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A NORM INEQUALITY FOR SOME SPECIAL FUNCTIONS

MANISHA DEVI AND JASPAL SINGH AUJLA

(Communicated by F. Kittaneh)

Abstract. Let A,B be invertible positive operators on a complex separable Hilbert space .7 and
X be an operator on ¢ associated with a norm ideal corresponding to a unitarily invariant norm
[I|-1]]. We shall prove that

[IT(A)X — XT(B)||| < c(m,M)[|]AX — XB]|

for all unitarily invariant norms ||| |||, where ¢(m,M) is a function of m = min{||Al|,||B||} and
M =max{||A||,||B||}, and T denotes the Gamma function. Further if f is a Bernstein function,
we shall prove that

lIlFA)X =X FBII < f'(m)|l|AX - XB||.

This inequality supplements and unify all the results proved by a number of authors for operator
monotone functions.

1. Introduction

Let B(#2") be the algebra of all bounded linear operators on a complex separable
Hilbert space (47, (-,-)). An operator A € B(s¢) is called self-adjoint if A* =A. A
self-adjoint operator A € B(.7¢) is called positive if (Ax,x) > 0 for all x € 7 and
is called strictly positive if (Ax,x) > 0 for all nonzero x € 5. The set of all self-
adjoint operators in B(#’) is denoted by B(7),, the set of all positive operators shall
be denoted by B(5#)+ and the set of all strictly positive operators shall be denoted by
B()1. For A,B€B(#);,A>B (A> B) means A— B is positive (strictly positive).
Anorm |||-||| on B(.5) is called unitarily invariant or symmetric if

lvAv]| = [l|All

forall A € B() and for all unitary operators U,V € B(). The most basic unitarily
invariant norms are the Ky-Fan norms and Schatten p-norms defined respectively as

k
HAH(k):zO_j(A) (k=1,2,...),
=1
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and

- 1/p
||A[lp = (Z(Gj(A))p> (1< p<eo),

Jj=1

where 01(A) > 02(A) > ... are the singular values of A. We shall consider a norm ideal

(AZ,1-11]) of B(52°) with respect to a unitarily invariant norm ||| - |||. For convenience
we shall write (Z,]||-|||]) as .-#. By I we mean identity operator in B(.). For
A,B € B(5), we shall denote by m = min{||A||,||B||} and by M = max{||A|l,||B||}
throughout. Here || - || denotes the operator norm on B(57).

A nonnegative and infinitely differentiable function f on (0,c°) is called com-
pletely monotone if (—1)%£®) (x) > 0 and is called Bernstein function if (—1)*~ £ (x)
>0 for all x € (0,00), k=1,2,---, see [11, 13]. Here f(k), k=1,2,--- denotes the
kth derivative of f. One should note that a completely monotone function is decreasing
and convex whereas a Bernstein function is increasing and concave.

Every A € B(.5¢); admits spectral decomposition

A:/?LdE;L

where E; is a spectral measure. Let f be a real valued function defined on an interval
J and let A € B(7); has its spectrum in J. Then f(A) is defined by

fa) = [ £(ra; .

The function f is called operator monotone if A > B implies f(A) > f(B) for A,B €
B(s2), with spectrum in J.

When Hilbert space .77 is finite dimensional, van Hemmen and Ando [8] proved
thatif A, B € B(.7) . are such that A+ B > ¢I for some ¢ > 0 and f is a nonnegative
operator monotone function on [0, ), then

) - s < (L2 L0 ja g

for all unitarily invariant norms ||| -|||. Kittaneh and Kosaki [9] generalized this result
to its commutator version by proving that, if A,B € B(5¢ ), are such that A > al, B >
bl for some a,b >0 and X € B(5¢), then for every nonnegative operator monotone
function f on (0,c0)

/()X =X f(B)|lp < c(a;b)[|AX —XB]|,,

where c(a,b) = L9E) if g £ b and ¢(a,b) = f'(a) if a = b. Bhatia [6] proved the
above inequality for all unitarily invariant norms when X =1 and b = a, using Fréchet
differential calculus. If the function f is completely monotone on (0, <o), it is proved
in [4] that

IF(A)X =X f(B)I| < |f (m)] ||AX —XB]||
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for all operators A,B € B(#)T, X € B(2#) and for all unitarily invariant norms
[I|-]]]- In [7], it is proved that if f is nonegative operator monotone function on (0,°),
then

11F(A)X =X f(B)[I] < max{[|f'(A)]]. [l (B)I[}]|AX — XB]||.

Similar type of inequalities for the functions ¢* and x* can also be found in [12]. Our
aim in this article is to prove that for A,B € B(#)T and X € .,

I[T(A)X = XT(B)|[| < c(m,M)|[|AX — XB]||

for all unitarily invariant norms ||| - |||, where T" denotes the Gamma function and
¢(m,M) is a constant depending upon A,B. Further for a Bernstein function f, we
shall prove that

IIF(A)X =X f(B)]| < f'(m)]||AX — XBI||.

At the end, as a remark, we shall demonstrate, how the above inequality includes a
number of inequalities proved by several authors.

2. Main results

We begin this section by proving a norm inequality for the Gamma function. For
this we need the following proposition.

PROPOSITION 2.1. Let A,B€ B(S)s and X € ¥ . Then
lla"X —Xa®||| < [logal max{||a"[[,[|a®||} [/|AX —XB]|

where a > 0, for all unitarily invariant norms ||| -|].
Proof. Let A,B€ B(); and X € &, then we have [1, 10]
lle*x —xe|| < 31l (AX —~ XB) + (4X ~ XB)e"]||.
On replacing A with loga® and B with loga® in the above inequality, we get
I|le'°8" X — X8 ||| < %Hle“)g“A (loga®X — Xloga®) + (loga*X — X loga®)e'®’ ||,

ie.,
1
lla"X = Xa®||| < 5 ||lloga(a (AX — XB) + (AX — XB)a”)||.
Consequently,
1
[la"X = Xa®||| < 5 [logal (|[l"(AX = XB)|l| +[|(AX — XB)a"|||)
< [loga|
2

|logal
< Tz(maX{HaAH,HaBH}) |[[AX — X B||

(eIl 1lAX — X B[ + [[|AX — XB|| [|a”]|)

= |loga| max{||a"||,||a”[[} |[|AX —XB||.
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The first inequality in the above inequalities follows from the triangle inequality for
norms and the second follows from the well known inequality

HABC[| < [IAll [1IBII] [ICT|
for all A,B,C € B(%7). This completes the proof of the proposition. [J
THEOREM 2.2. Let A,BE B(#)} and X € 7. Then

IIT(A)X —XT(B)|[| < c(m,M)|||AX — XB|| 2.1)

Sor all unitarily invariant norms ||| |||, where

oo 1
c(m,M):/ log? e_ttM_ldt—/ logr e '™ Lar.
1 0

Proof. For inequality (2.1) to be valid, ¢(m, M) must be finite. We claim that the
integrals

o 1
/ logr e 't~ 1dr and / (—logt)e 't Ldr
1 0

are finite. The Gamma function is defined by
I'(x) =/ e 't ldr, x>0, t>0.
0

For the first integral in ¢(m, M), note that logz < for all # > 0. Therefore
logt e "M~ e 1ML
for 1 <t < oo. Therefore

0</ logte"tM‘ldtg/ te M ar. (2.2)
1 1

But,
/ te"tM‘ldt:/ e 'tMdr
1 1
g/ e ' Mdr =T(M +1).
0
So inequality (2.2) implies that
/ logt e "MLy
1

is finite. For the second integral, we have e¢~" < 1 for ¢ > 0. Therefore

(—logt)e '™ ! < (—logr)™ !,
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for 0 <t < 1. Then

1 1
0</ (—1ogt)e*’zm*1dz</ (—logt)e™ Ldr. (2.3)
0 0
Integrating the integral
1
/(—logt)tm_ldt
0

by parts, it turns out to be equal to # . So from inequality (2.3) we conclude that

1
/ (—logt)e " Lar
0

is finite. This establishes our claim and hence c¢(m,M) is finite. Now we proceed to
prove inequality (2.1). Note that

oo e—t

T(x) = /0 iy

where f;(x) =r*. We shall first prove the inequality (2.1) for all functions f;, ¢ > 0.
By Proposition 2.1 with a = ¢, we have

A B A B
"X = Xe7||] < [logz| max{[[«7]],[[7[[} |[|AX — X B]||

M oifr>1

= |10gt‘ |HAX—XB|H {tm, ifo<t<1"

Therefore,

oo—t

iy ~xe@)li=|| [~ paarx—x [T pm

-
-| /O (A - X B
<[
0
ooefl
= [ S A =X 4B
le—t ooe—t Iy
< |IIAX — xB]| (/ —|10gt|tmdt+/ “Jlogt] dt)
0
= |||AX —XB|| (/ |logt| e~ "1™~ 1dt+/ logt e 'tM~ 1a’t)

=l x| ([ togt e [Mtogr -t
1 0
=c(m,M)|||AX — XB]]|.

—t
¢ ( dt

X - X))

This completes the proof. [l
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COROLLARY 2.3. Let A,B€B()IN.7. Then
IIDA)T(B) = T(B)T(A)||| < ¢ (m,M)|||AB — BA||

Sor all unitarily invariant norms ||| -|||.

Proof. Taking B=A and X =T'(B) in Theorem 2.2., we obtain

IIT(A)T(B) — T(B)T'(A )IH c(m, M)[[|AT(B) — T (B)A[||

¢(m,M)|||IT(B)A — AT(B)]|
< m )15 Bl
— (m.M)|[|AB—BA||

/_\/_\

where the last inequality is obtained by taking A = B and X = A in Theorem 2.2. This
completes the proof of the corollary. [J

Next we state and outline a proof for a similar norm inequality for the Bernstein
function.

THEOREM 2.4. Let f be a Bernstein function. Then

£ (A)X =X f(B)|I| < f'(m)|[|AX — XB]]|
forall A,B € B(¢){,X € .% and all unitarily invariant norms ||| - |||.

Proof. 1t is known that the Bernstein function admits the integral representation

Flx) = oc+[3x+/ Nau@), x>0,

where [ is a positive measure on (0,) and ¢, 3 > 0 (see [11]). Therefore

Il —xs @)l =[x -x)+ (e - e x)aut)

<BIIAX -XB)|+ [ e X ~Xe P ldu(r).  @4)

t

It follows by taking @ = e~ in Proposition 2.1 that

lle™ X = Xe ||| < [loge™| max{||e”||, |le""|[}||lAX — XB]]|
= | —¢| max{|le~"],/le”""|[}[||[AX —XB||
= max{]||r e "], [[r e P[]} [||[AX — X B]]|
te~"||AX — XB||. (2.5)

Using (2.5) in (2.4) we get the desired inequality. [

We state the following corollary the proof for which is similar to the proof of
Corollary 2.3.
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COROLLARY 2.5. Let f be a Bernstein function and A,B € B()1 N .. Then
ILF(A)F(B) — F(B) AN < (7' (m))?|[AB — BA]|
for all unitarily invariant norms ||| -|||.

One may observe that a function may not be Bernstein function but the inverse (if

exists) of the function may be a Bernstein function. Examples of such functions include
xX'r>1,e —1.

THEOREM 2.6. Let a function f :[0,00) — (0,0) be such that its inverse function
U (if exists) is Bernstein function. Then for all A,B € B(#){ and X € .7,

f'(m)||lAX —XBl|| <[[|f(A)X =X f(B)]]]

Sor all unitarily invariant norms ||| -|||.

Proof. Since f —1 is Bernstein function, we have from Theorem 2.4,
11X =X B < (F) (m)|llAX — XB||.
On replacing A by f(A) and B by f(B), one gets
114X = XBI[| < (f~1)'(f(m))[[|f(A)X =X f(B)|||-
That (f~')'(f(m)) is equal to (f'(m))~! follows from (f~!of)(x) =x forall x. O
COROLLARY 2.7. Let A,B€B()} and X € .#. Then
|| AX —XBI| < ||lAX - XB']]|, r>1

Sor all unitarily invariant norms ||| -|||.

. . 1 . .
Proof. The inverse function x» of x",r > 1 is operator monotone and hence is
Bernstein function. Therefore, Theorem 2.6 gives the desired inequality. [

In case when .77 is finite dimensional, a weaker version of the following corollary
(m=0) is proved in [12].

COROLLARY 2.8. Let A,B€ B() and X € 9. Then
¢"[[|AX = XB||| < [[l¢"X — X<

Sor all unitarily invariant norms ||| -|||.
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Proof. The inverse function log(x+ 1) of ¢* — 1 is operator monotone and hence
is a Bernstein function. Therefore, Theorem 2.6 gives the desired inequality. [

REMARK. From the definition of completely monotone function and the Bern-
stein function given in Section 1, it follows that a function f is a Bernstein function if
its derivative is completely monotone. If f is nonnegative operator monotone function
on (0,e) then f admits the integral representation

ro=aspt [ (2= o ).

where o is a real number, 3 > 0 and p is a positive measure on (0,e) such that

/Om ! du(r) <ee

241

(see [5]). From this integral representation, it follows that the derivative of an operator
monotone function is completely monotone and hence it is a Bernstein function. Con-
sequently, we see that Theorem 2.4. supplements and unifies the results proved by van
Hemmen and Ando [8], Kittaneh and Kosaki [9], Bhatia [6] and A. G. Ghazanfari [7].
It is further remarked that the inequalities for log-convex functions are also studied in
[2, 3].
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