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Abstract. The purpose of this paper is to define and study left and right versions of the large
class of Drazin invertible operators on Banach spaces, namely left and right Drazin invertible
operators, as a generalization of left and right invertible operators. It is shown in particular that
the operators introduced can be characterized by means of Kato decompositions.

1. Introduction

Given a Banach space X , we recall that a bounded operator T acting on X is
said to be Drazin invertible if there exists a nonnegative integer j and the (unique)
bounded operator S such that ST = TS , STS = S and ST j+1 = T j . Drazin invertible
operators are a generalization of invertible operators and they have been extensively
studied in the litterature, for instance see [1], [2] [5], [6]. It is well-known that Drazin
invertible operators can be characterized in many ways, among which we shall recall
the characterization by means of Kato decomposition. Precisely, a bounded operator
T on a Banach space X is Drazin invertible if and only if it can be decomposed into
a direct sum of an invertible operator and a nilpotent one, namely, if there exists some
closed T -invariant subspaces M and N of X such that X = M⊕N and T = TM ⊕TN

where TM is invertible and TN is nilpotent.
The purpose of this paper is to suggest left and right versions of Drazin invert-

ible operators that subsume the classes of left and right invertible operators. It will
be explored how far various known results for Drazin invertible operators have corre-
sponding versions for left and right Drazin invertible operators, most importantly, the
property of Kato decomposition.

The paper is composed of 4 sections. In details, section 2 is meant to recall some
elementary facts on linear operators on linear and normed linear spaces. In section 3,
we define left and right Drazin invertible operators and we show that these operators can
be decomposed into a direct sum of an operator with the property of semi-regularity and
another which is nilpotent. From such decompositions, several characterizations of left
and right Drazin invertible operators will be given. In the final section, we investigate
the relationships between left and right Drazin invertible operators and other classes of
operators related to left and right invertible operators.
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2. Preliminary results

Let X be a real or complex linear space and T be a linear operator in X . Let
N (T ) denotes its kernel and R(T ) denotes its range. We can define iterates T 2 ,
T 3 ,. . . , Tn ,. . . of T for n > 0 and we follow the convention that T 0 = I . Consider now
N (Tn) and R(Tn) . We recall the following result.

LEMMA 2.1. [4] For k = 0,1,2, . . . and i = 0,1,2, . . . , we have

(a)
N (T i+k)
N (T i)

� N (Tk)∩R(T i) and (b)
R(T i)

R(T i+k)
� X

R(Tk)+N (T i)
.

It is known that if N (Tk) = N (Tk+1) , then N (Tn) = N (Tk) for all n � k . In
this case, the smallest nonnegative integer k such that N (Tk) = N (Tk+1) is called
the ascent of T ; it is denoted by α(T ) . If no such k exists, we define α(T ) = ∞ .
Similarly, if R(Tk+1) = R(Tk) , then R(Tn) = R(Tk) when n � k . If there is such
a k , the smallest such k is called the descent of T and denoted by δ (T ) . We write
δ (T ) = ∞ if R(Tn+1) is always a proper subset of R(Tn) .

The notion of the degree δ (T ) of an operator T is a modification of the notion of
descent. It is defined on the following set

Δ(T ) := {n ∈ N : ∀m � n, N (T )∩R(Tn) = N (T )∩R(Tm)}
to be the quantity

δ (T ) :=
{

minΔ(T ) if Δ(T ) �= /0
∞ if Δ(T ) = /0

We recall that a subspace M of X is T -invariant if TM ⊆ M , in this case, the
restriction of T to M is a linear operator in M . It is denoted by TM . A subspace
M reduces T if there is another subspace N such that M and N are T -invariant and
X = M⊕N . In this case, the restrictions TM and TN act on M and N respectively, and
T = TM ⊕TN in the sense that any x ∈ X has a unique decomposition x = xM +xN with
xM ∈ M , xN ∈ N and Tx = TMxM +TNxN .

LEMMA 2.2. If there exist T -invariant subspaces M and N of X such that X =
M⊕N and T = TM⊕TN where TM satisfies N (TM)⊆R(Tn

M) (or equivalently, N (Tn
M)

⊆ R(TM)) for all nonnegative integer n and TN is nilpotent of some degree d , then

N (T )∩R(Tn) = N (TM) and R(T )+N (Tn) = R(TM)⊕N for all n � d .

Proof. Let T = TM⊕TN where TM satisfies N (TM)⊆R(Tn
M) for all nonnegative

integer n and Td
N = 0 for some nonnegative integer d . Then,

N (T )∩R(Td) = (N (TM)+N (TN))∩ (R(Td
M)+R(Td

N ))
= (N (TM)+N (TN))∩R(Td

M)
= [N (TM)∩R(Td

M)]+ [N (TN)∩{0}]
= N (TM),
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and

R(T )+N (Td) = (R(TM)⊕R(TN))+ (N (Td
M)⊕N (Td

N ))
= R(TM)⊕R(TN)+N (Td

M)⊕N

= R(TM)⊕N. �

Assume now that X is normed. A closed subspace M of X is said to be topologi-
cally complemented in X if it is algebraically complemented by a closed subspace N .
The following lemma is purely algebraic and topological. It will be however a central
result to the rest of the paper.

LEMMA 2.3. Let M and N be closed subspaces of X such that X = M⊕N . Let
F be a subspace of M and G be a subspace of N . Then, F ⊕G is topologically
complemented in X if and only if F is topologically complemented in M and G is
topologically complemented in N .

Proof. The proof of this lemma will be divided into two steps.
• Step I: We shall prove that F ⊕G is closed if and only if F and G are closed.

Let P be the bounded projection onto M along N . Towards the first implication, let
{xn} be a sequence in F which converges to x ∈ X . Obviously, x ∈ F ⊕G so that
x = xF + xG where xF ∈ F and xG ∈ G . On the other hand, we note that Px = x so
that x ∈ M . Thus, xG = x− xF ∈ M and hence xG = 0. Consequently, F is closed. To
prove that G is closed, a similar argument yields to the result. Conversely, let {xn} be
a sequence in F ⊕G which converges to x ∈ X and let {yn} be a sequence of F and
{zn} be a sequence of G such that xn = yn + zn . We have xn = P(xn) + (I −P)(xn)
which converges to P(x)+ (I −P)(x) = x . Also, we know by the uniqueness of the
decomposition that yn = P(xn) and that zn = (I −P)(xn) . Thus, since F and G are
closed, it follows that x ∈ F ⊕G .

• Step II: Assume that F ⊕G is topologically complemented in X . Then F ⊕G
is closed and there is Z closed in X such that X = (F ⊕G)⊕Z . Let H := M∩(G⊕Z)
which we claim to be a topological complement of F in M . Towards proving this, we
shall prove first that G⊕Z is closed in X (which entails that H is closed in M ). Let
{xn} be a sequence in G⊕ Z which converges to x ∈ X and let {yn} be a sequence
of G and {zn} be a sequence of Z such that xn = yn + zn . Take now the bounded
projection P onto Z along F ⊕G . We have, xn = (I−P)(xn)+P(xn) which converges
to (I −P)(x)+P(x) = x . But G is closed by Step I and Z is closed by construction.
Thus, x ∈ G⊕Z . On the other hand, we have

F +H = F +(G⊕Z)∩M

= (F +G⊕Z)∩M

= X ∩M

= M,
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and F ∩H = F ∩M ∩ (G⊕ Z) = {0} . Since F is closed in M by Step I, it is topo-
logically complemented in M by H . Finally, the proof that G is topologically com-
plemeted in N can be done in the same way by taking N ∩ (F ⊕Z) as its topological
complement in N .

Conversely, assume that F is topologically complemented in M and that G is
topologically complemented in N . By Step I, F ⊕G is closed in X . Let now Z1 be a
topological complement of F in M and Z2 be a topological complement of G in N ,
then take Z := Z1⊕Z2 which we claim to be a topological complement of F ⊕G in X .
Indeed, firstly Z is closed in X by Step I. On the other hand, obviously, (F ⊕G)+Z =
X . Hence, in order to finish the proof, we shall demonstrate that (F ⊕G)∩Z = {0} .
Towards this, let x ∈ (F ⊕G)∩Z = (F ⊕G)∩(Z1⊕Z2) . Then x = xF +xG = xZ1 +xZ2

where xF ∈ F , xG ∈ G , xZ1 ∈ Z1 and xZ2 ∈ Z2 . It follows that xF = xZ1 + xZ2 − xG

so that xF ∈ (Z1 + N)∩F ⊆ (Z1 + N)∩M . As (Z1 + N)∩M = Z1 + (N ∩M) = Z1 ,
it follows that xF = 0 and hence x = xG . Consequently, x = xG ∈ (Z2 + Z1)∩G ⊆
(Z2 +Z1)∩N . But (Z2 +Z1)∩N = Z2 +(Z1∩N) = Z2 . Hence, x∈G∩Z2 = {0} . �

In the remaining of the paper, we let X denote an infinite dimensional Banach
space and we let B(X) denote the set of all linear bounded operators on X . We re-
call that an operator T ∈ B(X) is said to be left invertible if there exists an operator
S ∈ B(X) such that ST = I (where I is the identity operator) while T is said to be
right invertible if there exists A ∈ B(X) such that TA = I . We also recall that an oper-
ator T ∈ B(X) is said to be semi-regular if R(T ) is closed and N (T ) ⊆ R(Tn) (or
equivalently, N (Tn)⊆R(T )) for all nonnegative integer n , upper Drazin invertible if
p := α(T ) < ∞ and R(T p+1) is closed, lower Drazin invertible if q := δ (T ) < ∞ and
R(Tq) is closed ([1]), and quasi-Fredholm of degree d if d = δ (T ) and the subspaces
N (T )∩R(Td) and R(T )+N (Td) are closed. We note that an operator T ∈ B(X)
is quasi-Fredholm of degree 0 if and only if it is semi-regular.

We end up this section by recalling that an operator T ∈ B(X) is said to have a
Kato decomposition if there exist closed T -invariant subspaces M and N of X such
that X = M⊕N and T = TM ⊕TN where TM is semi-regular and TN is nilpotent.

3. Left and right Drazin invertible operators

It is well-known that an operator T ∈ B(X) is left invertible if and only if it is
one-to-one and its range is topologically complemented. In such a case, p := α(T ) = 0
so that N (T ) = {0} . It is also known that an operator T ∈ B(X) is right invertible
if and only if it is surjective with a topologically complemented kernel. In such a case,
q := δ (T ) = 0 and R(T ) = X . Motivated by these two characterizations, we propose
the following two generalizations of left and right invertible operators.

DEFINITION 3.1. An operator T ∈ B(X) will be called left Drazin invertible if
p := α(T ) < ∞ and the subspace R(T )+N (T p) is topologically complemented in
X , while T ∈ B(X) will be called right Drazin invertible if q := δ (T ) < ∞ and the
subspace N (T )∩R(Tq) is topologically complemented in X .
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Obviously, an operator T ∈ B(X) is Drazin invertible if and only if it is both left
and right Drazin invertible. In fact, the converse implication is clear. For the direct one,
if d := α(T ) = δ (T ) < ∞ , it follows from Lemma 2.1 that N (T )∩R(Td) = {0} and
X = R(T )+N (Td) .

Observe now that any left or right Drazin invertible operator is quasi-Fredholm of
some degree d . To see this, let T ∈ B(X) be left Drazin invertible. If α(T ) = 0, then
T is obviously quasi-Fredholm if degree 0. Otherwise, if 1 � p := α(T ) < ∞ , then it
follows from Lemma 2.1 (a) that N (T )∩R(T p−1) �= {0} and N (T )∩R(T k) = {0}
for all k � p . Hence, since N (T )∩R(T p) = {0} and R(T )+N (T p) are closed,
T is quasi-Fredholm of degree p . Similarly, if T is right Drazin invertible, it is quasi-
Fredholm if degree 0 whenever δ (T ) = 0. Otherwise, if 1 � q := δ (T ) < ∞ , it follows
from Lemma 2.1 (b) that R(T )+N (Tq−1) �= X and R(T )+N (Tk) = X all k � q so
that T is quasi-Fredholm of degree q since R(T )+N (Tq) = X and N (T )∩R(Tq)
are closed. Thus, [7, Proposition 3] implies that each left Drazin invertible operator is
upper Drazin invertible and that each right Drazin invertible operator is lower Drazin
invertible. We shall also note that if X is a Hilbert space, then the converse implications
hold.

3.1. Kato decomposition of left Drazin invertible operators and consequences

We begin this section by giving the Kato decomposition of left Drazin invertible
operators.

THEOREM 3.2. Let T ∈ B(X) . Then, the following statements are equivalent:

(i) T is left Drazin invertible.

(ii) There exist closed T -invariant subspaces M and N of X such that X = M⊕N
and T = TM ⊕TN where TM is left invertible and TN is nilpotent.

Proof. (i)⇒ (ii) Since p := α(T ) < ∞ , it follows from Lemma 2.1(a) that N (T )
∩R(T p) = {0} so that N (T )∩R(T p) is topologically complemented. Now, since
T is quasi-Fredholm of degree p and the subspace R(T )+N (T p) is also topologi-
cally complemented, it follows from [7, Theorem 5] that there exist closed T -invariant
subspaces M and N of X such that X = M⊕N and T = TM ⊕TN where TM is semi-
regular and TN satisfies T p

N = 0, that is nilpotent. We shall prove now that TM is left
invertible. Towards this, we know from Lemma 2.1 (a) that N (T )∩R(T p) = {0}
since p := α(T ) < ∞ . Thus, Lemma 2.2 implies that TM is one-to-one. On the other
hand, we also know from Lemma 2.2 that R(T )+N (T p) = R(TM)⊕N . Thus, since
R(T )+N (T p) is topologically complemented in X , it follows from Lemma 2.3 that
R(TM) is topologically complemented in M .

(ii) ⇒ (i) Suppose that there exist closed T -invariant subspaces M and N such
that X = M ⊕N and T = TM ⊕ TN where TM is left invertible and TN is nilpotent
of degree p . We know from Lemma 2.2 that N (T )∩R(T p) = N (TM) and that
R(T )+ N (T p) = R(TM)⊕N . Thus, since N (T )∩R(T p−1) �= {0} and N (T )∩
R(T p) = N (TM) = {0} , it follows from Lemma 2.1 (a) that p = α(T ) < ∞ . Finally,
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the fact that R(TM) is topologically complemented in M entails from Lemma 2.3 that
R(T )+N (T p) is topologically complemented in X . �

Based on Theorem 3.2, left Drazin invertible operators can be also characterized
in the following way.

THEOREM 3.3. Let T ∈ B(X) . Then, T is left Drazin invertible if and only if
p := α(T ) < ∞ and N (T p) and R(T p+1) are topologically complemented.

Proof. If T is left Drazin invertible, then by Theorem 3.2, there exist closed T -
invariant subspaces M and N such that X = M ⊕N and T = TM ⊕ TN where TM

is left invertible and TN is nilpotent of degree p := α(T ) . It follows that T p =
T p
M ⊕ 0 and that T p+1 = T p+1

M ⊕ 0, so that N (T p) = N which is topologically com-
plemented and R(T p+1) = R(T p+1

M ) . Since R(T p+1
M ) is topologically complemented

in M , it follows from Lemma 2.3 that R(T p+1) is topologically complemented in
X . Conversely, let p := α(T ) < ∞ and assume that N (T p) and R(T p+1) are topo-
logically complemented. Let F and G be closed subspaces of X such that X =
R(T p+1)⊕F = N (T p)⊕G . First, note that T−p(R(T p+1)) = R(T )+N (T p) and
that T−p(R(T p+1)+F) = T−p(R(T p+1))+T−p(F) since R(T p+1) ⊂ R(T p) . Let
now H := G∩ T−p(F) which we claim to be a topological complement of R(T ) +
N (T p) . Indeed, we have

(R(T )+N (T p))+H = R(T )+N (T p)+G∩T−p(F)
= R(T )+ (N (T p)+G)∩T−p(F)
= R(T )+T−p(F).

Since N (T p) = T−p({0}) ⊂ T−p(F) , it follows that

(R(T )+N (T p))+H = R(T )+T−p(F)
= R(T )+N (T p)+T−p(F)
= X .

On the other hand, we have

(R(T )+N (T p))∩H = (R(T )+N (T p))∩T−p(F)∩G

= N (T p)∩G

= {0}.

Finally, the closedness of R(T ) + N (T p) and H are obvious and thus the proof is
completed. �

We are now interested in giving other characterizations of left Drazin invertible
operators. For this purpose, we let Tn denote the restriction of an operator T ∈ B(X)
to R(Tn) viewed as a map from R(Tn) into itself.
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THEOREM 3.4. Let T ∈ B(X) . Then, the following statements are equivalent:

(i) T is left Drazin invertible.

(ii) There exists a nonnegative integer n such that N (Tn) is topologically comple-
mented, R(Tn) is closed and Tn : R(Tn) −→ R(Tn) is left invertible.

(iii) There exists a projection P ∈ B(X) such that PT = TP, T +P is left invertible
and TP is nilpotent.

Proof. (i) ⇔ (ii) If T is left Drazin invertible, then p := α(T ) < ∞ and T is
quasi-Fredholm of degree p so that R(T p) is closed by [7, Proposition 3]. Also, by
Theorem 3.3, N (T p) and R(T p+1) are topologically complemented. Let now Tp :
R(T p) −→ R(T p) . From Lemma 2.1 (a) we have N (Tp) = N (T )∩R(T p) = {0}
so that Tp is one-to-one. On the other hand, take F a topological complement of
R(T p+1) in X . Then, F∩R(T p) is a topological complement of R(T p+1) in R(T p)
and hence, Tp is left invertible. Conversely, assume that there exists a nonnegative
integer n such that N (Tn) is topologically complemented, R(Tn) is closed and Tn :
R(Tn)−→R(Tn) is left invertible. Since N (Tn) = N (T )∩R(Tn) = {0} , it follows
from Lemma 2.1 (a) that p := α(T ) � n < ∞ . Finally, since R(Tn+1) is topologically
complemented in R(Tn) and N (Tn) is topologically complemented in X , we can
prove that R(T )+N (Tn) = R(T )+N (T p) is topologically complemented in X by
repeating the same construction which was done in the proof of Theorem 3.3.

(i) ⇔ (iii) If T is left Drazin invertible, then there exist closed T -invariant sub-
spaces M and N such that X = M⊕N and T = TM ⊕TN where TM is left invertible
and TN is nilpotent of degree p := α(T ) . Consider the bounded projection P onto N
along M . We have, N = R(P) and M = N (P) . Take now x ∈ X . Then, x can be
decomposed in a unique way as xM + xN where xM ∈ M and xN ∈ N . Thus we have,
TP(x) = TxN and PT (x) = P(TxM +TxN) = TxN , so that TP = PT . Also, we have
(TP)p(x) = T pPp(xM + xN) = T p(xN) = (T p

M ⊕{0})(xN) = 0 which entails that TP
is nilpotent. On the other hand, obviously (T + P)N (P) = TN (P) = TM which is left
invertible and (T +P)R(P) = TR(P) + IN (P) = TN + IN which is invertible since TN is
nilpotent. Therefore, T +P = (T +P)M ⊕ (T +P)N = TM ⊕ (TN + IN) so that T +P is
one-to-one and R(T +P) = R(TM)⊕N . Since R(TM) is topologically complemented
in M , it follows from Lemma 2.3 that R(T +P) is topologically complemented in X
so that T + P is left invertible. Towards the converse implication, assume that there
exists a projection P ∈ B(X) such that PT = TP , T +P is left invertible and TP is
nilpotent of degree d . Since P is bounded, we know that N (P) and R(P) are closed
and X = N (P)⊕R(P) . Since PT = TP , N (P) and R(P) are T -invariant. Consider
now TN (P) : N (P)−→N (P) and TR(P) : R(P)−→R(P) . Then T = TN (P)⊕TR(P)
and T +P = TN (P) ⊕ (TR(P) + IR(P)) . Also, TR(P) is nilpotent since for x ∈ R(P) ,
we have Td

R(P)(x) = TdPd(x) = (TP)d(x) = 0. To finish the proof, we shall prove that

TN (P) is left invertible. Towards this, we know that T +P = TN (P) ⊕ (TR(P) + IR(P))
and that T + P is left invertible. Thus, TN (P) is one-to-one and R(TN (P))⊕R(P)
is topologically complemented in X . Finally, the fact that R(TN (P)) is topologically
complemented in N (P) follows from Lemma 2.3. �
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REMARKS 3.5. Let T ∈ B(X) be an operator that satisfies the following condi-
tions: there exists a nonnegative integer j and a bounded operator S such that R(T j)
is closed, N (T j) is topologically complemented, ST j+1 = T j and TS(R(T j)) ⊂
R(T j+1) . Then, we claim that T is left Drazin invertible. Indeed, to prove this, it
suffices to apply Theorem 3.4 (ii) and demonstrate that Tj : R(T j) −→ R(T j) is left
invertible. Towards this, consider the bounded operator STS . Then, STS(R(T j)) ⊂
R(T j) and for all y = T jx ∈ R(T j) , we have

STSTj(y) = STSTT j(x) = ST j+1(x) = T j(x) = y ,

so that Tj is left invertible as desired.

We define now the left Drazin spectrum of an operator T ∈ B(X) to be the fol-
lowing set of the complex plane:

σld(T ) := {λ ∈ C : T −λ I is not left Drazin invertible} .

Obviously, we have the following inclusions:

σld(T ) ⊂ σl(T ) ⊂ σ(T ) ,

where σl(T ) and σ(T ) are the left spectrum and the spectrum of T , respectively.
As a consequence of Theorem 3.2, the following result about the compactness of

the left Drazin spectrum arises.

THEOREM 3.6. The left Drazin spectrum σld(T ) is a compact subset of the com-
plex plane.

Proof. Towards proving the compactness of σld(T ) , since σld(T ) ⊂ σ(T ) and
σ(T ) is bounded, we only need to prove that σld(T ) is closed in the complex plane
and thus in σ(T ) . Towards this, it suffices to prove that if T is left Drazin invertible,
then there exists ε > 0 such that for all λ ∈ C satisfying 0 < |λ | < ε , T −λ I is left
Drazin invertible. Let then T be a left Drazin invertible operator. Then, it follows from
Theorem 3.2 that there exist closed T -invariant subspaces M and N of X such that
X = M⊕N and T = TM ⊕TN where TM is left invertible and TN is nilpotent. Since
σl(TM) is closed, there exists ε > 0 such that for all λ ∈ C verifying 0 < |λ | < ε ,
TM − λ I is left invertible. But T − λ I = TM − λ I ⊕ TN − λ I and TN − λ I is invert-
ible. Consequently, T −λ I is one-to-one and R(T −λ I) = R(TM −λ I)⊕N which is
topologically complemented in X by Lemma 2.3. �

3.2. Kato decomposition of right Drazin invertible operators and consequences

Right Drazin invertible operators allow the following Kato decomposition.

THEOREM 3.7. Let T ∈ B(X) . Then the following statements are equivalent:

(i) T is right Drazin invertible.
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(ii) There exist closed T -invariant subspaces M and N of X such that X = M⊕N
and T = TM ⊕TN where TM is right invertible and TN is nilpotent.

Proof. (i)⇒ (ii) Since q := δ (T )< ∞ , it follows from Lemma 2.1(b) that R(T )+
N (Tq) = X so that R(T )+N (Tq) is topologically complemented. Now, since T is
quasi-Fredholm of degree q and the subspace N (T )∩R(Tq) is also topologically
complemented, it follows from [7, Theorem 5] that there exist closed T -invariant
subspaces M and N of X such that X = M ⊕ N and T = TM ⊕ TN where TM is
semi-regular and TN satisfies Tq

N = 0. We shall prove now that R(TM) = M and
that N (TM) is topologically complemented in M . In fact, we know from Lemma
2.2 that R(T )+N (Tq) = R(TM)⊕N and that N (T )∩R(T q) = N (TM) . Hence,
R(TM)⊕N = M⊕N , so that R(TM) = M since R(TM) ⊂ M . Finally, the fact that
N (TM) is topologically complemented in M follows from Lemma 2.3.

(ii) ⇒ (i) Suppose that there exist closed T -invariant subspaces M and N such
that X = M⊕N and T = TM ⊕TN where TM is right invertible and TN is nilpotent of
degree q . We know that R(T )+ N (Tq−1) �= X and from Lemma 2.2 that R(T )+
N (Tq) = R(TM)⊕N = M ⊕N = X . Therefore, Lemma 2.1 (b) implies that q =
δ (T ) . Finally, since by Lemma 2.2 N (T )∩R(Tq) = N (TM) and since N (TM) is
topologically complemented in M , it follows from Lemma 2.3 that N (T )∩R(Tq) is
topologically complemented in X . �

THEOREM 3.8. Let T ∈ B(X) . Then, the following statements are equivalent:

(i) T is right Drazin invertible.

(ii) There exists a nonnegative integer n such that R(Tn) is topologically comple-
mented and Tn : R(Tn) −→ R(Tn) is right invertible.

(iii) There exists a projection P∈B(X) such that PT = TP, T +P is right invertible
and TP is nilpotent.

Proof. (i) ⇔ (ii) If T is right Drazin invertible, then by Theorem 3.7, there exist
closed T -invariant subspaces M and N such that X = M⊕N and T = TM ⊕TN where
TM is right invertible and TN is nilpotent of degree q := δ (T ) . We have Tq = Tq

M ⊕0
so that R(Tq) = M which is topologically complemented in X . Take now Tq := TM

which is right invertible. Conversely, assume that for some nonnegative integer n ,
R(Tn) is topologically complemented and Tn : R(Tn) −→ R(Tn) is right invertible.
We have R(Tn+1) = R(Tn) so that q := δ (T ) � n < ∞ . On the other hand, N (T )∩
R(Tq) = N (T )∩R(Tn) which is topologically complemented in R(Tn) . Since this
latter subspace is topologically complemented in X , it follows from Lemma 2.3 that
N (T )∩R(Tq) is also topologically complemented in X .

(i) ⇔ (iii) Assume that T is right Drazin invertible. Then, there exist closed
T -invariant subspaces M and N such that X = M⊕N and T = TM ⊕TN where TM

is right invertible and TN is nilpotent of degree q := δ (T ) . Let P be the bounded
projection onto N along M . Then, as is the proof of (i) ⇔ (iii) in Theorem 3.4, we
obtain that PT = TP and TP is nilpotent. Finally, it is easy to see that (T +P)N (P) =



410 A. GHORBEL AND M. MNIF

TN (P) = TM which is right invertible and that (T +P)R(P) = TR(P) + IN (P) = TN + IN
which is invertible. Therefore, T +P = TM ⊕ (TN + IN) so that T +P is surjective and
N (T +P) = N (TM) . Since N (TM) is topologically complemented in M , it follows
from Lemma 2.3 that N (T + P) is topologically complemeted in X . Towards the
converse implication, assume that there exists a projection P ∈ B(X) such that PT =
TP , TP is nilpotent and T +P is right invertible. Then X = N (P)⊕R(P) and N (P)
and R(P) are closed and T -invariant. Consider now TN (P) : N (P) −→ N (P) and
TR(P) : R(P) −→ R(P) . Then T = TN (P)⊕TR(P) , T +P = TN (P) ⊕ (TR(P) + IR(P))
and TR(P) is nilpotent. Since T +P is right invertible, it follows that X = N (P)⊕
R(P) = R(TN (P))⊕R(P) so that R(TN (P)) = N (P) since R(TN (P)) ⊂ N (P) .
Finally, we have N (T +P) = N (TN (P)) which is topologically complemented in X .
Thus, N (TN (P)) is topologically complemented in N (P) by Lemma 2.3. �

REMARKS 3.9. Let T ∈ B(X) be an operator that satisfies the following condi-
tions: there exist a nonnegative integer j and an operator S ∈ B(X) such that R(T j)
is topologically complemented, TST j = T j and S(R(T j)) ⊂ R(T j) . Then, we note
that it follows from Theorem 3.8 (ii) that T is right Drazin invertible.

We define now the right Drazin spectrum of an operator T ∈ B(X) by:

σrd(T ) := {λ ∈ C : T −λ I is not right Drazin invertible} .

Obviously, the following inclusions hold:

σrd(T ) ⊂ σr(T ) ⊂ σ(T ) ,

where σr(T ) is the right spectrum of T .
Based on the compactness of the right spectrum, Theorem 3.7 yields to the follow-

ing result about the compactness of the right Drazin spectrum.

THEOREM 3.10. The right Drazin spectrum σrd(T ) is a compact subset of the
complex plane.

4. Some classes related to left and right invertible linear operators

The purpose of this section is to demonstrate that under some additional condi-
tions, left and right Drazin invertible operators are equivalent to operators already intro-
duced and studied in the litterature, namely left and right generalized Drazin invertible
operators (see [3]) and left and right Browder operators (see [10]).

4.1. Left and right generalized Drazin invertible operators

For an operator T ∈ B(X) , we recall that its quasi-nilpotent part is the subspace
defined by:

H0(T ) := {x ∈ X : ||Tnx|| 1
n converges to 0}

and that its analytical core part is the subspace defined by:
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K (T ) := {x ∈ X : there exists a sequence (xn) in X and δ > 0 : Tx1 = x,
Txn+1 = xn and ||xn|| � δ n||x|| for all nonnegative integer n} .

In [3], new classes of operators were introduced and defined by means of quasi-
nilpotent parts and analytical core parts as follows.

DEFINITION 4.1. An operator T ∈ B(X) is said to be left generalized Drazin
invertible if H0(T ) is topologically complemented in X by a closed subspace M such
that TM is topologically complemented in M , and T is said to be right generalized
Drazin invertible if K (T ) is topologically complemented in X by a closed subspace
M such that TM ⊆ M ⊆ H0(T ) and N (T )∩K (T ) is topologically complemented
in K (T ) .

The sentences left generalized Drazin invertible and right generalized Drazin in-
vertible suggest that these classes of operators subsume the classes of left and right
Drazin invertible operators, respectively. In fact, this is true except that this cannot be
directly seen from the definitions as the approach and the techniques used in [3] are
different from those used in this paper. However, the characterizations of left and right
Drazin invertible operators by means of Kato decompositions given in Theorems 3.2
and 3.7 imply that each left Drazin invertible operator is left generalized Drazin invert-
ible and that each right Drazin invertible operator is right generalized Drazin invertible.
Indeed, it was proven in [3, Theorems 3.3, 3.4] that an operator T ∈ B(X) is left (resp.
right) generalized Drazin invertible if and only if there exist closed T -invariant sub-
spaces M and N of X such that X = M⊕N and T = TM ⊕TN where TM is left (resp.
right) invertible and TN is quasi-nilpotent. In the following result, we answer the ques-
tion of when we have converse implications, in other words, under which condition left
and right generalized Drazin invertible operators are left and right Drazin invertible,
respectively.

THEOREM 4.2. Let T ∈ B(X) . Then, the following equivalences hold:

(i) T is left Drazin invertible if and only if T is left generalized Drazin invertible,
p := α(T ) < ∞ and R(T p) and R(T p+1) are closed.

(ii) T is right Drazin invertible if and only if T is right generalized Drazin invertible
and δ (T ) < ∞ .

Proof. (i) If T is left Drazin invertible, then the Kato decomposition of T given
in Theorem 3.2 implies that T is left generalized Drazin invertible by [3, Theorem 3.3]
since each nilpotent operator is quasi-nilpotent. Also, p := α(T ) < ∞ and R(T p) and
R(T p+1) are closed by [7, Proposition 3]. Conversely, if T is left generalized Drazin
invertible, there exist closed T -invariant subspaces M and N of X such that X =M⊕N
and T = TM ⊕ TN where TM is left invertible and TN is quasi-nilpotent. Since p :=
α(T ) is finite, then α(TN) � p . On the other hand, we know that R(T p) = R(T p

M)⊕
R(T p

N ) and that R(T p+1) = R(T p+1
M )⊕R(T p+1

N ) . Thus, the facts that R(T p) and

R(T p+1) are closed entail from Lemma 2.3 that R(T p
N ) and R(T p+1

N ) are closed too,
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and hence so are R((T p
N )∗) and R((T p+1

N )∗) . Therefore, it follows from the equality

N (T p
N ) = N (T p+1

N ) and from the classical closed range theorem that

R((T p
N )∗) = N (T p

N )⊥ = N (T p+1
N )⊥ = R((T p+1

N )∗) ,

so that q := δ (T ∗
N ) � p . Now, since T ∗

N is quasi-nilpotent, it follows from [9, Corollary
10.6] that (T ∗

N )p = 0. Finally, from the known relation N (T ∗) = R(T )⊥ applied to
T p
N and from the fact that R(T p

N ) is closed, we can easily prove that TN is a nilpotent
operator.

(ii) If T is right Drazin invertible, then the Kato decomposition of T given in
Theorem 3.7 implies from [3, Theorem 3.4] that T is right generalized Drazin invert-
ible. Conversely, if T is right generalized Drazin invertible, then there exist closed T -
invariant subspaces M and N of X such that X = M⊕N and T = TM ⊕TN where TM

is right invertible and TN is quasi-nilpotent. Since δ (T ) < ∞ , we note that δ (TN) < ∞ .
Therefore, it follows from [9, Corollary 10.6] that TN is nilpotent. �

4.2. Left and right Browder operators

DEFINITION 4.3. An operator T ∈B(X) is said to be left Browder if dimN (T )
< ∞ , α(T )< ∞ and R(T ) is topologically complemented, right Browder if codimR(T )
< ∞ , δ (T ) < ∞ and N (T ) is topologically complemented and Browder if it is both
left and right Browder.

It was proven in [10, Theorems 5, 6] that an operator T ∈ B(X) is left (right)
Browder if and only if there exist closed T -invariant subspaces M and N of X such
that dimN < ∞ , X = M⊕N and T = TM⊕TN where TM is left (right) invertible and TN

is nilpotent. Hence always, a left Browder operator is left Drazin invertible and a right
Browder operator is right Drazin invertible. In the following theorem, an additional
condition is added to a left Drazin invertible operator to be left Browder and another to
a right Drazin invertible operator to be right Browder.

THEOREM 4.4. Let T ∈ B(X) . Then, the following equivalences hold:

(i) T is left Browder if and only if T is left Drazin invertible and N (T α(T)) is of
finite dimension.

(ii) T is right Browder if and only if T is right Drazin invertible and R(T δ (T )) is of
finite codimension.

(iii) T is Browder if and only if T is Drazin invertible and either N (T α(T )) is of
finite dimension or R(T δ (T)) is of finite codimension.

Proof. The proof of (i) and (ii) are based on the Kato decompositions. They
are straightforward and hence ommited. For the proof of (iii) , the direct implication
is obvious. For the converse one, if N (T α(T )) is of finite dimension, then by (i) ,
T is left Browder. Since α(T ) = δ (T ) < ∞ , it follows from [8, Corollary 4.4] that
dimN (T ) = codimR(T ) so that T is Browder. If R(T δ (T )) is of finite codimension,
then again by [8, Corollary 4.4], T is Browder. �
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[10] S. C. ŽIVKOVIĆ-ZLATANOVIĆ, D. S. DJORDJEVIĆ, R. E. HARTE, On left and right Browder oper-
ators, Jour. Korean Math. Soc. 48 (2011), 1053–1063.

(Received May 27, 2021) Ayoub Ghorbel
Department of mathematics

Sfax University
B.P. 1171, 3000, Tunisia

e-mail: ghorbel.agr@gmail.com

Maher Mnif
Department of mathematics

Sfax University
B.P. 1171, 3000, Tunisia

e-mail: Maher.mnif@gmail.com

Operators and Matrices
www.ele-math.com
oam@ele-math.com


