonsingular matrix. Then,

(i). the single splitting A = U −V is a single nonnegative splitting over the proper
cone K1 if U−1V �K1 0 [15];

(ii). the double splitting A = P− R− S is a double nonnegative splitting over the
proper cone K1 if P−1R �K1 0 and P−1S �K1 0 [33].

If A = P−R− S is a double nonnegative splitting over the proper cone K1 of
A ∈ Rn×n , then

W =
(

P−1R P−1S
I 0

)
�K12n

0.

Lastly, we will give some concepts related to rectangular matrices.

DEFINITION 2. Let K1 and K2 be proper cones, in Rn and Rm , respectively. A
matrix A ∈ Rm×n is called

(1). nonnegative over proper cones if AK1 ⊆ K2 ;

(2). positive over proper cones if A(K1−{0})⊆ intK2 .

Denote by π(K1,K2) the set of matrices A ∈ Rm×n for which AK1 ⊆ K2 , we give the
following definition.

DEFINITION 3. Let K1 and K2 be proper cones in Rn and Rm , respectively. A
real rectangular matrix A ∈ Rm×n is called semimonotone over proper cones if A† ∈
π(K2,K1) .

In the following, we extend the concepts of the different types of proper nonneg-
ative splittings that appear in [19] for the particular case K = Rn

+ to general proper
cones.

DEFINITION 4. Let K1 be a proper cone in Rn , the single splitting A =U −V of
A ∈ Rm×n is called a proper single nonnegative splitting over the proper cone K1 if it
is a proper splitting such that U†V �K1 0 .

DEFINITION 5. Let K1 be a proper cone in Rn . For A ∈ Rm×n , the splitting
A = P−R−S is called a proper double nonnegative splitting over the proper cone K1

if it is a proper splitting such that P†R �K1 0 and P†S �K1 0 .
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If A = P−R−S is a proper double nonnegative splitting over the proper cone K1

of A ∈ Rm×n , then

W =
(

P†R P†S
I 0

)
�K12n

0.

3. Results for proper single nonnegative splittings over proper cones

Convergence results for the proper single nonnegative splitting over proper cones
of a rectangular matrix are studied extensively in [5, 8]. In what follows of this section,
we will propose the comparison results for proper single nonnegative splittings over
proper cones of rectangular matrices.

Let us first consider different splittings of one rectangular matrix A , let K1 be a
proper cone in Rn . Assume that A = U1 −V1 = U2 −V2 are proper single nonnegative
splittings over the proper cone K1 of A . Comparing ρ(U†

1V1) with ρ(U†
2V2) , we have

the following results.

THEOREM 1. Let K1 be a proper cone in Rn , A = U1 −V1 = U2 −V2 be proper
single nonnegative splittings over the proper cone K1 of A ∈ Rm×n . If A†V2 �K1

A†V1 >K1 0 , then

ρ(U†
1V1) < ρ(U†

2V2) < 1.

Proof. As A†V2 �K1 A†V1 >K1 0 , it follows from [5, Theorem 2] that ρ(U†
i Vi) < 1

for i = 1,2. Thus all we need to show is ρ(U†
1V1) < ρ(U†

2V2).
It also follows from [5, Theorem 2] that

ρ(U†
i Vi) =

ρ(A†Vi)
1+ ρ(A†Vi)

.

[6, Corollary 3.29] and [14, Corollary 2.6.] yield ρ(A†V1) < ρ(A†V2) . Let f (λ ) =
λ

1+λ , it is easy to see that f (λ ) is a strictly increasing function for λ � 0. Hence the

inequality ρ(U†
1V1) < ρ(U†

2V2) holds. �

THEOREM 2. Let K1 be a proper cone in Rn , A = U1 −V1 = U2 −V2 be proper
single nonnegative splittings over the proper cone K1 of A ∈ Rm×n . If A†U2 �K1

A†U1 >K1 0 , then

ρ(U†
1V1) < ρ(U†

2V2) < 1.

Proof. As A†U2 �K1 A†U1 >K1 0 , it follows from [8, Theorem 2] that ρ(U†
i Vi) < 1

for i = 1,2. Moreover, [8, Theorem 2] gives

ρ(U†
i Vi) =

ρ(A†Ui)−1
ρ(A†Ui)

.
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[6, Corollary 3.29] and [14, Corollary 2.6.] yield ρ(A†U1) < ρ(A†U2) . Let f (λ ) =
λ−1

λ , then f (λ ) is a strictly increasing function for λ > 0. Hence the inequality

ρ(U†
1V1) < ρ(U†

2V2) holds. �
If we consider the proper single nonnegative splitting over the proper cone K1 of

a semimonotone matrix A ∈ Rm×n over proper cones, from Theorem 1 and Theorem 2,
the following corollaries can be obtained.

COROLLARY 1. Let K1 and K2 be proper cones in Rn and Rm , respectively. Let
A =U1−V1 =U2−V2 be proper single nonnegative splittings over the proper cone K1

of a semimonotone matrix A ∈ Rm×n over proper cones. If (V2 −V1) ∈ π(K1,K2) and
A†V1 >K1 0 , then

ρ(U†
1V1) < ρ(U†

2V2) < 1.

Proof. The semi-monotonicity of A over proper cones implies that A† ∈π(K2,K1) ,
combining (V2−V1) ∈ π(K1,K2) , we have

A†(V2−V1)K1 ⊆ A†K2 ⊆ K1,

i.e., A†V2 �K1 A†V1 . As A†V1 >K1 0 , then we have

A†V2 �K1 A†V1 >K1 0.

Theorem 1 yields ρ(U†
1V1) < ρ(U†

2V2) < 1. �

COROLLARY 2. Let K1 and K2 be proper cones in Rn and Rm , respectively. Let
A =U1−V1 =U2−V2 be proper single nonnegative splittings over the proper cone K1

of a semimonotone matrix A ∈ Rm×n over proper cones. If (U2−U1) ∈ π(K1,K2) and
A†U1 >K1 0 , then

ρ(U†
1V1) < ρ(U†

2V2) < 1.

Proof. Similar to the proof of Corollary 1, under the assumptions, we get that
A†U2 �K1 A†U1 >K1 0 . Theorem 2 gives ρ(U†

1V1) < ρ(U†
2V2) < 1. �

Next, we consider comparison results between the spectral radii of matrices aris-
ing from proper single nonnegative splittings over proper cones of different rectangular
matrices. Let K1 be a proper cone in Rn , A1 = U1 −V1 and A2 = U2 −V2 be proper
single nonnegative splittings over the proper cone K1 of A1 ∈Rm×n and A2 ∈Rm×n , re-
spectively. Comparing ρ(U†

1V1) with ρ(U†
2V2) , the following results can be obtained.

THEOREM 3. Let K1 be a proper cone in Rn , A1 = U1 −V1 and A2 = U2 −V2

be proper single nonnegative splittings over the proper cone K1 of A1 ∈ Rm×n and
A2 ∈ Rm×n , respectively. If A†

2V2 �K1 A†
1V1 >K1 0 and A†

1V1 �= A†
2V2 , then

ρ(U†
1V1) < ρ(U†

2V2) < 1.
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THEOREM 4. Let K1 be a proper cone in Rn , A1 = U1 −V1 and A2 = U2 −V2

be proper single nonnegative splittings over the proper cone K1 of A1 ∈ Rm×n and
A2 ∈ Rm×n , respectively. If A†

2U2 �K1 A†
1U1 >K1 0 and A†

1U1 �= A†
2U2, then

ρ(U†
1V1) < ρ(U†

2V2) < 1.

The proofs of Theorem 3 and Theorem 4 are similar to the proofs of Theorem 1
and Theorem 2, respectively, which we haved omitted here.

The example given below demonstrates that the condition A†
2V2 �K1 A†

1V1 >K1 0
cannot be dropped in Theorem 3. At the same time, the following examples shows that
the condition A†

2U2 �K1 A†
1U1 >K1 0 cannot be dropped in Theorem 4.

EXAMPLE 1. Consider proper cones K1 = {x ∈ R3|(x2
2 + x2

3)
1
2 � x1} and K2 =

{x ∈ R2|(x2
2)

1
2 � x1} in R3 and R2 , respectively.

Let

A1 =
( 1

6 0 0
1
8

5
2 2

)
and A2 =

( 1
8 0 0
1
10 3 1

)
.

Assume that A1 and A2 are splitted as

A1 = U1−V1 and A2 = U2−V2

with

U1 =
(

4 0 0
1 5

2 2

)
, V1 =

( 23
6 0 0
7
8 0 0

)

and

U2 =
(

3 0 0
1 3 1

)
, V2 =

( 23
8 0 0
9
10 0 0

)
,

respectively.
Following the operations, we have

U†
1 =

⎛
⎝ 0.25 0

−0.0610 0.2439
−0.0488 0.1951

⎞
⎠ , U†

2 =

⎛
⎝ 0.3333 0

−0.1 0.3
−0.0333 0.1

⎞
⎠

and

A†
1V1 =

⎛
⎝ 23 0 0

−0.4878 0 0
−0.3902 0 0

⎞
⎠ , A†

2V2 =

⎛
⎝ 23 0 0

−0.42 0 0
−0.14 0 0

⎞
⎠ .

Moreover, we can get

A†
1U1 =

⎛
⎝ 24 0 0

−0.4878 0.6098 0.4878
−0.3902 0.4878 0.3902

⎞
⎠ and A†

2U2 =

⎛
⎝ 24 0 0

−0.42 0.9 0.3
−0.14 0.3 0.1

⎞
⎠ .
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It is easy to verify that A1 = U1 −V1 and A2 = U2 −V2 are proper single nonnegative
splittings over the proper cone K1 of A1 and A2 , respectively. But

A†
2V2−A†

1V1 =

⎛
⎝ 0 0 0

0.0678 0 0
0.2502 0 0

⎞
⎠

and

A†
2U2−A†

1U1 =

⎛
⎝ 0 0 0

0.0678 0.2902 −0.1878
0.2502 −0.1878 −0.2902

⎞
⎠ ,

i.e., A†
2V2 �K A†

1V1 and A†
2U2 �K A†

1U1 .
In fact, we have ρ(U†

2V2) = 0.9583 = ρ(U†
1V1) < 1.

4. Results for proper double nonnegative splittings over proper cones

In this section, some convergence and comparison results for proper double noneg-
ative splittings over proper cones of rectangular matrices are considered.

4.1. The results of convergence

Some convergence results are presented in this subsection. First, we show the con-
vergence equivalence of the proper single nonnegative splitting and the proper double
nonnegative splitting over the same proper cone.

THEOREM 5. Let K1 be a proper cone in Rn and A ∈ Rm×n . If A = P−R− S
is a proper double nonnegative splitting over the proper cone K1 , then it is convergent
if and only if the proper single nonnegative splitting A = P− (R+ S) over the proper
cone K1 is convergent.

Proof. The splitting A = P−R− S is a proper double nonnegative splitting over

the proper cone K1 implies that W =
(

P†R P†S
I 0

)
�K12n

0, it follows from [33,

Lemma 2] that it is convergent if and only if (I−W)−1 �K12n
0.

On the one hand, notice that

(I−W )−1 =
(

[I−P†(R+S)]−1 0
0 [I−P†(R+S)]−1

)(
I P†S
I I−P†R

)

=
(

[I−P†(R+S)]−1 [I−P†(R+S)]−1P†S
[I−P†(R+S)]−1 I +[I−P†(R+S)]−1P†S

)
.

On the other hand, we know that [I−P†(R+S)]−1 �K1 0 if and only if ρ(P†(R+
S)) < 1 [33, Lemma 2]. The proper double nonnegative splitting A = P−R− S over
the proper cone K1 and [I−P†(R+S)]−1 �K1 0 give [I−P†(R+S)]−1P†S �K1 0 and
I + [I −P†(R + S)]−1P†S �K1 0 . Hence, (I −W)−1 �K12n

0 if and only if ρ(P†(R +
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S)) < 1, i.e., the proper single nonnegative splitting A = P− (R+ S) over the proper
cone K1 is convergent.

Therefore, the proper double nonnegative splitting A = P−R−S over the proper
cone K1 is convergent if and only if the proper single nonnegative splitting A = P−
(R+S) over the proper cone K1 is convergent. �

REMARK 1. If K1 = Rn
+ , then Theorem 5 becomes Theorem 4.3 of [19].

THEOREM 6. Let K1 be a proper cone in Rn and A ∈ Rm×n . If A = P−R−S is
a proper double nonnegative splitting over the proper cone K1 of A, and A†P �K1 0 ,
then ρ(W ) < 1 .

Proof. The fact of A = P−R− S is a proper double nonnegative splitting over
the proper cone K1 implies that P†R �K1 0 and P†S �K1 0 . So we have P†R+P†S =
P†(R+S) �K1 0 . Setting U = P and V = R+S , then we get that A =U−V is a proper
single nonnegative splitting over the proper cone K1 and A†P = A†U �K1 0 . It follows
from [8, Theorem 2] that

ρ(P†(R+S)) = ρ(U†V ) =
ρ(A†U)−1

ρ(A†U)
< 1.

Theorem 5 then gives ρ(W ) < 1. �

REMARK 2. If K1 is a nonnegative cone, which is a particular proper cone, then
Theorem 6 becomes Theorem 4.5 of [19].

The following example shows that the condition which is not true for Theorem 4.5
in [19] is true for Theorem 6.

EXAMPLE 2. Consider proper cones K1 = {x ∈ R3|(x2
2 + x2

3)
1
2 � x1} and K2 =

{x ∈ R2|(x2
2)

1
2 � x1} in R3 and R2 , respectively.

Assume that

A =
( 1

2 0 0
− 1

4
5
2 1

)
.

Let A be splitted as A = P−R−S with

P =
(

2 0 0
−1 5

2 1

)
, R =

(
1 0 0
− 3

4
1
4 0

)
and S =

( 1
2 0 0
0 − 1

4 0

)
.

It is easy to see that

A†P =

⎛
⎝4 0 0

0 0.8621 0.3448
0 0.3448 0.1379

⎞
⎠ .
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Following the operations, we have

P†R =

⎛
⎝ 0.5 0 0

−0.0862 0.0862 0
−0.0345 0.0345 0

⎞
⎠ and P†S =

⎛
⎝ 0.25 0 0

0.0862 −0.0862 0
0.0345 −0.0345 0

⎞
⎠ .

It is easy to verify that A = P−R−S is not a proper double nonnegative splitting [19,
Definition 4.1].

However, the assumptions of Theorem 6 are satisfied. We then have

ρ(W ) = 0.8090 < 1.

If we consider A† ∈ π(K2,K1) , then the following corollary is obtained.

COROLLARY 3. Let K1 and K2 be proper cones in Rn and Rm , respectively.
Assume that A = P−R− S is a proper double nonnegative splitting over the proper
cone K1 of A ∈ Rm×n . If A† ∈ π(K2,K1) and P ∈ π(K1,K2) , then ρ(W ) < 1 .

Proof. The assumptions A† ∈ π(K2,K1) and P ∈ π(K1,K2) imply A†P �K1 0 .
Theorem 6 then gives ρ(W ) < 1. �

In the next theorem, we establish other convergence conditions for the proper dou-
ble nonnegative splitting A = P−R−S over the proper cone K1 , they are generaliza-
tions of convergence conditions of [19, Theorem 4.7].

THEOREM 7. Let K1 be a proper cone in Rn , A = P−R−S be a proper double
nonnegative splitting over the proper cone K1 of A ∈ Rm×n . Then the following are
equivalent:

(1) ρ(W ) < 1 ;

(2) [I−P†(R+S)]−1 �K1 0 ;

(3) A†(R+S) �K1 0 ;

(4) A†(R+S) �K1 P†(R+S) .

Proof. Since A = P− R− S is a proper double nonnegative splitting over the
proper cone K1 , we have P†R �K1 0 and P†S �K1 0 , so P†R+P†S = P†(R+S) �K1 0 .
Setting U = P and V = R+S , then A =U −V is a proper single nonnegative splitting
over the proper cone K1 of A ∈ Rm×n .

(1) ⇒ (2) As ρ(W ) < 1, it follows from Theorem 5 that ρ(P†(R + S)) < 1.
Since ρ(P†(R + S)) = ρ(U†V ) < 1 and U†V �K1 0 , so from [33, Lemma 2] we get
that [I−P†(R+S)]−1 = (I−U†V )−1 �K1 0 .

(2)⇒ (3) Since A =U−V is a proper single nonnegative splitting over the proper
cone K1 , so from [5, Theorem 1] we have A† = (I−U†V )−1U† . Therefore A†VK1 =
[I−P†(R+S)]−1P†(R+S)K1 ⊆ K1 , i.e., A†(R+S) = A†V �K1 0 .
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(3) ⇒ (4) As A† = (I −U†V )−1U† , we have A† −U† = U†VA† . And then
A†V −U†V = U†VA†V . We have (A†V −U†V )K1 = U†VA†VK1 ⊆U†VK1 ⊆ K1 , i.e.,
A†V �K1 U†V . Then we have A†(R+S) �K1 P†(R+S) .

(4) ⇒ (1) Since A†V = A†(R+S) �K1 P†(R+S) = U†V and U†V �K1 0 , so we
have A†V �K1 0 . [5, Theorem 2] gives ρ(P†(R + S)) = ρ(U†V ) < 1. As ρ(P†(R +
S)) = ρ(U†V ) < 1, it follows from Theorem 5 that ρ(W ) < 1. �

4.2. Comparison results

Let A ∈ Rm×n , A = P1 −R1 − S1 = P2 −R2 − S2 be proper double nonnegative
splittings over the proper cone K1 of A . Then, we define

W1 =
(

P†
1 R1 P†

1 S1

I 0

)
and W2 =

(
P†

2 R2 P†
2 S2

I 0

)
.

In the following, we give comparison results for proper double nonnegative splittings
over the proper cone K1 of A . The first result of comparing ρ(W1) with ρ(W2) is
shown in the following theorem.

THEOREM 8. Let K1 be a proper cone in Rn , A = P1−R1−S1 = P2−R2−S2 be
proper double nonnegative splittings over the proper cone K1 of A ∈ Rm×n . Suppose
P†

2 A �K1 P†
1 A, A†Pi �K1 0 for i = 1,2 and any one of the following conditions

(1). P†
2 R2 �K1 P†

1 R1 ;

(2). P†
1 S1 �K1 P†

2 S2 ,

holds, then ρ(W2) � ρ(W1) < 1.

Proof. By Theorem 6, the conditions A†Pi �K1 0 for i = 1,2 imply ρ(Wi) < 1.
Assume that ρ(W2) = 0, then the conclusion holds clearly. Assume that ρ(W2) �= 0,
i.e., 0 < ρ(W2) < 1. By [6, Theorem 3.2], there exists a nonzero vector

X =
(

x1

x2

)
∈ K12n ,

in conformity with W2 such that W2X = ρ(W2)X , which can be rewritten into

P†
2 R2x1 +P†

2 S2x2 = ρ(W2)x1,

x1 = ρ(W2)x2,

where x1,x2 ∈ K1.
Then we have

W1X −ρ(W2)X =
(

P†
1 R1x1 +P†

1 S1x2 −ρ(W2)x1

x1−ρ(W2)x2

)

=

(
(P†

1 R1−P†
2 R2)x1 + 1

ρ(W2)
(P†

1 S1−P†
2 S2)x1

0

)

:=
(

Δ
0

)
.
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(i). Since P†
2 R2 �K1

P†
1 R1 and 0 < ρ(W2) < 1, then

Δ− 1
ρ(W2)

((P†
1 R1−P†

2 R2)x1 +(P†
1 S1−P†

2 S2)x1)

=
(

1
ρ(W2)

−1

)
(P†

2 R2−P†
1 R1)x1

�K1 0,

i.e.,

Δ �K1

1
ρ(W2)

(P†
1 R1−P†

2 R2 +P†
1 S1−P†

2 S2)x1

=
1

ρ(W2)
(P†

2 A−P†
1 A)x1

�K1 0.

Thus,

W1X −ρ(W2)X �K1 0.

It follows from [22, Corollary 3.2] that ρ(W2) � ρ(W1) < 1.

(ii). Since P†
1 S1 �K1 P†

2 S2 and 0 < ρ(W2) < 1, then

Δ− ((P†
1 R1−P†

2 R2)x1 +(P†
1 S1−P†

2 S2)x1)

=
(

1
ρ(W2)

−1

)
(P†

1 S1−P†
2 S2)x1

�K1 0,

i.e.,

Δ �K1 (P†
1 R1−P†

2 R2 +P†
1 S1−P†

2 S2)x1

= (P†
2 A−P†

1 A)x1

�K1 0.

Consequently,

W1X −ρ(W2)X �K1 0.

It follows from [22, Corollary 3.2] that ρ(W2) � ρ(W1) < 1. �

An example of Theorem 8 is shown below.

EXAMPLE 3. Consider proper cones K1 = {x ∈ R3|(x2
2 + x2

3)
1
2 � x1} and K2 =

{x ∈ R2|(x2
2)

1
2 � x1} in R3 and R2 , respectively.
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Let

A =
( 1

2 0 0
− 1

4
5
2 1

)

with

P1 =
(

3 0 0
−1 5

2 1

)
, R1 =

( 1
2 0 0

− 3
8

1
8 0

)
, S1 =

(
2 0 0
− 3

8 − 1
8 0

)

and

P2 =
(

2 0 0
−1 5

2 1

)
, R2 =

(
1 0 0
− 3

4
1
4 0

)
, S2 =

( 1
2 0 0
0 − 1

4 0

)
.

It is easy to see that

A†P1 =

⎛
⎝ 6 0 0

0.1724 0.8621 0.3448
0.0690 0.3448 0.1379

⎞
⎠ ,

A†P2 =

⎛
⎝4 0 0

0 0.8621 0.3448
0 0.3448 0.1379

⎞
⎠ and P†

2 A−P†
1 A =

⎛
⎝0.0833 0 0

0.0287 0 0
0.0115 0 0

⎞
⎠ .

Following the operations, we have

P†
1 R1 =

⎛
⎝ 0.1667 0 0

−0.0718 0.0431 0
−0.0287 0.0172 0

⎞
⎠ , P†

1 S1 =

⎛
⎝0.6667 0 0

0.1006 −0.0431 0
0.0402 −0.0172 0

⎞
⎠

and

P†
2 R2 =

⎛
⎝ 0.5 0 0

−0.0862 0.0862 0
−0.0345 0.0345 0

⎞
⎠ , P†

2 S2 =

⎛
⎝ 0.25 0 0

0.0862 −0.0862 0
0.0345 −0.0345 0

⎞
⎠ .

It is easy to prove that A = P1 −R1 − S1 and A = P2 −R2 − S2 are not proper double
nonnegative splittings of A , but proper double nonnegative splittings over the proper
cone K1 of A .

Clearly, the assumptions of Theorem 8 are satisfied. We then have

ρ(W2) = 0.8090 < 0.9041 = ρ(W1) < 1.

When we consider proper double nonnegative splittings over the proper cone K1

of a nonnegative matrix A∈Rm×n over proper cones, the following corollary is a direct
result of Theorem 8.

COROLLARY 4. Let K1 and K2 be proper cones in Rn and Rm , respectively.
Let A = P1 − R1 − S1 = P2 − R2 − S2 be proper double nonnegative splittings over
the proper cone K1 of a nonnegative matrix A ∈ Rm×n over proper cones. Suppose
(P†

2 −P†
1 ) ∈ π(K2,K1) , A†Pi �K1 0 for i = 1,2 and any one of the following conditions
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(1). P†
2 R2 �K1 P†

1 R1 ;

(2). P†
1 S1 �K1 P†

2 S2 ,

holds, then ρ(W2) � ρ(W1) < 1.

Proof. The nonnegativity of A over proper cones implies that A∈π(K1,K2) , com-
bining (P†

2 −P†
1 ) ∈ π(K2,K1) , we can obtain P†

2 A �K1 P†
1 A . Theorem 8 then yields

ρ(W2) � ρ(W1) < 1. �
If we consider proper double nonnegative splittings over the proper cone K1 of a

semimonotone matrix A ∈ Rm×n over proper cones, we have the following corollary.

COROLLARY 5. Let K1 and K2 be proper cones in Rn and Rm , respectively.
Let A = P1−R1 −S1 = P2 −R2 −S2 be proper double nonnegative splittings over the
proper cone K1 of a semimonotone matrix A ∈ Rm×n over proper cones. Suppose
P†

2 A �K1 P†
1 A, Pi ∈ π(K1,K2) for i = 1,2 and any one of the following conditions

(1). P†
2 R2 �K1 P†

1 R1 ;

(2). P†
1 S1 �K1 P†

2 S2 ,

holds, then ρ(W2) � ρ(W1) < 1.

Proof. The fact of A is a semimonotone matrix over proper cones implies that
A† ∈ π(K2,K1) . As A† ∈ π(K2,K1) and Pi ∈ π(K1,K2) , we then have A†Pi �K1 0 for
i = 1,2. Theorem 8 gives ρ(W2) � ρ(W1) < 1. �

If we consider a nonnegative and semimonotone matrix A ∈ Rm×n over proper
cones, from Theorem 8, we can get the following result directly.

COROLLARY 6. Let K1 and K2 be proper cones in Rn and Rm , respectively.
Let A = P1−R1 −S1 = P2 −R2 −S2 be proper double nonnegative splittings over the
proper cone K1 of a nonnegative and semimonotone matrix A ∈ Rm×n over proper
cones. Suppose (P†

2 −P†
1 ) ∈ π(K2,K1) , Pi ∈ π(K1,K2) for i = 1,2 and any one of the

following conditions

(1). P†
2 R2 �K1 P†

1 R1 ;

(2). P†
1 S1 �K1 P†

2 S2 ,

holds, then ρ(W2) � ρ(W1) < 1.

Proof. By Definition 2 and Definition 3, we have A∈π(K1,K2) and A† ∈π(K2,K1) ,
respectively. Similar to the proofs of Corollary 4 and Corollary 5, under the assump-
tions, we get that P†

2 A �K1 P†
1 A and A†Pi �K1 0 for i = 1,2. Theorem 8 then yields

ρ(W2) � ρ(W1) < 1. �
Another comparison theorem of proper double nonnegative splittings over the

proper cone K1 of A ∈ Rm×n is as follows.
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THEOREM 9. Let K1 be a proper cone in Rn , A = P1−R1−S1 = P2−R2−S2 be
proper double nonnegative splittings over the proper cone K1 of A ∈ Rm×n . Suppose
P†

1 R1−P†
2 R2 +P†

1 S1−P†
2 S2 �K1 0 , A†Pi �K1 0 for i = 1,2 and any one of the following

conditions

(1). P†
2 R2 �K1 P†

1 R1 ;

(2). P†
1 S1 �K1 P†

2 S2 ,

holds, then ρ(W2) � ρ(W1) < 1.

Proof. From Theorem 6, we know that both proper double nonnegative splittings
over the proper cone K1 of A ∈ Rm×n are convergent, that is, ρ(W1) < 1 and ρ(W2) <
1. Assume that ρ(W2) = 0, then the conclusion holds clearly. Assume that ρ(W2) �= 0,
i.e., 0 < ρ(W2) < 1. By [6, Theorem 3.2], there exists a nonzero vector

X =
(

x1

x2

)
∈ K12n ,

in conformity with W2 such that W2X = ρ(W2)X , which can be rewritten into

P†
2 R2x1 +P†

2 S2x2 = ρ(W2)x1,

x1 = ρ(W2)x2,

where x1,x2 ∈ K1.
Then we have

W1X −ρ(W2)X =
(

P†
1 R1x1 +P†

1 S1x2 −ρ(W2)x1

x1−ρ(W2)x2

)

=

(
(P†

1 R1−P†
2 R2)x1 + 1

ρ(W2)
(P†

1 S1−P†
2 S2)x1

0

)

:=
(

Δ
0

)
.

(i). Since P†
2 R2 �K1 P†

1 R1 and 0 < ρ(W2) < 1, then

Δ− 1
ρ(W2)

((P†
1 R1−P†

2 R2)x1 +(P†
1 S1−P†

2 S2)x1)

=
(

1
ρ(W2)

−1

)
(P†

2 R2−P†
1 R1)x1

�K1 0.

Since P†
1 R1 −P†

2 R2 +P†
1 S1−P†

2 S2 �K1 0 and 0 < ρ(W2) < 1, then

Δ �K1

1
ρ(W2)

(P†
1 R1−P†

2 R2 +P†
1 S1−P†

2 S2)x1

�K1 0.
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Thus,

W1X −ρ(W2)X �K1 0.

It follows from [22, Corollary 3.2] that ρ(W2) � ρ(W1) < 1.

(ii). Since P†
1 S1 �K1 P†

2 S2 and 0 < ρ(W2) < 1, then

Δ− ((P†
1 R1−P†

2 R2)x1 +(P†
1 S1−P†

2 S2)x1)

=
(

1
ρ(W2)

−1

)
(P†

1 S1−P†
2 S2)x1

�K1 0.

Since P†
1 R1 −P†

2 R2 +P†
1 S1−P†

2 S2 �K1 0 , then

Δ �K1 (P†
1 R1−P†

2 R2 +P†
1 S1−P†

2 S2)x1

�K1 0.

Thus,

W1X −ρ(W2)X �K1 0.

It follows from [22, Corollary 3.2] that ρ(W2) � ρ(W1) < 1. �

If we consider A† ∈ π(K2,K1) , from Theorem 9, we have the following corollary.

COROLLARY 7. Let K1 and K2 be proper cones in Rn and Rm , respectively. Let
A = P1−R1−S1 = P2−R2−S2 be proper double nonnegative splittings over the proper
cone K1 of A ∈ Rm×n , and A† ∈ π(K2,K1) . Suppose P†

1 R1−P†
2 R2 +P†

1 S1−P†
2 S2 �K1

0 , Pi ∈ π(K1,K2) for i = 1,2 and any one of the following conditions

(1). P†
2 R2 �K1 P†

1 R1 ;

(2). P†
1 S1 �K1 P†

2 S2 ,

holds, then ρ(W2) � ρ(W1) < 1.

Proof. The assumptions A† ∈ π(K2,K1) and Pi ∈ π(K1,K2) imply A†Pi �K1 0 ,
for i = 1,2. Theorem 9 then gives ρ(W2) � ρ(W1) < 1. �

In the following, we will provide comparison results for proper double nonnegative
splittings over the proper cone K1 of different rectangular matrices.

Let A1 = P1−R1−S1 and A2 = P2−R2−S2 be proper double nonnegative split-
tings over the proper cone K1 of A1 ∈ Rm×n and A2 ∈ Rm×n , respectively. Then, we
define

W1 =
(

P†
1 R1 P†

1 S1

I 0

)
and W2 =

(
P†

2 R2 P†
2 S2

I 0

)
.

For general rectangular matrices A1 ∈ Rm×n and A2 ∈ Rm×n , comparing ρ(W1)
with ρ(W2) , we have the following theorem.
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THEOREM 10. Let K1 be a proper cone in Rn , A1 = P1−R1−S1 and A2 = P2−
R2−S2 be proper double nonnegative splittings over the proper cone K1 of A1 ∈ Rm×n

and A2 ∈ Rm×n , respectively. Suppose P†
1 R1−P†

2 R2 +P†
1 S1−P†

2 S2 �K1 0 , A†
i Pi �K1 0

for i = 1,2 and any one of the following conditions

(1). P†
2 R2 �K1 P†

1 R1 ;

(2). P†
1 S1 �K1 P†

2 S2 ,

holds, then ρ(W2) � ρ(W1) < 1.

The proof of Theorems 10 is very similar to the proof of Theorems 9, so we omit-
ted it here.

The following example demonstrates that the condition P†
1 R1 − P†

2 R2 + P†
1 S1 −

P†
2 S2 �K1 0 cannot be dropped in Theorem 10.

EXAMPLE 4. Consider proper cones K1 = {x ∈ R3|(x2
2 + x2

3)
1
2 � x1} and K2 =

{x ∈ R2|(x2
2)

1
2 � x1} in R3 and R2 , respectively.

Assume that

A1 =
( 1

2 0 0
− 1

8
5
2 2

)
and A2 =

( 1
4 0 0

− 1
6 3 1

)
.

Let A1 and A2 be splitted as

A1 = P1−R1−S1 and A2 = P2−R2−S2,

respectively. Setting

P1 =
(

3 0 0
−1 5

2 2

)
, R1 =

( 1
2 0 0

− 3
8

1
6 0

)
, S1 =

(
2 0 0
− 1

2 − 1
6 0

)

and

P2 =
(

4 0 0
−1 3 1

)
, R2 =

(
3 0 0
− 1

2
1
6 0

)
, S2 =

( 3
4 0 0

− 1
3 − 1

6 0

)
.

Then we can see that

A†
1P1 =

⎛
⎝ 6 0 0

−0.0610 0.6098 0.4878
−0.0488 0.4878 0.3902

⎞
⎠ and A†

2P2 =

⎛
⎝ 16 0 0

0.5 0.9 0.3
0.1667 0.3 0.1

⎞
⎠ .

Following the operations, we have

P†
1 R1 =

⎛
⎝ 0.1667 0 0

−0.0508 0.0407 0
−0.0407 0.0325 0

⎞
⎠ , P†

1 S1 =

⎛
⎝0.6667 0 0

0.0407 −0.0407 0
0.0325 −0.0325 0

⎞
⎠
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and

P†
2 P2 =

⎛
⎝ 0.75 0 0

0.075 0.05 0
0.025 0.0167 0

⎞
⎠ , P†

2 S2 =

⎛
⎝ 0.1875 0 0

−0.0437 −0.05 0
−0.0146 −0.0167 0

⎞
⎠ .

It should be noted that A1 = P1−R1−S1 and A2 = P2−R2−S2 are not proper double
nonnegative splittings, but proper double nonnegative splittings over the proper cone
K1 .

Clearly, we have P†
2 R2 �K1 P†

1 R1 , P†
1 S1 �K1 P†

2 S2 and A†
i Pi �K1 0 for i = 1,2.

But

P†
1 R1−P†

2 R2 +P†
1 S1−P†

2 S2 =

⎛
⎝−0.1041 0 0

−0.0414 0 0
−0.0186 0 0

⎞
⎠ ,

i.e. P†
1 R1−P†

2 R2 +P†
1 S1−P†

2 S2 �K1 0 .
In fact, we have ρ(W1) = 0.9041 < 0.9478 = ρ(W2) < 1.

Similar examples can be constructed for proper double nonnegative splittings A =
P1−R1−S1 = P2−R2−S2 over the proper cone K1 of A ∈ Rm×n .

For semimonotone matrices A1 ∈ Rm×n and A2 ∈ Rm×n over proper cones, com-
paring ρ(W1) with ρ(W2) , we have the following corollary, which is a direct result of
Theorem 10.

COROLLARY 8. Let K1 and K2 be proper cones in Rn and Rm , respectively. Let
A1 ∈ Rm×n and A2 ∈ Rm×n be semimonotone matrices over proper cones, A1 = P1 −
R1−S1 and A2 = P2−R2−S2 be proper double nonnegative splittings over the proper
cone K1 of A1 and A2 , respectively. Suppose P†

1 R1 − P†
2 R2 + P†

1 S1 − P†
2 S2 �K1 0 ,

Pi ∈ π(K1,K2) for i = 1,2 and any one of the following conditions

(1). P†
2 R2 �K1 P†

1 R1 ;

(2). P†
1 S1 �K1 P†

2 S2 ,

holds, then ρ(W2) � ρ(W1) < 1.

Proof. Since A1 and A2 are semimonotone matrices over proper cones, we have
A†

1 ∈ π(K2,K1) and A†
2 ∈ π(K2,K1) . As Pi ∈ π(K1,K2) , then we have A†

i Pi �K1 0 for
i = 1,2. Moreover, Theorem 10 gives ρ(W2) � ρ(W1) < 1. �

When A1 and A2 have the same null space, we have the following comparison
theorem.

THEOREM 11. Let K1 be a proper cone in Rn . Let A1 ∈Rm××n and A2 ∈Rm××n

be two matrices having the same null space, A1 = P1 −R1 − S1 and A2 = P2 −R2 −
S2 be proper double nonnegative splittings over the proper cone K1 of A1 and A2 ,
respectively. Suppose P†

2 A2 �K1 P†
1 A1 , A†

i Pi �K1 0 for i = 1,2 and any one of the
following conditions
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(1). P†
2 R2 �K1 P†

1 R1 ;

(2). P†
1 S1 �K1 P†

2 S2 ,

holds, then ρ(W2) � ρ(W1) < 1.

Proof. As A†
i Pi �K1 0 , Theorem 6 then yields ρ(Wi) < 1 for i = 1,2. Assume

that ρ(W2) = 0, then the conclusion holds clearly. Assume that ρ(W2) �= 0, i.e., 0 <
ρ(W2) < 1. By [6, Theorem 3.2], there exists a nonzero vector

X =
(

x1

x2

)
∈ K12n ,

in conformity with W2 such that W2X = ρ(W2)X , which can be rewritten into

P†
2 R2x1 +P†

2 S2x2 = ρ(W2)x1,

x1 = ρ(W2)x2,

where x1,x2 ∈ K1.
Then we have

W1X −ρ(W2)X =
(

P†
1 R1x1 +P†

1 S1x2 −ρ(W2)x1

x1−ρ(W2)x2

)

=

(
(P†

1 R1−P†
2 R2)x1 + 1

ρ(W2)
(P†

1 S1−P†
2 S2)x1

0

)

:=
(

Δ
0

)
.

Now N(A1) = N(A2) implies R(AT
1 ) = R(AT

2 ) = R(PT
1 ) = R(PT

2 ) . Then P†
1 P1 = P†

2 P2 .

(i). Since P†
2 R2 �K1 P†

1 R1 and 0 < ρ(W2) < 1, then

Δ− 1
ρ(W2)

((P†
1 R1−P†

2 R2)x1 +(P†
1 S1−P†

2 S2)x1)

=
(

1
ρ(W2)

−1

)
(P†

2 R2−P†
1 R1)x1

�K1 0,

i.e.,

Δ �K1

1
ρ(W2)

(P†
1 R1−P†

2 R2 +P†
1 S1−P†

2 S2)x1

=
1

ρ(W2)
(P†

2 A2−P†
1 A1)x1

�K1 0.
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Thus,

W1X −ρ(W2)X �K1 0.

It follows from [22, Corollary 3.2] that ρ(W2) � ρ(W1) < 1.

(ii). Since P†
1 S1 �K1 P†

2 S2 and 0 < ρ(W2) < 1, then

Δ− ((P†
1 R1−P†

2 R2)x1 +(P†
1 S1−P†

2 S2)x1)

=
(

1
ρ(W2)

−1

)
(P†

1 S1−P†
2 S2)x1

�K1
0,

i.e.,

Δ �K1 (P†
1 R1−P†

2 R2 +P†
1 S1−P†

2 S2)x1

= (P†
2 A2−P†

1 A1)x1

�K1 0.

Consequently,

W1X −ρ(W2)X �K1 0.

It follows from [22, Corollary 3.2] that ρ(W2) � ρ(W1) < 1. �

The following example demonstrates that the condition P†
2 A2 �K1 P†

1 A1 cannot be
dropped in Theorem 11.

EXAMPLE 5. Consider proper cones K1 = {x ∈ R3|(x2
2 + x2

3)
1
2 � x1} and K2 =

{x ∈ R2|(x2
2)

1
2 � x1} in R3 and R2 , respectively.

Let

A1 =
( 1

2 0 0
− 1

6 3 2

)
and A2 =

( 1
4 0 0

− 1
6 3 2

)
.

If A1 and A2 are splitted as

A1 = P1−R1−S1 and A2 = P2−R2−S2,

respectively, here

P1 =
(

3 0 0
−1 3 2

)
, R1 =

( 1
2 0 0

− 1
3

1
8 0

)
, S1 =

(
2 0 0
− 1

2 − 1
8 0

)

and

P2 =
(

4 0 0
−1 3 2

)
, R2 =

(
3 0 0
− 1

2
1
8 0

)
, S2 =

( 3
4 0 0

− 1
3 − 1

8 0

)
.
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Following the operations, we have

P†
1 R1 =

⎛
⎝ 0.1667 0 0

−0.0385 0.0288 0
−0.0256 0.0192 0

⎞
⎠ , P†

1 S1 =

⎛
⎝0.6667 0 0

0.0385 −0.0288 0
0.0256 −0.0192 0

⎞
⎠

and

P†
2 R2 =

⎛
⎝ 0.75 0 0

0.0577 0.0288 0
0.0385 0.0192 0

⎞
⎠ , P†

2 S2 =

⎛
⎝ 0.1875 0 0

−0.0337 −0.0288 0
−0.0224 −0.0192 0

⎞
⎠ .

It is easy to verify that A1 = P1 −R1 − S1 and A2 = P2 −R2 − S2 are proper double
nonnegative splittings over the proper cone K1 of A1 and A2 , respectively.

It is easy to see that

A†
1P1 =

⎛
⎝ 6 0 0

0 0.6923 0.4615
0 0.4615 0.3077

⎞
⎠ , A†

2P2 =

⎛
⎝ 16 0 0

0.3846 0.6923 0.4615
0.2564 0.4615 0.3077

⎞
⎠

and

P†
1 A1 =

⎛
⎝0.1667 0 0

0 0.6923 0.4615
0 0.4615 0.3077

⎞
⎠ , P†

2 A2 =

⎛
⎝ 0.0625 0 0

−0.0240 0.6923 0.4615
−0.0160 0.4615 0.3077

⎞
⎠ .

Then we can get A†
i Pi �K1 0 for i = 1,2. However

P†
2 A2−P†

1 A1 =

⎛
⎝−0.1042 0 0

−0.0240 0 0
−0.0160 0 0

⎞
⎠�K1 0.

In fact, we have ρ(W1) = 0.9041 < 0.9478 = ρ(W2) < 1.

Similar examples can be constructed for proper double nonnegative splittings A =
P1−R1−S1 = P2−R2−S2 over the proper cone K1 of A ∈ Rm×n .

For semimonotone matrices A1 ∈ Rm×n and A2 ∈ Rm×n over proper cones with
the same null space, comparing ρ(W1) with ρ(W2) , we have the following comparison
result.

COROLLARY 9. Let K1 and K2 be proper cones in Rn and Rm , respectively.
Let A1 ∈ Rm×n and A2 ∈ Rm×n be semimonotone matrices over proper cones hav-
ing the same null space, A1 = P1 −R1 − S1 and A2 = P2 −R2 − S2 be proper double
nonnegative splittings over the proper cone K1 of A1 and A2 , respectively. Suppose
P†

2 A2 �K1 P†
1 A1 , Pi ∈ π(K1,K2) for i = 1,2 and any one of the following conditions

(1). P†
2 R2 �K1 P†

1 R1 ;

(2). P†
1 S1 �K1 P†

2 S2 ,
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holds, then ρ(W2) � ρ(W1) < 1.

Proof. The semi-monotonicity of Ai over proper cones imply that A†
i ∈ π(K2,K1) ,

combining Pi ∈ π(K1,K2) , we can get A†
i Pi �K1 0 for i = 1,2. Theorem 11 then yields

ρ(W2) � ρ(W1) < 1. �

5. The application

Particularly, when the rectangular linear system (1) is an ill-posed linear system
that formed by discretization of Fredholm integral equations of the first kind [12], to
find the least squares solution A†b , we give a corresponding modified the well-posed
system

(AT A+ λ I)x = ATb (7)

which is based on Tikhonov’s regularization [30], where λ is a regularization parameter
and λ > 0. Let Bλ = ATA+ λ I , where Bλ is nonsingular, then the system (7) can be
rewritten in the following equivalent form

Bλ x = AT b. (8)

Moreover, the authors of the literature [3] have shown that B−1
λ AT b → A†b as λ → 0.

There are two forms of splitting iteration methods for solving the linear system (8):

a). If Bλ ∈ Rn×n has the single splitting [32]

Bλ = Uλ −Vλ , (9)

where Uλ is invertible, then the associated iterative is given by

xi+1 = U−1
λ Vλ xi +U−1

λ ATb. (10)

It is well known that this iterative method converges to B−1
λ AT b (= A†b as λ →

0) if and only if ρ(U−1
λ Vλ ) < 1.

b). Given the double splitting of Bλ ∈ Rn×n as [32]

Bλ = Pλ −Rλ −Sλ , (11)

where P is invertible, then the regularized iterative scheme is given by

xi+1 = P−1
λ Rλ xi +P−1

λ Sλ xi−1 +P−1
λ ATb, i = 1,2, · · · . (12)

In order to study the convergence, the iterative scheme (12) can be written as the
following equivalent form(

xi+1

xi

)
=
(

P−1
λ Rλ P−1

λ Sλ
I 0

)(
xi

xi−1

)
+
(

P−1
λ AT b

0

)
, i = 1,2, · · · , (13)
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where I denotes the identity matrix with compatible size and

Wλ =
(

P−1
λ Rλ P−1

λ S
I 0

)
is the iteration matrix. The iterative scheme (13) converges to the unique solution
B−1

λ AT b (= A†b as λ → 0) of (8) if and only if ρ(Wλ ) < 1 [13, 28].

The numerical solutions over field of both systems (1) and (8) have been studied
and compared in [3, 26].

In the following, we consider the application of the research results of proper
nonnegative splittings over proper cones in the regularized iterative method for the ill-
posed linear system. When A2 in Theorem 3 and Theorem 4 is a nonsingular matrix,
we have the following results.

THEOREM 12. Let K1 be a proper cone in Rn . Let A = U −V be a proper
single nonnegative splitting over the proper cone K1 of A ∈ Rm×n , Bλ = Uλ −Vλ
be a single nonnegative splitting over the proper cone K1 of Bλ ∈ Rn×n . Suppose
A†V �K1 lim

λ→0
B−1

λ Vλ >K1 0 and A†V �= lim
λ→0

B−1
λ Vλ , then

lim
λ→0

ρ(U−1
λ Vλ ) < ρ(U†V ) < 1.

Proof. Since lim
λ→0

B−1
λ Vλ >K1 0 , so we have

lim
λ→0

ρ(U−1
λ Vλ ) = lim

λ→0

ρ(B−1
λ Vλ )

1+ ρ(B−1
λ Vλ )

< 1

by applying [15, Lemma 2.5]. Similarly, under the assumption A†V >K1 0 , [5, Theorem
2] implies

ρ(U†V ) =
ρ(A†V )

1+ ρ(A†V )
< 1.

In the following, in order to prove that lim
λ→0

ρ(U−1
λ Vλ ) < ρ(U†V ) , we first need to show

that ρ(A†V ) > lim
λ→0

ρ(B−1
λ Vλ ) .

As A†V �K1 lim
λ→0

B−1
λ Vλ >K1 0 , so [6, Corollary 3.29] and [14, Corollary 2.6.]

imply ρ(A†V ) > lim
λ→0

ρ(B−1
λ Vλ ) . Since f (λ ) = λ

1+λ is a strictly increasing function

for λ � 0, so the inequality lim
λ→0

ρ(U−1
λ Vλ ) < ρ(U†V ) is true. �

THEOREM 13. Let K1 be a proper cone in Rn . Let A = U −V be a proper
single nonnegative splitting over the proper cone K1 of A ∈ Rm×n , Bλ = Uλ −Vλ
be a single nonnegative splitting over the proper cone K1 of Bλ ∈ Rn×n . Suppose
A†U �K1 lim

λ→0
B−1

λ Uλ >K1 0 and A†U �= lim
λ→0

B−1
λ Uλ , then

lim
λ→0

ρ(U−1
λ Vλ ) < ρ(U†V ) < 1.
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Proof. By applying [15, Lemma 2.5], the assumption lim
λ→0

B−1
λ Uλ >K1 0 implies

lim
λ→0

ρ(U−1
λ Vλ ) = lim

λ→0

ρ(B−1
λ Uλ )−1

ρ(B−1
λ Uλ )

< 1.

As A†U >K1 0 , it follows from [8, Theorem 2] that

ρ(U†V ) =
ρ(A†U)−1

ρ(A†U)
< 1.

So what we need to show now is that lim
λ→0

ρ(U−1
λ Vλ ) < ρ(U†V ) . To do this, we first

need to demonstrate that ρ(A†U) > lim
λ→0

ρ(B−1
λ Uλ ) .

As A†U �K1 lim
λ→0

B−1
λ Uλ >K1 0 , so [6, Corollary 3.29] and [14, Corollary 2.6.]

imply ρ(A†U) > lim
λ→0

ρ(B−1
λ Uλ ) . Since f (λ ) = λ−1

λ is a strictly increasing function

for λ > 0, so lim
λ→0

ρ(U−1
λ Vλ ) < ρ(U†V ) . �

REMARK 3. Theorem 12 and Theorem 13 are special cases of Theorem 3 and
Theorem 4, respectively. Particularly, Theorem 12 is Theorem 3.2 of [26] if K1 = Rn

+ .

The example given below shows that A†V �K1 limλ→0 B−1
λ Vλ >K1 0 and A†U �K1

limλ→0 B−1
λ Uλ >K1 0 cannot be dropped in Theorem 12 and Theorem 13, respectively.

EXAMPLE 6. Consider proper cones K1 = {x ∈ R3|(x2
2 + x2

3)
1
2 � x1} and K2 =

{x ∈ R2|(x2
2)

1
2 � x1} in R3 and R2 , respectively. Let

A =
(

2 1 0
4 0 0

)

and λ = 10−4 , then

Bλ =

⎛
⎝20.0001 2 0

2 1.0001 0
0 0 0.0001

⎞
⎠ .

Assume that A and Bλ are splitted as

A = U −V and Bλ = Uλ −Vλ

with

U =
(

3 1 0
6 0 0

)
, V =

(
1 0 0
2 0 0

)
and

Uλ =

⎛
⎝30.0001 0 0

3 1.0001 0
0 0 0.0001

⎞
⎠ , Vλ =

⎛
⎝10 −2 0

1 0 0
0 0 0

⎞
⎠ ,
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respectively.
Following the operations, we have

U†V =

⎛
⎝0.3333 0 0

0 0 0
0 0 0

⎞
⎠ and U−1

λ Vλ =

⎛
⎝0.3333 −0.0667 0

0 0.2 0
0 0 0

⎞
⎠ .

Clearly, Bλ = Uλ −Vλ is not a single nonnegative splittings, but a single nonnegative
splitting over the proper cone K1 .

Moreover, we have

A†V =

⎛
⎝0.5 0 0

0 0 0
0 0 0

⎞
⎠ , B−1

λ Vλ =

⎛
⎝0.5 −0.125 0

0 0.25 0
0 0 0

⎞
⎠

and

A†U =

⎛
⎝1.5 0 0

0 1 0
0 0 0

⎞
⎠ , B−1

λ Uλ =

⎛
⎝1.5 −0.125 0

0 1.25 0
0 0 1

⎞
⎠ .

But

A†V −B−1
λ Vλ =

⎛
⎝0 0.125 0

0 −0.25 0
0 0 0

⎞
⎠

and

A†U −B−1
λ Uλ =

⎛
⎝0 0.125 0

0 −0.25 0
0 0 −1

⎞
⎠ ,

i.e., A†V �K1 B−1
λ Vλ and A†U �K1 B−1

λ Uλ .

In fact, we have ρ(U−1
λ Vλ ) = 0.3333 = ρ(U†V ) < 1.

In what follows of this section, comparison theorems between the spectral radii of
matrices arising from double splittings over proper cones of the rectangular matrix and
the square matrix are presented.

THEOREM 14. Let K1 be a proper cone in Rn . Let A = P−R− S be a proper
double nonnegative splitting over the proper cone K1 of A ∈ Rm×n with A†P �K1 0 ,
Bλ = Pλ −Rλ −Sλ be a double nonnegative splitting over the proper cone K1 of Bλ ∈
Rn×n with lim

λ→0
B−1

λ Pλ �K1 0 . If P†R �K1 lim
λ→0

P−1
λ Rλ and P†S �K1 lim

λ→0
P−1

λ Sλ , then

lim
λ→0

ρ(Wλ ) � ρ(W) < 1.

Proof. As A†P �K1 0 , Theorem 6 then yields ρ(W ) < 1. Setting Uλ = Pλ and
Vλ = Rλ +Sλ , then we get that Bλ =Uλ −Vλ is a single nonnegative splitting over the
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proper cone K1 and lim
λ→0

B−1
λ Pλ = lim

λ→0
B−1

λ Uλ �K1 0 . It follows from [15, Lemma 2.5]

and [33, Theorem 1] that lim
λ→0

ρ(Wλ ) < 1.

Assume that lim
λ→0

ρ(Wλ ) = 0, then the conclusion holds clearly. Assume that

lim
λ→0

ρ(Wλ ) �= 0, i.e., 0 < lim
λ→0

ρ(Wλ ) < 1. By [6, Theorem 3.2], there exists a nonzero

vector

X =
(

x1

x2

)
∈ K12n ,

in conformity with lim
λ→0

Wλ such that lim
λ→0

Wλ X = lim
λ→0

ρ(Wλ )X , which can be rewritten

into

lim
λ→0

P−1
λ Rλ x1 + lim

λ→0
P−1

λ Sλ x2 = lim
λ→0

ρ(Wλ )x1,

x1 = lim
λ→0

ρ(Wλ )x2,

where x1,x2 ∈ K1.
Then we have

WX − lim
λ→0

ρ(Wλ )X =

⎛
⎝P†Rx1 +P†S1x2 − lim

λ→0
ρ(Wλ )x1

x1 − lim
λ→0

ρ(Wλ )x2

⎞
⎠

=

(
(P†R− lim

λ→0
P−1

λ Rλ )x1 + 1
lim

λ→0
ρ(Wλ ) (P

†S− lim
λ→0

P−1
λ Sλ )x1

0

)

:=
(

Δ
0

)
.

As P†R �K1 lim
λ→0

P−1
λ Rλ and P†S �K1 lim

λ→0
P−1

λ Sλ , so

Δ = (P†R− lim
λ→0

P−1
λ Rλ )x1 +

1
lim
λ→0

ρ(Wλ )
(P†S− lim

λ→0
P−1

λ Sλ )x1 �K1 0.

Hence,

WX − lim
λ→0

ρ(Wλ )X �K1 0.

It follows from [22, Corollary 3.2] that lim
λ→0

ρ(Wλ ) � ρ(W ) < 1.

The numerical example is given below to demonstrate Theorem 14.

EXAMPLE 7. Consider the proper cone K1 = R3
+ . If

A =
(

4 2 0
2 1 0

)
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is splitted as

A = P−R−S,

here

P =
(

12 6 0
4 2 0

)
, R =

(
7 3 0
1 0.5 0

)
and S =

(
1 1 0
1 0.5 0

)
.

For λ = 10−4 , let

Bλ =

⎛
⎝20.0001 10 0

10 5.0001 0
0 0 0.0001

⎞
⎠

be splitted as

Bλ = Pλ −Rλ −Sλ ,

here

Pλ =

⎛
⎝24.0001 12 0

12 6.0001 0
0 0 0.0001

⎞
⎠ , Rλ =

⎛
⎝ 2 0 0

1 0 0
0 0 0

⎞
⎠ and Sλ =

⎛
⎝2 2 0

1 1 0
0 0 0

⎞
⎠ .

It is easy to see that

A†P =

⎛
⎝2.24 1.12 0

1.12 0.56 0
0 0 0

⎞
⎠ and B−1

λ Pλ =

⎛
⎝1.16 0.08 0

0.08 1.04 0
0 0 1

⎞
⎠ .

Following the operations, we have

P†R−P−1
λ Rλ =

⎛
⎝0.3733 0.19 0

0.1867 0.095 0
0 0 0

⎞
⎠

and

P†S−P−1
λ Sλ =

⎛
⎝ 0.0133 0.0033 0

0.0067 0.0017 0
0 0 0

⎞
⎠ .

Clearly, the assumptions of Theorem 14 are satisfied.
In fact, we have ρ(Wλ ) = 0.3513 < 0.6994 = ρ(W ) < 1.

What should be noted that Theorem 14 is a generalization of (i) of Theorem 3.20
in [26]. In a word, several results of the reference [26] are included in the theoretical
results of this paper. Meanwhile, the numerical examples given above show that the
regularized iterative method based on splittings over proper cones has stronger applica-
bility.
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6. Conclusion

In this paper, convergence results for the proper double nonnegative splitting over
the proper cone K1 of a rectangular matrix are established. Comparison theorems for
the spectral radii of matrices arising from proper nonnegative splittings over the proper
cone K1 of the same rectangular matrix or different rectangular matrices are presented.
The application of research results of proper nonnegative splittings over proper cones
in ill-posed linear systems is given.
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