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Abstract. Let A,B be invertible positive operators on a complex separable Hilbert space H and
X be an operator on H associated with a norm ideal corresponding to a unitarily invariant norm
||| · ||| . We shall prove that

|||Γ(A)X −XΓ(B)|||� c(m,M)|||AX −XB|||
for all unitarily invariant norms ||| · ||| , where c(m,M) is a function of m = min{||A||, ||B||} and
M = max{||A||, ||B||} , and Γ denotes the Gamma function. Further if f is a Bernstein function,
we shall prove that

||| f (A)X −X f (B)||| � f ′(m)|||AX −XB|||.
This inequality supplements and unify all the results proved by a number of authors for operator
monotone functions.

1. Introduction

Let B(H ) be the algebra of all bounded linear operators on a complex separable
Hilbert space (H ,〈·, ·〉) . An operator A ∈ B(H ) is called self-adjoint if A∗ = A . A
self-adjoint operator A ∈ B(H ) is called positive if 〈Ax,x〉 � 0 for all x ∈ H and
is called strictly positive if 〈Ax,x〉 > 0 for all nonzero x ∈ H . The set of all self-
adjoint operators in B(H ) is denoted by B(H )s , the set of all positive operators shall
be denoted by B(H )+ and the set of all strictly positive operators shall be denoted by
B(H )++. For A,B∈B(H )s,A � B (A > B) means A−B is positive (strictly positive).
A norm ||| · ||| on B(H ) is called unitarily invariant or symmetric if

|||UAV ||| = |||A|||

for all A∈ B(H ) and for all unitary operators U,V ∈B(H ) . The most basic unitarily
invariant norms are the Ky-Fan norms and Schatten p -norms defined respectively as

||A||(k) =
k

∑
j=1

σ j(A) (k = 1,2, . . .),
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and

||A||p =

(
∞

∑
j=1

(σ j(A))p

)1/p

(1 � p < ∞),

where σ1(A)� σ2(A) � . . . are the singular values of A . We shall consider a norm ideal
(I , ||| · |||) of B(H ) with respect to a unitarily invariant norm ||| · ||| . For convenience
we shall write (I , ||| · |||) as I . By I we mean identity operator in B(H ). For
A,B ∈ B(H ) , we shall denote by m = min{||A||, ||B||} and by M = max{||A||, ||B||}
throughout. Here || · || denotes the operator norm on B(H ) .

A nonnegative and infinitely differentiable function f on (0,∞) is called com-
pletely monotone if (−1)k f (k)(x)� 0 and is called Bernstein function if (−1)k−1 f (k)(x)
� 0 for all x ∈ (0,∞) , k = 1,2, · · · , see [11, 13]. Here f (k) , k = 1,2, · · · denotes the
k th derivative of f . One should note that a completely monotone function is decreasing
and convex whereas a Bernstein function is increasing and concave.

Every A ∈ B(H )s admits spectral decomposition

A =
∫

λdEλ

where Eλ is a spectral measure. Let f be a real valued function defined on an interval
J and let A ∈ B(H )s has its spectrum in J . Then f (A) is defined by

f (A) =
∫

f (λ )dEλ .

The function f is called operator monotone if A � B implies f (A) � f (B) for A,B ∈
B(H )s with spectrum in J .

When Hilbert space H is finite dimensional, van Hemmen and Ando [8] proved
that if A,B ∈ B(H )+ are such that A+B � cI for some c > 0 and f is a nonnegative
operator monotone function on [0,∞) , then

||| f (A)− f (B)||| �
(

f (c/2)− f (0)
c/2

)
|||A−B|||

for all unitarily invariant norms ||| · ||| . Kittaneh and Kosaki [9] generalized this result
to its commutator version by proving that, if A,B ∈ B(H )+ are such that A � aI , B �
bI for some a,b > 0 and X ∈ B(H ) , then for every nonnegative operator monotone
function f on (0,∞)

|| f (A)X −X f (B)||p � c(a,b)||AX −XB||p,

where c(a,b) = f (a)− f (b)
a−b if a �= b and c(a,b) = f ′(a) if a = b . Bhatia [6] proved the

above inequality for all unitarily invariant norms when X = I and b = a , using Fréchet
differential calculus. If the function f is completely monotone on (0, ∞), it is proved
in [4] that

||| f (A)X −X f (B)||| � | f ′(m)| |||AX −XB|||
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for all operators A,B ∈ B(H )++ , X ∈ B(H ) and for all unitarily invariant norms
||| · ||| . In [7], it is proved that if f is nonegative operator monotone function on (0,∞) ,
then

||| f (A)X −X f (B)||| � max{|| f ′(A)||, || f ′(B)||}|||AX −XB|||.
Similar type of inequalities for the functions ex and xα can also be found in [12]. Our
aim in this article is to prove that for A,B ∈ B(H )++ and X ∈ I ,

|||Γ(A)X −XΓ(B)|||� c(m,M)|||AX −XB|||
for all unitarily invariant norms ||| · ||| , where Γ denotes the Gamma function and
c(m,M) is a constant depending upon A,B . Further for a Bernstein function f , we
shall prove that

||| f (A)X −X f (B)||| � f ′(m)|||AX −XB|||.
At the end, as a remark, we shall demonstrate, how the above inequality includes a
number of inequalities proved by several authors.

2. Main results

We begin this section by proving a norm inequality for the Gamma function. For
this we need the following proposition.

PROPOSITION 2.1. Let A,B ∈ B(H )s and X ∈ I . Then

|||aAX −XaB||| � | loga| max{||aA||, ||aB||} |||AX −XB|||
where a > 0 , for all unitarily invariant norms ||| · ||| .

Proof. Let A,B ∈ B(H )s and X ∈ I , then we have [1, 10]

|||eAX −XeB||| � 1
2
|||eA(AX −XB)+ (AX−XB)eB|||.

On replacing A with logaA and B with logaB in the above inequality, we get

|||elogaA
X −XelogaB ||| � 1

2
|||elogaA

(logaAX −X logaB)+ (logaAX −X logaB)elogaB |||,
i.e.,

|||aAX −XaB||| � 1
2
||| loga(aA(AX −XB)+ (AX−XB)aB)|||.

Consequently,

|||aAX −XaB||| � 1
2
| loga| (|||aA(AX −XB)|||+ |||(AX−XB)aB|||)

� | loga|
2

(||aA|| |||AX −XB|||+ |||AX−XB||| ||aB||)

� | loga|
2

2(max{||aA||, ||aB||}) |||AX −XB|||
= | loga| max{||aA||, ||aB||} |||AX −XB|||.
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The first inequality in the above inequalities follows from the triangle inequality for
norms and the second follows from the well known inequality

|||ABC||| � ||A|| |||B||| ||C||

for all A,B,C ∈ B(H ). This completes the proof of the proposition. �

THEOREM 2.2. Let A,B ∈ B(H )++ and X ∈ I . Then

|||Γ(A)X −XΓ(B)|||� c(m,M)|||AX −XB||| (2.1)

for all unitarily invariant norms ||| · ||| , where

c(m,M) =
∫ ∞

1
logt e−ttM−1dt−

∫ 1

0
logt e−t tm−1dt.

Proof. For inequality (2.1) to be valid, c(m,M) must be finite. We claim that the
integrals ∫ ∞

1
logt e−ttM−1dt and

∫ 1

0
(− logt)e−t tm−1dt

are finite. The Gamma function is defined by

Γ(x) =
∫ ∞

0
e−t tx−1dt, x > 0, t > 0.

For the first integral in c(m,M) , note that logt < t for all t > 0. Therefore

logt e−ttM−1 � te−ttM−1

for 1 < t < ∞. Therefore

0 �
∫ ∞

1
log t e−ttM−1dt �

∫ ∞

1
t e−t tM−1dt. (2.2)

But, ∫ ∞

1
t e−t tM−1dt =

∫ ∞

1
e−ttMdt

�
∫ ∞

0
e−t tMdt = Γ(M +1).

So inequality (2.2) implies that ∫ ∞

1
log t e−t tM−1dt

is finite. For the second integral, we have e−t < 1 for t > 0. Therefore

(− logt)e−ttm−1 � (− log t)tm−1,



A NORM INEQUALITY FOR SOME SPECIAL FUNCTIONS 451

for 0 < t < 1. Then

0 �
∫ 1

0
(− logt)e−ttm−1dt �

∫ 1

0
(− log t)tm−1dt. (2.3)

Integrating the integral ∫ 1

0
(− log t)tm−1dt

by parts, it turns out to be equal to 1
m2 . So from inequality (2.3) we conclude that

∫ 1

0
(− log t)e−ttm−1dt

is finite. This establishes our claim and hence c(m,M) is finite. Now we proceed to
prove inequality (2.1). Note that

Γ(x) =
∫ ∞

0

e−t

t
ft(x)dt

where ft(x) = tx . We shall first prove the inequality (2.1) for all functions ft , t > 0.
By Proposition 2.1 with a = t , we have

|||tAX −XtB||| � | log t| max{||tA||, ||tB||} |||AX −XB|||

= | log t| |||AX −XB|||
{

tM, if t � 1
tm, if 0 < t < 1

.

Therefore,

|||Γ(A)X −XΓ(B)||| =
∣∣∣∣
∣∣∣∣
∣∣∣∣
∫ ∞

0

e−t

t
ft(A)dt X −X

∫ ∞

0

e−t

t
ft (B)dt

∣∣∣∣
∣∣∣∣
∣∣∣∣

=
∣∣∣∣
∣∣∣∣
∣∣∣∣
∫ ∞

0

e−t

t
( ft(A)X −X ft(B))dt

∣∣∣∣
∣∣∣∣
∣∣∣∣

�
∫ ∞

0

∣∣∣∣
∣∣∣∣
∣∣∣∣e−t

t
( ft(A)X −X ft(B))

∣∣∣∣
∣∣∣∣
∣∣∣∣dt

=
∫ ∞

0

e−t

t
||| ft(A)X −X ft(B)|||dt

� |||AX −XB|||
(∫ 1

0

e−t

t
| logt| tmdt +

∫ ∞

1

e−t

t
| log t| tMdt

)

= |||AX −XB|||
(∫ 1

0
| log t| e−t tm−1dt +

∫ ∞

1
logt e−ttM−1dt

)

= |||AX −XB|||
(∫ ∞

1
log t e−t tM−1dt−

∫ 1

0
logt e−ttm−1dt

)
= c(m,M)|||AX −XB|||.

This completes the proof. �
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COROLLARY 2.3. Let A,B ∈ B(H )++∩I . Then

|||Γ(A)Γ(B)−Γ(B)Γ(A)||| � c2(m,M)|||AB−BA|||
for all unitarily invariant norms ||| · |||.

Proof. Taking B = A and X = Γ(B) in Theorem 2.2., we obtain

|||Γ(A)Γ(B)−Γ(B)Γ(A)||| � c(m,M)|||AΓ(B)−Γ(B)A|||
= c(m,M)|||Γ(B)A−AΓ(B)|||
� c2(m,M)|||BA−AB|||
= c2(m,M)|||AB−BA|||

where the last inequality is obtained by taking A = B and X = A in Theorem 2.2. This
completes the proof of the corollary. �

Next we state and outline a proof for a similar norm inequality for the Bernstein
function.

THEOREM 2.4. Let f be a Bernstein function. Then

||| f (A)X −X f (B)||| � f ′(m)|||AX −XB|||
for all A,B ∈ B(H )++,X ∈ I and all unitarily invariant norms ||| · ||| .

Proof. It is known that the Bernstein function admits the integral representation

f (x) = α + βx+
∫ ∞

0
(1− e−tx)dμ(t), x, t > 0,

where μ is a positive measure on (0,∞) and α,β � 0 (see [11]). Therefore

||| f (A)X −X f (B)||| =
∣∣∣∣
∣∣∣∣
∣∣∣∣β (AX −XB)+

∫ ∞

0
(Xe−tB − e−tAX)dμ(t)

∣∣∣∣
∣∣∣∣
∣∣∣∣

� β |||(AX −XB)|||+
∫ ∞

0
|||e−tAX −Xe−tB|||dμ(t). (2.4)

It follows by taking a = e−t in Proposition 2.1 that

|||e−tAX −Xe−tB||| � | loge−t | max{||e−tA||, ||e−tB||}|||AX −XB|||
= |− t| max{||e−tA||, ||e−tB||}|||AX −XB|||
= max{||t e−tA||, ||t e−tB||}|||AX −XB|||
= te−mt |||AX −XB|||. (2.5)

Using (2.5) in (2.4) we get the desired inequality. �
We state the following corollary the proof for which is similar to the proof of

Corollary 2.3.
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COROLLARY 2.5. Let f be a Bernstein function and A,B ∈ B(H )++ ∩I . Then

||| f (A) f (B)− f (B) f (A)||| � ( f ′(m))2|||AB−BA|||

for all unitarily invariant norms ||| · |||.

One may observe that a function may not be Bernstein function but the inverse (if
exists) of the function may be a Bernstein function. Examples of such functions include
xr,r � 1, ex −1.

THEOREM 2.6. Let a function f : [0,∞)→ (0,∞) be such that its inverse function
f−1 (if exists) is Bernstein function. Then for all A,B ∈ B(H )++ and X ∈ I ,

f ′(m)|||AX −XB|||� ||| f (A)X −X f (B)|||

for all unitarily invariant norms ||| · ||| .

Proof. Since f−1 is Bernstein function, we have from Theorem 2.4,

||| f−1(A)X −X f−1(B)||| � ( f−1)′(m)|||AX −XB|||.

On replacing A by f (A) and B by f (B) , one gets

|||AX −XB|||� ( f−1)′( f (m))||| f (A)X −X f (B)|||.

That ( f−1)′( f (m)) is equal to ( f ′(m))−1 follows from ( f−1 ◦ f )(x) = x for all x. �

COROLLARY 2.7. Let A,B ∈ B(H )++ and X ∈ I . Then

rmr−1|||AX −XB|||� |||ArX −XBr|||, r � 1

for all unitarily invariant norms ||| · ||| .

Proof. The inverse function x
1
r of xr,r � 1 is operator monotone and hence is

Bernstein function. Therefore, Theorem 2.6 gives the desired inequality. �

In case when H is finite dimensional, a weaker version of the following corollary
(m = 0) is proved in [12].

COROLLARY 2.8. Let A,B ∈ B(H )++ and X ∈ I . Then

em|||AX −XB|||� |||eAX −XeB|||

for all unitarily invariant norms ||| · ||| .
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Proof. The inverse function log(x+1) of ex −1 is operator monotone and hence
is a Bernstein function. Therefore, Theorem 2.6 gives the desired inequality. �

REMARK. From the definition of completely monotone function and the Bern-
stein function given in Section 1, it follows that a function f is a Bernstein function if
its derivative is completely monotone. If f is nonnegative operator monotone function
on (0,∞) then f admits the integral representation

f (x) = α + βx+
∫ ∞

0

(
t

t2 +1
− 1

x+ t

)
dμ(t),

where α is a real number, β � 0 and μ is a positive measure on (0,∞) such that

∫ ∞

0

1
t2 +1

dμ(t) < ∞

(see [5]). From this integral representation, it follows that the derivative of an operator
monotone function is completely monotone and hence it is a Bernstein function. Con-
sequently, we see that Theorem 2.4. supplements and unifies the results proved by van
Hemmen and Ando [8], Kittaneh and Kosaki [9], Bhatia [6] and A. G. Ghazanfari [7].
It is further remarked that the inequalities for log-convex functions are also studied in
[2, 3].
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