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Abstract. Let X be a real or complex Banach space, let L (X) denote the algebra of all bounded
linear operators on X , and let F (X) stand for the ideal of L (X) consisting of those operators
in L (X) having finite-dimensional range. We introduce standard operator Jordan algebras on
X as those Jordan subalgebras of L (X) which contain F (X) .

As main results, we prove the following:
— If X is a real or complex Banach space, if A is a standard operator Jordan algebra on

X , and if D is an L (X) -valued linear (Jordan) derivation of A , then there exists B ∈ L (X)
such that D(A) = [B,A] for every A ∈ A .

— Every standard operator Jordan algebra A has minimum norm topology, i.e. the topol-
ogy of any algebra norm on A is greater than or equal to that of the operator norm.

— Surjective algebra homomorphisms from complete normed Jordan algebras to standard
operator Jordan algebras are continuous.

Actually, the first of the results just quoted is discussed when A is merely a standard
operator Jordan ring on X (i.e, a Jordan subring of L (X) containing F (X) ) and D is assumed
to be additive (as linearity of D could have not a meaning in this setting). In turn, the last of
the results quoted above remains true if the completeness of the starting normed algebras is
substantially weakened.

1. Introduction, announcement of results, and a theorem of existence

For notions not introduced in this paper, the reader is referred to [8].
Let K denote either R or C , let X be a Banach space over K , let L (X) denote

the algebra over K of all bounded linear operators on X , and let F (X) stand for the
ideal of L (X) consisting of those operators in L (X) having finite-dimensional range.
Standard operator algebras (respectively, standard operator rings) on X are defined
as those subalgebras (respectively, subrings) of L (X) which contain F (X) . In this
paper we deal with a larger class of subsets of L (X) , namely that of those Jordan sub-
algebras (respectively, Jordan subrings) of L (X) which contain F (X) . These subsets
of L (X) shall be called standard operator Jordan algebras (respectively, standard
operator Jordan rings) on X . By the definition of a Jordan subring of an associa-
tive algebra over K , every standard operator Jordan ring (so a fortiori every standard
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operator Jordan algebra) is closed under the so-called Jordan product • defined by
A1 • A2 := 1

2 (A1A2 + A2A1) , so in particular under the passing to squares of its ele-
ments. Since the inequality ‖A1 •A2‖ � ‖A1‖‖A2‖ holds for all A1,A2 ∈ L (X) , every
standard operator Jordan algebra on X shall be considered without notice as a normed
algebra under the operator norm.

The following theorem was proved by Chernoff [10].

THEOREM 1.1. Let X be a Banach space over K , let A be a standard operator
algebra on X , and let D : A → L (X) be a linear mapping such that

D(A1A2) = D(A1)A2 +A1D(A2) for all A1,A2 ∈ A . (1.1)

Then there exists B ∈ L (X) such that D(A) = AB−BA for every A ∈ A .

The main goal in this paper is to formulate and prove the appropriate variant of
Theorem 1.1 when standard operator Jordan rings replace standard operator algebras.
This is done by proving Theorem 1.5 below. To this end, the basic concept and fact
which follow should be considered.

Let X be a vector space over K . Following [19, Definition IV.14.1], we say that
a mapping T : X → X is a differential operator on X if it is additive and there exists a
ring derivation d of K 1 such that

T (λx) = λT (x)+d(λ )x for all λ ∈ K and x ∈ X . (1.2)

It is easily realized that the set of all differential operators on X is a Lie subring of the
associative ring of all additive operators on X , and contains the set (say L(X)) of all
linear operators on X as an ideal. Therefore we are provided with the following.

FACT 1.2. Let X be a vector space over K , and let T be a differential operator on
X . Then [A,T ] := AT −TA lies in L(X) whenever A does, and the mapping A→ [A,T ]
is a ring derivation of L(X) .

The key tool to prove Theorem 1.5 is the following theorem, proved in [28].

THEOREM 1.3. Let X be a Banach space over K , let A be a standard operator
algebra on X , and let D : A → L (X) be an additive mapping satisfying

D(A1A2) = D(A1)A2 +A1D(A2) for all A1,A2 ∈ A .

We have:

(i) There exists a differential operator T on X such that D(A) = [A,T ] for every
A ∈ A .

(ii) If X is infinite-dimensional, then the differential operator T above actually lies
in L (X) .

1The reader is referred to [25] to realize that (automatically discontinuous) nonzero ring derivations of K

do exist.
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Comments on the proof. Assertion (i) corresponds to the first part of the proof
of [28, Theorem 3] (from the beginning of that proof to line 16 in page 321). It is
worth noticing that, essentially, the differential operator T whose existence is assured
is uniquely determined by D , in the sense that two such operators differ only in a scalar
multiple of the identity operator on X (see Proposition 2.2(ii) in the current paper). This
remark is important to the well-understanding of the words ‘the differential operator T
above’ in assertion (ii). We note that assertion (i) also follows from Jacobson’s Theorem
IV.14.3 in [19], by ‘pairing’ the Banach space X with its dual 2.

The crucial assertion (ii) corresponds to the remaining part of the proof of [28,
Theorem 3]. �

To complement Theorem 1.3, let us consider the case that the Banach space X
over K is finite-dimensional. Then X = K

m for some positive integer m , and L (X) =
Mm(K) is the unique standard operator Jordan ring on X . In this case, each ring deriva-
tion d of K gives rise to a differential operator d̂ on X defined by d̂(λ1, . . . ,λm) :=(
d(λ1), . . . ,d(λm)

)
. With this notation, [27, Theorem 2.2] can be read as follows.

THEOREM 1.4. Set X = Km , and let T be a differential operator on X . Then
there exist A ∈ L (X) and a ring derivation d of K such that T = A+ d̂ .

Now our main result reads as follows.

THEOREM 1.5. Let X be a Banach space over K , let A be a standard operator
Jordan ring on X , and let D : A → L (X) be an additive mapping such that

D(A2) = 2D(A)•A for every A ∈ A . (1.3)

Then there exists a differential operator T on X such that D(A) = [A,T ] for every
A ∈ A . Moreover the differential operator T above lies in L (X) whenever X is
infinite-dimensional, or D is linear on F (X) , or D is continuous.

Actually, Theorem 1.5 above is derived from a more general result in the spirit of
[21] (see Theorem 2.4).

As a straightforward consequence of Theorem 1.5, we obtain the following.

COROLLARY 1.6. Let X , A , and D be as in Theorem 1.5. Then D is continuous
if and only if there exists B ∈ L (X) such that D(A) = [A,B] for every A ∈ A .

REMARK 1.7. Let E be a (possibly non-commutative) associative algebra over
K , and let W be a left module over E in the usual sense (see for example [3, Def-
inition 9.11]). Adapting to this setting the notion that we have given of a differential
operator on a vector space over K , we say that a mapping T : W → W is a differ-
ential operator on W if it is linear and there exists a linear derivation d of E such
that T (ex) = eT (x)+d(e)x for all e ∈ E and x ∈ W . It is clear that both all E -linear

2Howhever, it is worth noticing that Jacobson omits the proof of his theorem, giving only some vague
indications for that proof.
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operators on W and all operators of the form Se : x → ex (when e runs over E ) are
differential operators on W . To obtain the description of derivations of the so-called
‘structurable H∗ -algebras’ [7], differential operators on the so-called ‘Hilbert modules
over associative H∗ -algebras with zero annihiltor’ [26] were studied in [6]. As the
main result in [6], it is proved that, given a Hilbert module W over an associative H∗ -
algebra E with zero annihilator, the set of all bounded differential operators on X is
a weak-operator closed Lie subalgebra of L (W ) , and that every bounded differential
operator on W is the sum of a continuous E -linear operator and of an operator in the
closure of the set {Se : e ∈ E } in L (X) for the weak-operator topology.

In the last section of this paper we prove that every standard operator Jordan al-
gebra A over K has minimum norm topology, i.e. the topology of any algebra norm
on A is greater than or equal to that of its natural norm (see Theorem 3.2). This result
(whose associative forerunner is well-known [13]) becomes one of the ingredients to
show that surjective algebra homomorphisms from complete normed Jordan algebras
over K to standard operator Jordan algebras on any Banach space over K are contin-
uous. Actually, this last result remains true if the completeness of the starting normed
algebra is substantially relaxed (see Theorem 3.7 for details).

Let X be a Hilbert space over K . Jordan subalgebras of L (X) have been con-
sidered in the literature, specially in the case that they actually are Jordan ideals, i.e.
subspaces A of L (X) such that L (X) •A ⊆ A . It was proved in [15, Theorem
3] that Jordan ideals of L (X) are (associative) ideals whenever X is separable. Later
it is shown in [5, Item (iii) in p. 3 or Corollary 2.6] that the requirement of separa-
bility of X in the result just reviewed can be altogether removed. On the other hand,
it is well-known that, if dim(X) � 2, then Jordan subalgebras of L (X) which are
not (associative) subalgebras do exist, the simplest example being the so-called three-
dimensional spin factor (see [8, p. 553]). Nevertheless, it seems to us that the existence
of standard operator Jordan algebras on X which are not subalgebras of L (X) has not
been settled in the literature. (Note that such standard operator Jordan algebras on X
may exist only if X is infinite-dimensional.) Therefore we conclude this section by
proving the following.

THEOREM 1.8. Let X be an infinite-dimensional Hilbert space over K . Then
there exists a standard operator Jordan algebra on X which is self-adjoint and closed
in L (X) , but is not a standard operator algebra.

Proof. Case K = R .
In this case, by [24, Theorem 3], X becomes an absolute-valued algebra with a left

unit under its own norm and a suitable product. Let e denote the left unit of this algebra,
for x ∈ X let Φ(x) denote the operator of left multiplication by x on this algebra and
let us set x∗ := 2(x|e)e−x , and for T ∈L (X) let T ∗ ∈L (X) denote the adjoint of T .
Then, according to [8, Proposition 2.7.33], for every x∈ X we have Φ(x∗) = Φ(x)∗ and
Φ(x)∗Φ(x) = ‖x‖2IX , where IX denotes the identity operator on X . Therefore Φ(X)
is a self-adjoint subspace of L (X) , the mapping Φ : x → Φ(x) from X to L (X) is a
linear isometry (hence Φ(X) is closed in L (X)), and, for each nonzero x ∈ X , Φ(x)
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is invertible in L (X) with ‖Φ(x)−1‖ = ‖Φ(x)‖−1 . On the other hand, for x ∈ X we
have

Φ(x)2 = Φ(2(x|e)e− x∗)Φ(x) = 2(x|e)Φ(x)−Φ(x)∗Φ(x)

= 2(x|e)Φ(x)−‖x‖2IX = Φ(2(x|e)x−‖x‖2e) ∈ Φ(X).

Therefore Φ(X) is a Jordan subalgebra of L (X) . Now denote by K (X) the ideal of
L (X) consisting of all compact operators of X . Let 0 �= x ∈ X and B ∈ K (X) . Then,
since Φ(x) is invertible in L (X) and B is not, it follows from [8, Corollary 1.1.21(ii)]
that ‖Φ(x)−B‖� ‖Φ(x)−1‖−1 = ‖Φ(x)‖ . This shows that Φ(X)∩K (X) = 0, that the
direct sum Φ(X)⊕K (X) is topological, and that consequently A := Φ(X)⊕K (X)
is closed in L (X) (as both Φ(X) and K (X) are Banach spaces). Moreover, since
Φ(X) is a self-adjoint Jordan subalgebra of L (X) , we realize that A is a self-adjoint
standard Jordan operator algebra on X .

Now only remains to prove that A is not a subalgebra of L (X) . To this end,
recall that ‖Φ(x)−B‖� ‖Φ(x)‖ whenever x ∈ X and B ∈ K (X) . Then, since Φ is a
linear isometry, we derive that ‖Φ(x)+K (X)‖ = ‖Φ(x)‖ = ‖x‖ for every x ∈ X . In
this way the mapping x → Φ(x)+K (X) becomes a surjective linear isometry from X
to the norm-unital complete normed Jordan algebra A /K (X) , and takes e to the unit
of A /K (X) . Therefore, since X is a Hilbert space, and every Hilbert space is smooth
at any point of its unit sphere, we conclude that A /K (X) is smooth at its unit, i.e.
A /K (X) is a ‘smooth normed algebra’ in the sense of [8, p. 204]. Now, if A were a
subalgebra of L (X) , then A /K (X) would be an associative smooth normed algebra,
and therefore, by the implication (ii)⇒(iii) in [8, Theorem 2.6.21], A /K (X) would
be finite-dimensional, which is obviously impossible.

Case K = C .
For any complex vector space Z and any conjugate-linear involutive operator �

on Z , let us denote by H(Z, �) the real subspace of Z consisting of all �-invariant el-
ements of Z . Now let Y be a complex normed space, and let � be a conjugation (i.e.
a conjugate-linear involutive isometry) on Y . According to the notation and facts in
[8, §3.4.71], by defining T � := � ◦T ◦ � for T ∈ L (Y ) , we are provided with an iso-
metric involutive conjugate-linear algebra automorphism (denoted also by �) on L (Y )
such that the normed real algebras L (H(Y, �)) and H(L (Y ), �) are bicontinuously
isomorphic in a natural way.

Now let X be our infinite-dimensional complex Hilbert space. Choose an or-
thonormal basis of X , let � denote the unique conjugation on X which fixes all elements
of the basis, and let φ : L (H(X , �))→H(L (X), �) be the natural algebra isomorphism.
Then, according to [9, Lemma 8.1.105], φ is an isometry. On the other hand, since
H(X , �) is an infinite-dimensional real Hilbert space, the case K = R of the theorem
(already proved) provides us with a standard operator Jordan algebra A on H(X , �)
which is self-adjoint and closed in L (H(X , �)) , but is not a standard operator algebra.
Therefore, since L (X) = H(L (X), �)⊕ iH(L (X), �), and this direct sum is topolog-
ical, and F (X) is a �-invariant subalgebra of L (X) , and φ(A ) ⊆ H(L (X), �) , we
realize that φ(A )⊕ iφ(A ) is a standard operator Jordan algebra on X which is self-
adjoint and closed in L (X) , but is not a standard operator algebra. �
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The result in [24] applied at the beginning of the above proof is very deep, as it
depends heavily on the mathematical formulation of the so-called ‘Canonical Anticom-
mutation Relations’ in Quantum Mechanics (see for example [4, Proposition 5.2.2]).
In the case that the real Hilbert space X is separable, a clever and much simpler proof
of the result in [24] just quoted has been provided in [11]. With a slightly different
formalization, this proof can be found as the proof of [8, Theorem 2.7.38].

2. Derivations of standard operator Jordan rings are inner

Although not relevant in our development, the following fact has its own interest.

FACT 2.1. Let X be a Hausdorff topological vector space over K . Then every
continuous differential operator on X is linear.

Proof. We may suppose that X �= 0. Let T be a continuous differential operator on
X , and let d be the associated ring derivation of K . It is well-known and easy to prove
that there is no continuous ring derivation of K other than 0. Therefore, to prove the
lemma it is enough to show that d is continuous. Then, since d is additive, it suffices
to show that d is continuous at 0 . Let λn be a sequence in K converging to 0. Take
0 �= x ∈ X . Then it follows from (1.2) that limn d(λn)x = 0. But, by Tihonov’s theorem
(see for example [18, p. 144]), the mapping λ → λx from K to X is a topological
embedding. Therefore the sequence d(λn) converges to 0. �

Let X be a Banach space over K , and let A be a standard operator Jordan ring
on X . We note that, if A belongs to A , then An lies in A for every positive integer
n . Indeed, we have clearly An+1 = An •A , and the induction principle applies. Now,
given a positive integer n , we are going to studying additive mappings D : A →L (X)
satisfying

D(A2n) = 2D(An)•An for every A ∈ A . (2.1)

Given a Banach space X over K , we denote by X ′ the (topological) dual of X
and, for (x, f ) ∈ X ×X ′ , we denote by x⊗ f ∈ F (X) the operator on X defined by
(x⊗ f )(y) := f (y)x for every y ∈ X .

PROPOSITION 2.2. Let X be a Banach space over K , let A be a standard oper-
ator Jordan ring on X , and let D : A → L (X) be an additive mapping vanishing on
F (X) . We have:

(i) If D satisfies (2.1) for a certain positive integer number n, then D(An) = 0 for
every A ∈ A .

(ii) If D is of the form A → [A,T ] for some differential operator T on X , then
T ∈ KIX (where IX denotes the identity on X ) and hence D = 0 .

Proof. Assertion (i) is proved by arguing verbatim as in the proof of the implica-
tion (ii)⇒(i) in [21, Proposition 2.3] (a rather long argument).



STANDARD OPERATOR JORDAN RINGS ON BANACH SPACES 435

Suppose that D is of the form A → [A,T ] for some differential operator T on X ,
and that D vanishes on F (X) . Let d be the ring derivation of K associated to T , let
x,y be in X with y �= 0, take f be in X ′ such that f (y) = 1, and set A := x⊗ f ∈F (X) .
Then, since D vanishes on F (X) , we have

0 = ([A,T ])(y) = f (T (y))x−T ( f (y)x)
= f (T (y))x− f (y)T (x)−d( f (y))x = f (T (y))x−T(x).

Therefore, since x is arbitrary in X , we see that T = λ IX , where λ := f (T (y)) ∈ K .
Thus assertion (ii) has been proved. �

PROPOSITION 2.3. Let X be a Banach space over K , set A := F (X) , let n be
a positive integer, and let D : A → L (X) be an additive mapping satisfying (2.1).
Then there exists a differential operator T on X such that D(A) = [A,T ] for every
A ∈ A . Moreover the differential operator T above lies in L (X) whenever X is
infinite-dimensional, or D is linear, or D is continuous.

Proof. Let A be in A . Then, according to Litoff’s theorem [2, Theorem 4.3.11],
there is a projection P ∈ A such that AP = PA = A . Now we follow the argument
in the proof of [21, Proposition 2.1], with the appropriate changes. Indeed, as in that
proof, condition (2.1) leads to

PD(P)P = 0. (2.2)

Now, for any integer number λ set

p(λ ) := D((A+ λP)2n)−D((A+ λP)n)(A+ λP)n− (A+ λP)nD((A+ λP)n).

Then, considering that D is additive and that λ is an integer number, we can write

p(λ ) = f0(A,P)+ λ f1(A,P)+ · · ·+ λ 2n f2n(A,P),

with fi(A,P) ( i = 0, . . . ,2n ) in L (X) . But, written in this way, p(λ ) has a meaning
for every real value of λ , and hence p can be seen as a formal polynomial in the
indeterminate λ ∈ R with coefficients in L (X) . Moreover it follows from (2.1) that
p(λ ) = 0 for every integer value of λ ∈ R . Therefore fi(A,P) = 0 for every i =
0, . . . ,2n . In particular, f2n−2(A,P) = 0 and f2n−1(A,P) = 0. After a straightforward
but tedious computation, the above equalities reduce into

2(2n−1)D(A2) = (n−1)
(
D(A2)P+PD(A2)+D(P)A2 +A2D(P)

)
+2n(D(A)A+AD(A)),

(2.3)

and
2D(A) = D(A)P+PD(A)+D(P)A+AD(P), (2.4)

respectively. Now, arguing as in the proof we are following, we realize that equalities
(2.2), (2.3), and (2.4) lead to

D(A2) = D(A)A+AD(A). (2.5)
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Now, since A is arbitrary in A , and P lies in A , and A is an ideal of L (X) , it
follows from (2.4) that the range of D is contained in A . Then it follows from (2.5)
that D is a Jordan derivation of A in the ring sense. Therefore, since A is a prime
ring, it follows from a celebrated theorem of Herstein [16] (see also [17, Theorem 3.3])
that D is a derivation of A in the ring sense. Now the proof of the first conclusion in
the proposition is concluded by applying Theorem 1.3(i).

Suppose that X is infinite-dimensional (respectively, that D is linear). Then, con-
sidering Proposition 2.2(ii), the fact that T lies in L (X) follows from Theorem 1.3(ii)
(respectively, Theorem 1.1).

Finally, suppose that D is continuous. Then, by the bracket-free version of the
above paragraph, to prove that T lies in L (X) we may additionally suppose that X is
finite-dimensional. Then, by Theorem 1.4, T = B+ d̂ for some B ∈ L (X) and some
ring derivation d of K , and hence D(A) = [A,B]+ [A, d̂] for every A ∈ A . Therefore
the mapping A → [A, d̂] is continuous, as D is so. But, regarding A as the algebra of
all m×m matrices with entries in K , it is easily seen that the above mapping is nothing
other than the mapping (λi, j) →−(

d(λi, j)
)
. Therefore d is continuous, so d = 0, and

so T = B ∈ L (X) . �
In the particular case that D is in fact linear, the above proposition has been proved

in [21, Corollary 2.2].
Now the main result on the mappings we are dealing with is the following.

THEOREM 2.4. Let X be a Banach space over K , let A be a standard Jordan
ring on X , let D : A → L (X) be an additive mapping, and let n be a positive integer.
Then the following conditions are equivalent:

(i) D satisfies (2.1).

(ii) D can be written as D = D1 + D0 where D1 : A → L (X) is of the form
A → [A,T ] for some differential operator T on X , and D0 : A → L (X) is
an additive mapping satisfying (2.1) and vanishing on F (X) .

Now suppose that condition (ii) is fulfilled. Then:

(iii) The writing D = D1 +D0 is unique.

(iv) If n � 2 , then the possibility that D0 �= 0 cannot be discarded, even if X is a
Hilbert space, A is a standard operator algebra on X which is norm-closed in
L (X) , D is linear and continuous, and the range of D is contained in A .

(v) The differential operator T lies in L (X) whenever X is infinite-dimensional, or
D is linear on F (X) , or D is continuous.

In relation to assertion (iv) above, it is worth mentioning that, actually, if condition
(ii) is fulfilled, and if n � 2, then, according to [21, Example 3.5], the possibility that
D0 be discontinuous cannot be discarded, even if X is a Hilbert space, A is a standard
operator algebra on X which is norm-closed in L (X) , D is linear, and the range of D
is contained in A .
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Proof of Theorem 2.4. The implication (ii)⇒(i) in the theorem is not difficult to
verify. Indeed, the set S of all additive mappings D : A → L (X) satisfying (2.1) is
an additive subgroup of the additive group of all additive mappings from A to L (X) ,
and contains both all mappings from A to L (X) which are of the form A → [A,T ]
for some differential operator T and all additive mappings D : A → L (X) such that
D(An) = 0 for every A ∈ A . But, in view of Proposition 2.2(i), if D ∈ S vanishes on
F (X) , then D(An) = 0 for every A ∈ A .

Suppose that condition (i) in the theorem is fulfilled, i.e. D satisfies (2.1). Then,
restricting D to F (X) , and applying the first conclusion in Proposition 2.3, we real-
ize that there exists a differential operator T on X such that D(A) = [A,T ] for every
A ∈ F (X) . Moreover, for every A ∈ A , we have that [A,T ] ∈ L (X) . (Indeed, this
follows from the last conclusion in Proposition 2.3 if X is infinite dimensional, and
from Fact 1.2 otherwise.) Now let D1 : A → L (X) be defined by D1(A) = [A,T ] for
every A ∈ A , and set D0 := D−D1 : A → L (X) . Then clearly both D1 and D0 are
additive mappings satisfying (2.1), D = D1 + D0 , D1 is of the form A → [A,T ] for
some differential operator T on X , and D0 vanishes on F (X) . Thus condition (ii) in
the theorem is fulfilled.

Now that the equivalence (i)⇔(ii) has been shown, let us prove properties (iii),
(iv), and (v).

Property (iii) follows from Proposition 2.2(ii), whereas property (iv) follows from
[21, Example 2.4].

Suppose that X is infinite-dimensional, or that D is linear on F (X) , or that D is
continuous. Then, considering Proposition 2.2(ii) and that D0 vanishes on F (X) , the
fact that T lies in L (X) follows by restricting D to F (X) and applying the second
(and last) conclusion in Proposition 2.3. Thus property (v) has been proved. �

COROLLARY 2.5. Let X , A , D, and n be as in Theorem 2.4. Suppose that D
satisfies (2.1) and that the additive subgroup of A generated by the set {An : A ∈ A }
is equal to A . Then the conclusions in Theorem 1.5 holds.

Proof. Since D satisfies (2.1), we can write D = D1 +D0 as in condition (ii) in
Theorem 2.4. Then, by Proposition 2.2(i), D0(An) = 0 for every A ∈ A . Therefore,
since the additive subgroup of A generated by the set {An : A ∈ A } is equal to A ,
we conclude that D0 = 0 �

Now the proof of Theorem 1.5, already announced in Section 1, goes straightfor-
wardly.

Proof of Theorem 1.5. Take n = 1 in Corollary 2.5. �

As another outstanding application of Theorem 2.4, we can prove the following
proposition, which gives light on the mapping D0 in that theorem.

PROPOSITION 2.6. Let X be a Banach space over K , let A be a standard
operator Jordan ring on X , and let n be a positive integer. An additive mapping
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D : A → L (X) satisfies (2.1) and vanishes on F (X) if and only if D(An) = 0 for
every A ∈ A .

Proof. The ‘only if’ part was already proved in Proposition 2.2(i).
Suppose that D(An) = 0 for every A ∈ A . Then clearly D satisfies (2.1). To

prove that D vanishes on F (X) , we divide the argument in several steps.
Step 1. By restricting D to F (X) and applying the implication (i)⇒(ii) in [21,

Proposition 2.3], we realize that D vanishes on F (X) whenever D is linear on F (X) ,
so in particular whenever D is of the form A → [A,T ] for some T ∈ L (X) .

Step 2. Since D satisfies (2.1), Theorem 2.4 applies, and hence we can write
D = D1 +D0 as in condition (ii) in that theorem, so that D0 satisfies (2.1) and vanishes
on F (X) . Then for A ∈ A we have D0(An) = 0 (by the ‘only if’ part of the current
proposition), and hence 0 = D(An) = D1(An) . Thus D1 is in the same situation than
D . Moreover D1 is of the form A → [A,T ] for some differential operator T on X .

Step 3. Suppose that X is infinite-dimensional. Then, invoking again Theorem
2.4, and considering the two steps above, we realize that D1 vanishes on F (X) .

Step 4. Suppose that X is finite-dimensional. We identify X with K
m , for a

suitable positive integer m , and A = F (X) with the algebra of all m×m matrices
with entries in K . Then, by Step 2, D(An) = 0 for every A ∈ A , and moreover,
by Theorem 1.4, the differential operator T in that step can be written as T = B + d̂
for some B ∈ L (X) and some ring derivation d of K . Therefore for A ∈ A we
have D1(A) = [A,B]+ [A, d̂] , and hence [An,B]+ [An, d̂] = D1(An) = 0, which implies
t ([An, d̂]) = 0, where t denotes the usual trace on A . Now let λ be in K , and take A =
Diag{λ ,0, . . . ,0} . Then An = Diag{λ n,0, . . . ,0} , [An, d̂] = − Diag{d(λ n),0, . . . ,0} ,
and hence

d(λ n) = t (Diag{d(λ n),0, . . . ,0}) = −t ([An, d̂]) = 0.

But, given μ ∈ K , there is λ ∈ K such that μ = λ n or μ =−λ n . It follows that d = 0.
Then D1(·) = [·,B] with B ∈ L (X) , and hence, according to Step 1, D1 vanishes on
F (X) .

Concluding step. According to Steps 3 and 4, in any case D1 vanishes on F (X) .
Therefore, since D = D1 +D0 and (as recalled in Step 2) D0 also vanishes on F (X) ,
the same happens for D . �

Taking n = 1 in Proposition 2.2(i), we obtain the following

COROLLARY 2.7. Let X , A , and D be as in a Theorem 1.5, and suppose that D
vanishes on F (X) . Then D = 0 .

In the case of the above corollary, the reference to [21], given in the proof of
Proposition 2.2(i) for general values of n , can be avoided. To realize this, we first
prove the following.

LEMMA 2.8. Let X �= 0 be a Banach space over K , and let F ∈ L (X) be such
that

G•F = 0 for every G ∈ F (X) . (2.6)
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Then F = 0 .

Proof. Take (y, f ) ∈ X×X ′ such that f (y) = 1. Then, for each x∈ X , (2.6) yields
(x⊗ f )•F = 0, which reads as F(x)⊗ f = −x⊗F ′( f ) , which implies

F(x) = (F(x)⊗ f )(y) = −(x⊗F ′( f ))(y) = − f (F(y))x.

Therefore, setting λ := − f (F(y)) ∈ K , we obtain that F = λ IX , where IX denotes the
identity operator on X . Now (2.6) yields λF (X) = 0, hence λ = 0 and F = 0, as
desired. �

Actually the above lemma follows from a more general and deeper result asserting
that, if A is a unital associative prime algebra, if I is a nonzero ideal of A , and if
F ∈ A is such that G •F = 0 for every G ∈ I , then F = 0 . Indeed, the assumption
that G•F = 0 for every G ∈ I , can be read as that FG1+1GF = 0 for every G ∈ I .
Therefore, since the associative algebra A is prime, it follows from [2, Lemma 6.1.2(i)]
(which can be read as that ‘elementary operators’ [12] on A vanishing on I , actually
vanish on A ) that FG1 + 1GF = 0 for every G ∈ A . By taking G = 1 , we obtain
F = 0, as desired.

New proof of Corollary 2.7. Let A be in A , and let B be in F (X) . Then we
have

0 = D(A•B) = D(A)•B+A•D(B)= D(A)•B.

Since B is arbitrary in F (X) , it follows from Lemma 2.8 that D(A) = 0. But A is
arbitrary in A . �

In the linear case, Corollary 2.5 has a converse. Indeed, noticing that assertion
(2.1) in the current paper is nothing other than assertion

(
1.2

)
in [21], and considering

Proposition 2.2(i), Propositions 2.9 and 2.10 immediately below are proved by arguing
verbatim as in the proofs of [21, Proposition 3.3] and [21, Proposition 3.6], respectively,
by simply replacing [21, Theorem 1.2] with the linear version of Theorem 2.4 in both
proofs.

PROPOSITION 2.9. Let X be a Banach space over K , let A be a standard oper-
ator Jordan algebra on X , and let n be a positive integer. Then the following conditions
are equivalent:

(i) A is equal to the linear hull of the set {An : A ∈ A } .

(ii) Each linear mapping D : A → L (X) satisfying (2.1) for every A ∈ A is of the
form A → [A,B] for some B ∈ L (X) .

(iii) Each linear mapping D : A →A satisfying (2.1) for every A∈A is of the form
A → [A,B] for some B ∈ L (X) .

PROPOSITION 2.10. Let X , A , and n be as in Proposition 2.9, and consider the
following conditions:
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(i) The linear hull of the set {An : A ∈ A } is dense in A .

(ii) Each continuous linear mapping D : A → L (X) satisfying (2.1) is of the form
A → [A,B] for some B ∈ L (X) .

(iii) Each continuous linear mapping D : A → A satisfying (2.1) is of the form
A → [A,B] for some B ∈ L (X) .

(iv) Every linear mapping D : A → A satisfying (2.1) is continuous.

(v) The linear hull of the set {An : A ∈ A } is closed in A .

Then (i) ⇔ (ii) ⇔ (iii) , and (iv) ⇒ (v) .

Now we can prove the following.

PROPOSITION 2.11. Let X , A , D, and n be as in Theorem 2.4. Suppose that
assertion (2.1) holds, and that for each A ∈ A there is a projection P ∈ A such that
AP = PA = A (which happens for instance if the identity operator on X belongs to
A ) . Then there exists B ∈ L (X) such that D(A) = [B,T ] for every A ∈ A .

Proof. Let L denote the linear hull of the set {An : A ∈ A } . In view of Propo-
sition 2.9, it is enough to show that A = L . Since this is obviously true if n = 1, we
suppose that n > 1. Let A be in A and, according to our assumption, let P ∈ A be a
projection such that AP = PA = A . Then for every real number λ we have

Lλ :=
n−1

∑
i=1

(
n
i

)
λ iAi( = (λA+P)n−λ nAn−P

) ∈ L . (2.7)

Set χ := (L1, . . . ,Ln−1) ∈ L n−1 , ξ :=
((n

1

)
A1, . . . ,

( n
n−1

)
An−1

)
∈ A n−1 , and

M :=

⎡
⎢⎢⎢⎣

1 1 · · · 1
2 22 · · · 2n−1

...
...

...
...

n−1 (n−1)2 · · · (n−1)n−1

⎤
⎥⎥⎥⎦ .

Then, writing χ and ξ as matrix columns, it follows from (2.7) that Mξ=χ . Therefore,
since M is a Vandermonde matrix, and χ∈L n−1 , we have that ξ=M−1χ∈L n−1 , i.e.(n

i

)
Ai ∈ L for every i = 1, . . . ,n−1. In particular A ∈ L . Since A is arbitrary in A ,

the inclusion A ⊆ L holds. But the converse inclusion is obvious. �

In the case that A is in fact a standard operator algebra, the above proposition
was proved in [21, Proposition 3.1] by other methods.

Now we go back to standard operator Jordan rings.
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THEOREM 2.12. Let X be a Banach space over K , let A be a standard operator
Jordan ring on X , and let D : A → L (X) be an additive mapping satisfying

D(A3) = D(A2)•A+A2•D(A) for every A ∈ A . (2.8)

Then the conclusions in Theorem 1.5 holds.

Proof. Let A be in F (X) . Then arguing verbatim as in the first part of the proof
of [31, Theorem 5], we obtain D(A2) = 2A •D(A) . Since A is arbitrary in F (X) ,
it follows from Proposition 2.3 that there exists a differential operator T on X such
that D(A) = [A,T ] for every A ∈ F (X) , and that T lies in L (X) whenever X is
infinite-dimensional, or D is linear, or D is continuous. Now, as in the proof of the
implication (i)⇒(ii) in Theorem 2.4, we realize that [A,T ] lies in L (X) for every
A ∈ A . Let D1 : A → L (X) be defined by D1(A) = [A,T ] for every A ∈ A , and set
D0 := D−D1 : A → L (X) . Then clearly D0 is an additive mapping satisfying (2.8)
and vanishing on F (X) . Therefore, to conclude the proof it is enough to show that D0

vanishes on the whole A . But this is verified by arguing verbatim as in the last part of
the proof of [31, Theorem 5]. �

As noticed in [21, Remark 1.4], condition (1.3) in Theorem 1.5 implies condition
(2.8) in Theorem 2.12 above. Therefore Theorem 1.5, which was already derived almost
straightforwardly from Theorem 2.4, also follows from Theorem 2.12.

Theorem 1.5 and Theorem 2.12 were proved in [30, Theorem 2] and [31, Theorem
5], respectively, in the case that A is a standard operator algebra and that D is linear.
Now, to conclude this section, let us say that some other results in [30] concerning stan-
dard operator algebras (like Theorems 1, 3, and 4 of that paper) could have appropriate
variants in the more general setting of standard operator Jordan rings and of additive
mappings. Actually we feel that, when standard operator Jordan rings replace standard
operator algebras, and additivity of mappings replaces linearity, the results just quoted
survive with the appropriate changes in their formulations and proofs.

3. Standard operator Jordan algebras have minimum norm topology

As proved by Dales in [13], standard operator algebras on any real or complex
Banach space have minimum norm topology. According to [13], this fact is a very old
result of M. Eidelheit [14], which may even go back to S. Mazur before 1939.

As the main result in this section, we are going to prove that the result just com-
mented remains true when standard operator Jordan algebras replace standard operator
algebras.

To this end, we recall that, according to [3, Definition 27.1], by a pairing over
K we mean a triple (X ,Y,〈·, ·〉) where X , Y are vector spaces over K and 〈·, ·〉 is a
non-degenerate bilinear form on X ×Y ; i.e. the conditions y ∈Y and 〈X ,y〉= 0 imply
y = 0, and the conditions x ∈ X and 〈x,Y 〉 = 0 imply x = 0.

For every vector space Z over K , let us denote by L(Z) the associative algebra
over K of all linear operators on Z . Now let (X ,Y,〈·, ·〉) be a pairing over K . Fol-
lowing [3, Definition 27.4], operators S ∈ L(X) , T ∈ L(Y ) are said to be adjoint with
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respect to 〈·, ·〉 if
〈S(x),y〉 = 〈x,T (y)〉 for all (x,y) ∈ X ×Y.

To each S ∈ L(X) corresponds at most one T ∈ L(Y ) such that S,T are adjoint with
respect to 〈·, ·〉 ; this operator T , if it exists, is called the adjoint of S with respect
to 〈·, ·〉 , and is denoted by S� . Similarly each T ∈ L(Y ) has at most one adjoint
T � ∈ L(X) with respect to 〈·, ·〉 . The set of all linear operators on X which have adjoints
with respect to 〈·, ·〉 is a subalgebra of L(X) , which is denoted by L(X ,Y,〈·, ·〉) . The
subset of L(X ,Y,〈·, ·〉) consisting of those operators in L(X ,Y,〈·, ·〉) which have finite-
dimensional range is an ideal of L(X ,Y,〈·, ·〉) , which is denoted by F(X ,Y,〈·, ·〉) .

A pairing (X ,Y,〈·, ·〉) over K is said to be a Banach pairing if X and Y are Ba-
nach spaces over K , and the bilinear form 〈·, ·〉 is continuous. Note that, if (X ,Y,〈·, ·〉)
is a Banach pairing over K , then x → 〈x, ·〉 becomes a natural continuous linear em-
bedding from X to Y ′ , and that, thanks to the closed graph theorem, the inclusion
L(X ,Y,〈·, ·〉) ⊆ L (X) holds.

Now we invoke the following.

PROPOSITION 3.1. [22, Proposition 3.1] For a Banach pairing (X ,Y,〈·, ·〉) over
K the following conditions are equivalent:

(i) The natural continuous linear embedding X → Y ′ is in fact a topological embe-
ding.

(ii) All Jordan subalgebras of L(X ,Y,〈·, ·〉) containing F(X ,Y,〈·, ·〉) have minimum
norm topology.

(iii) All subalgebras of L(X ,Y,〈·, ·〉) containing F(X ,Y,〈·, ·〉) have minimum norm
topology.

Now let X be a Banach space over K , and let 〈·, ·〉 stand for the natural bilinear
form on X × X ′ , i.e. 〈x, f 〉 := f (x) . Then, as pointed out in [3, Example 27.3] or
[19, Example IV.10.5], (X ,X ′,〈·, ·〉) becomes a Banach pairing over K , and we have
L(X ,X ′,〈·, ·〉) = L (X) and F(X ,X ′,〈·, ·〉) = F (X) . Moreover the natural embedding
X → X ′′ associated to 〈·, ·〉 is nothing other than the natural inclusion X ⊆ X ′′ . There-
fore it is enough to apply the implication (i)⇒(iii) in Proposition 3.1 to obtain the
Dales-Eidelheit-Mazur result reviewed at the beginning of this section. Analogously,
applying the implication (i)⇒(ii) in Proposition 3.1, we obtain the following.

THEOREM 3.2. Standard operator Jordan algebras on any Banach space over K

have minimum norm topology.

To take profit from Theorem 3.2, the next lemma shall be useful.

LEMMA 3.3. Let A and B (possibly non-associative) normed algebras over
K , and let Φ : A → B be a surjective algebra homomorphism. Suppose that B has
minimum norm topology, and that ker(Φ) is closed in A . Then Φ is continuous.
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Proof. Since ker(Φ) is closed in A , we can see A /ker(Φ) as a normed algebra
under the quotient norm. Then, translating the norm of A /ker(Φ) to B by means of
the natural algebra isomorphism A /ker(Φ) � B , and considering that B has mini-
mum norm topology, the continuity of Φ follows. �

Now, combining Lemma 3.3 with [8, Lemma 4.4.21(i)], we obtain the following.

PROPOSITION 3.4. Let A be a Jordan-admissible normed Q -algebra over K ,
let B be normed J-semisimple Jordan-admissible algebra over K having minimum
norm topology, and let Φ : A → B be a surjective algebra homomorphism. Then Φ
is continuous.

We refer the reader to [8, Definition 2.4.9, paragraph immediately before Lemma
4.4.21, and Definition 4.4.12] for the meaning of a Jordan-admissible algebra, of a
Jordan-admissible normed Q -algebra, and of a Jordan-admissible J-semisimple alge-
bra, respectively. We only note that the class of all Jordan-admissible algebras con-
tains both all associative algebras and all Jordan algebras, that an associative algebra
is J-semisimple if and only if it is semisimple in the classical sense of Jacobson (see
[8, Definition 3.6.12]), that complete normed Jordan-admissible algebras are normed
Q -algebras [8, Fact 4.4.15], and that the converse is not true. Thus, for example, ev-
ery (possibly non-closed) ideal of a Jordan-admissible complete normed algebra is a
normed Q -algebra.

Asociative normed Q -algebras have become a classical topic in the theory of as-
sociative normed algebras, whose study goes back to Kaplansky [20] (see [8, §3.6.61]
for additional information). Without enjoying their name, Jordan normed Q -algebras
first appeared in Viola Devapakkiam’s paper [29].

Since standard operator algebras are semisimple, it follows from Proposition 3.4,
the above comments, and the Dales-Eidelheit-Mazur result reviewed at the beginning
of this section, that surjective algebra homomorphisms from associative normed Q -
algebras to standard operator algebras are continuous.

To obtain the Jordan version of the above result, we need some auxiliary results.
Let X be a Banach space over K and, for F ∈L (X) , let us denote by F ′ ∈L (X ′)

the transpose of F and let (x, f ) be in X ⊗ X ′ . Then it is clear that F ◦ (x⊗ f ) =
F(x)⊗ f and that (x⊗ f )◦F = x⊗F ′( f ) for every F ∈L (X) , so that in particular we
have

(x1⊗ f1)◦ (x2⊗ f2) = f1(x2)(x1 ⊗ f2) for all x1,x2 ∈ X and f1, f2 ∈ X ′.

We also recall that, given an element a in a (possibly non-associative and non-unital)
ring A , the operator Ua on A is defined by

Ua(b) = a(ab+ba)−a2b for all b ∈ A .

Clearly, for any ideal I of A , we have that Ua(b) ∈ I whenever either a ∈ I or b ∈ I .
On the other hand, if A is a Jordan subring of an associative algebra B over K (i.e.
an additive subgroup of B such that a1 •a2 := 1

2 (a1a2 +a2a1) lies in A whenever a1

and a2 are in A ), and if we consider A as a Jordan ring under the product • , then, for
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each a ∈ A , the operator Ua on the ring (A ,•) satisfies that Ua(b) = aba for every
b ∈ A , where juxtaposition means the associative product of B . Indeed, in this case
we have

Ua(b) = a • (a • b+b •a)− (a•a)•b

=
1
2
[a(ab+ba)+ (ab+ba)a]− 1

2
[a2b+ba2] = aba.

LEMMA 3.5. Let X �= 0 be a Banach space over K , and let A be a standard
operator Jordan ring on X . Then F (X) is the smallest nonzero (ring) ideal of A .

Proof. Let I be a nonzero ring ideal of A . We want to show that F (X) ⊆ I .
Take F ∈ I and x0 ∈ X such that F(x0) �= 0, and let f0 ∈ X ′ with f0(F(x0)) = 1. Let
Γ denote the set of all nonzero elements of K having a square root in K . Then for
ρ ∈ Γ we have

0 �= x0 ⊗ f0 = (x0 ⊗ f0)◦F ◦ (x0⊗ f0) = ρ
(
(
√

ρ−1x0)⊗ f0
)◦F ◦ (

(
√

ρ−1x0)⊗ f0
)

= ρU(
√ρ−1x0)⊗ f0

(F) ∈ ρI.

Therefore the set J :=
⋂

ρ∈Γ ρI is a nonzero ring ideal of A and a vector subspace
of L (X) , and is contained in I . Thus, to prove that F (X) ⊆ I , there is no loss of
generality if we suppose that I itself is a vector subspace of L (X) . Then for every
(x, f ) ∈ X ×X ′ we have

f0(x) f (x0)(x⊗ f ) = (x⊗ f )◦ (x0⊗ f0)◦ (x⊗ f ) = Ux⊗ f (x0⊗ f0) ∈ I,

hence x⊗ f∈I whenever f0(x)�=0 and f (x0)�=0, and in particular F(x0)⊗F ′( f0)∈I .
Given x ∈ X , take λ ∈ R such that f0

(
x+ λF(x0)

) �= 0, and note that

x⊗F ′( f0) =
(
x+ λF(x0)

)⊗ ( f0 ◦F)−λ
(
F(x0)⊗F ′( f0)

) ∈ I.

Analogously, given f ∈ X ′ , take μ ∈ R such that
(
f + μF ′( f0)

)
(x0) �= 0, and note that

F(x0)⊗ f = F(x0)⊗
(
f + μF ′( f0)

)− μ
(
F(x0)⊗F ′( f0)

) ∈ I.

As a consequence, given (x, f ) ∈ X ×X ′ , taking λ ,μ ∈ R such that

f0
(
x+ λF(x0)

) �= 0 and
(
f + μ( f0 ◦F)

)
(x0) �= 0,

we have

x⊗ f =
(
x+ λF(x0)

)⊗ (
f + μ( f0 ◦F)

)−λ (F(x0)⊗ f )

− μ
(
x⊗ ( f0 ◦F)

)−λ μ
(
F(x0)⊗ ( f0 ◦F)

) ∈ I.

Finally, it is enough to apply [8, Fact 1.4.13] to conclude that F (X) ⊆ I . �
For the proof of the following fact, Definition 4.4.12 of [8] should be considered

again.
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FACT 3.6. Standard operator Jordan algebras are J-semisimple.

Proof. Assume otherwise that there are a Banach space X over K , and a stan-
dard operator Jordan algebra A on X which is not J-semisimple. Then, clearly, we
would have X �= 0. Therefore, since J-Rad(A ) is an ideal of A , it would follow
from Lemma 3.5 that F (X) would be contained in J-Rad(A ) . This would imply that
F (X) = J-Rad(F (X)) . But, since F (X) is an associative algebra, the equality above
would read as that F (X) is a radical algebra in the sense of Jacobson, a fact which is
obviously non true. �

Now, combining Theorem 3.2, Proposition 3.4, and Fact 3.6, we obtain the fol-
lowing.

THEOREM 3.7. Let X be a Banach space over K , let A be a Jordan normed
Q -algebra over K , let B be a standard operator Jordan algebra on X , and let
Φ : A → B be a surjective algebra homomorphism. Then Φ is continuous.

REMARK 3.8. A normed algebra A is said to have minimality of norm topology
if every continuous algebra norm on A is equivalent to the natural norm. Clearly, min-
imum norm topology implies minimality of norm topology. According to [8, Theorem
4.4.23], surjective algebra homomorphisms, from complex Jordan-admissible normed
Q -algebras to complete normed J-semisimple Jordan-admissible complex algebras
having minimality of norm topology, are continuous. This variant of Proposition 3.4
(whose associative forerunner can be found in [23]) is much deeper, as its proof in-
volves arguments of Aupetit in [1], which were revolutionary at their time.
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[8] M. CABRERA AND A. RODRÍGUEZ, Non-associative normed algebras. Volume 1: The Vidav-Palmer
and Gelfand-Naimark Theorems, Encyclopedia Math. Appl. 154, Cambridge University Press, 2014.
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Facultad de Ciencias

18071 Granada, Spain
e-mail: cabrera@ugr.es

Operators and Matrices
www.ele-math.com
oam@ele-math.com


