A NORM INEQUALITY FOR SOME SPECIAL FUNCTIONS

Manisha Devi and Jaspal Singh Aujla

(Communicated by F. Kittaneh)

Abstract. Let A, B be invertible positive operators on a complex separable Hilbert space \mathscr{H} and X be an operator on \mathscr{H} associated with a norm ideal corresponding to a unitarily invariant norm $|||\cdot|||$. We shall prove that

$$
\|\|\Gamma(A) X-X \Gamma(B)\|\| \leqslant c(m, M)\|A X-X B\| \|
$$

for all unitarily invariant norms $\|\|\cdot \mid\|$, where $c(m, M)$ is a function of $m=\min \{\|A\|,\|B\|\}$ and $M=\max \{| | A\|\| B \|$,$\} , and \Gamma$ denotes the Gamma function. Further if f is a Bernstein function, we shall prove that

$$
\|\|f(A) X-X f(B)\|\| \leqslant f^{\prime}(m)\|A X-X B\| \|
$$

This inequality supplements and unify all the results proved by a number of authors for operator monotone functions.

1. Introduction

Let $\mathbb{B}(\mathscr{H})$ be the algebra of all bounded linear operators on a complex separable Hilbert space $(\mathscr{H},\langle\cdot, \cdot\rangle)$. An operator $A \in \mathbb{B}(\mathscr{H})$ is called self-adjoint if $A^{*}=A$. A self-adjoint operator $A \in \mathbb{B}(\mathscr{H})$ is called positive if $\langle A x, x\rangle \geqslant 0$ for all $x \in \mathscr{H}$ and is called strictly positive if $\langle A x, x\rangle>0$ for all nonzero $x \in \mathscr{H}$. The set of all selfadjoint operators in $\mathbb{B}(\mathscr{H})$ is denoted by $\mathbb{B}(\mathscr{H})_{s}$, the set of all positive operators shall be denoted by $\mathbb{B}(\mathscr{H})_{+}$and the set of all strictly positive operators shall be denoted by $\mathbb{B}(\mathscr{H})_{+}^{+}$. For $A, B \in \mathbb{B}(\mathscr{H})_{s}, A \geqslant B(A>B)$ means $A-B$ is positive (strictly positive). A norm $\|\|\cdot\|\|$ on $\mathbb{B}(\mathscr{H})$ is called unitarily invariant or symmetric if

$$
\|\|U A V|\|=\|| \mid A\|\|
$$

for all $A \in \mathbb{B}(\mathscr{H})$ and for all unitary operators $U, V \in \mathbb{B}(\mathscr{H})$. The most basic unitarily invariant norms are the Ky -Fan norms and Schatten p-norms defined respectively as

$$
\|A\|_{(k)}=\sum_{j=1}^{k} \sigma_{j}(A) \quad(k=1,2, \ldots)
$$

[^0]and
$$
\|A\|_{p}=\left(\sum_{j=1}^{\infty}\left(\sigma_{j}(A)\right)^{p}\right)^{1 / p} \quad(1 \leqslant p<\infty)
$$
where $\sigma_{1}(A) \geqslant \sigma_{2}(A) \geqslant \ldots$ are the singular values of A. We shall consider a norm ideal $(\mathscr{I},\| \| \cdot\| \|)$ of $\mathbb{B}(\mathscr{H})$ with respect to a unitarily invariant norm $\|\|\cdot\|\|$. For convenience we shall write $(\mathscr{I},\| \| \cdot\| \|)$ as \mathscr{I}. By I we mean identity operator in $\mathbb{B}(\mathscr{H})$. For $A, B \in \mathbb{B}(\mathscr{H})$, we shall denote by $m=\min \{\|A\|,\|B\|\}$ and by $M=\max \{\|A\|,\|B\|\}$ throughout. Here $\|\cdot\|$ denotes the operator norm on $\mathbb{B}(\mathscr{H})$.

A nonnegative and infinitely differentiable function f on $(0, \infty)$ is called completely monotone if $(-1)^{k} f^{(k)}(x) \geqslant 0$ and is called Bernstein function if $(-1)^{k-1} f^{(k)}(x)$ $\geqslant 0$ for all $x \in(0, \infty), k=1,2, \cdots$, see $[11,13]$. Here $f^{(k)}, k=1,2, \cdots$ denotes the k th derivative of f. One should note that a completely monotone function is decreasing and convex whereas a Bernstein function is increasing and concave.

Every $A \in \mathbb{B}(\mathscr{H})_{s}$ admits spectral decomposition

$$
A=\int \lambda d E_{\lambda}
$$

where E_{λ} is a spectral measure. Let f be a real valued function defined on an interval J and let $A \in \mathbb{B}(\mathscr{H})_{s}$ has its spectrum in J. Then $f(A)$ is defined by

$$
f(A)=\int f(\lambda) d E_{\lambda}
$$

The function f is called operator monotone if $A \geqslant B$ implies $f(A) \geqslant f(B)$ for $A, B \in$ $\mathbb{B}(\mathscr{H})_{s}$ with spectrum in J.

When Hilbert space \mathscr{H} is finite dimensional, van Hemmen and Ando [8] proved that if $A, B \in \mathbb{B}(\mathscr{H})_{+}$are such that $A+B \geqslant c I$ for some $c>0$ and f is a nonnegative operator monotone function on $[0, \infty)$, then

$$
\left\|\left|\left|f(A)-f(B)\| \| \leqslant\left(\frac{f(c / 2)-f(0)}{c / 2}\right)\||A-B|\|\right.\right.\right.
$$

for all unitarily invariant norms $\|\|\cdot\|\|$. Kittaneh and Kosaki [9] generalized this result to its commutator version by proving that, if $A, B \in \mathbb{B}(\mathscr{H})_{+}$are such that $A \geqslant a I, B \geqslant$ $b I$ for some $a, b>0$ and $X \in \mathbb{B}(\mathscr{H})$, then for every nonnegative operator monotone function f on $(0, \infty)$

$$
\|f(A) X-X f(B)\|_{p} \leqslant c(a, b)\|A X-X B\|_{p}
$$

where $c(a, b)=\frac{f(a)-f(b)}{a-b}$ if $a \neq b$ and $c(a, b)=f^{\prime}(a)$ if $a=b$. Bhatia [6] proved the above inequality for all unitarily invariant norms when $X=I$ and $b=a$, using Fréchet differential calculus. If the function f is completely monotone on $(0, \infty)$, it is proved in [4] that

$$
\|\|f(A) X-X f(B)\|\| \leqslant\left|f^{\prime}(m)\right|\|A X-X B|\||
$$

for all operators $A, B \in \mathbb{B}(\mathscr{H})_{+}^{+}, X \in \mathbb{B}(\mathscr{H})$ and for all unitarily invariant norms $|\|\cdot \mid\|$. In [7], it is proved that if f is nonegative operator monotone function on $(0, \infty)$, then

$$
\|\|f(A) X-X f(B)\|\| \leqslant \max \left\{\left\|f^{\prime}(A)\right\|,\left\|f^{\prime}(B)\right\|\right\}\| \| A X-X B\| \|
$$

Similar type of inequalities for the functions e^{x} and x^{α} can also be found in [12]. Our aim in this article is to prove that for $A, B \in \mathbb{B}(\mathscr{H})_{+}^{+}$and $X \in \mathscr{I}$,

$$
\||\Gamma(A) X-X \Gamma(B)\| \| \leqslant c(m, M)|\| A X-X B \mid \|
$$

for all unitarily invariant norms $\|\|\cdot\|\|$, where Γ denotes the Gamma function and $c(m, M)$ is a constant depending upon A, B. Further for a Bernstein function f, we shall prove that

$$
\left\|\left\|f(A) X-X f(B)\left|\left\|\leqslant f^{\prime}(m)\right\|\right| A X-X B \mid\right\|\right.
$$

At the end, as a remark, we shall demonstrate, how the above inequality includes a number of inequalities proved by several authors.

2. Main results

We begin this section by proving a norm inequality for the Gamma function. For this we need the following proposition.

Proposition 2.1. Let $A, B \in \mathbb{B}(\mathscr{H})_{s}$ and $X \in \mathscr{I}$. Then

$$
\left\|\left|a^{A} X-X a^{B}\right|\right\| \leqslant|\log a| \max \left\{\left\|a^{A}\right\|,\left\|a^{B}\right\|\right\}\|A X-X B \mid\|
$$

where $a>0$, for all unitarily invariant norms $\|\|\cdot\|\|$.
Proof. Let $A, B \in \mathbb{B}(\mathscr{H})_{s}$ and $X \in \mathscr{I}$, then we have [1,10]

$$
\left\|\left\|e^{A} X-X e^{B}\left|\left\|\left|\leqslant \frac{1}{2}\right|\right\| e^{A}(A X-X B)+(A X-X B) e^{B}\| \|\right.\right.\right.
$$

On replacing A with $\log a^{A}$ and B with $\log a^{B}$ in the above inequality, we get $\left.\left\|\left|e^{\log a^{A}} X-X e^{\log a^{B}}\right|\right\| \leqslant \frac{1}{2} \right\rvert\,\left\|e^{\log a^{A}}\left(\log a^{A} X-X \log a^{B}\right)+\left(\log a^{A} X-X \log a^{B}\right) e^{\log a^{B}}\right\| \|$, i.e.,

$$
\left\|\left|a^{A} X-X a^{B}\right|\right\| \leqslant \frac{1}{2}\left|\left\|\log a\left(a^{A}(A X-X B)+(A X-X B) a^{B}\right) \mid\right\|\right.
$$

Consequently,

$$
\begin{aligned}
\left\|a^{A} X-X a^{B} \mid\right\| & \leqslant \frac{1}{2}|\log a|\left(\left|\left\|a ^ { A } (A X - X B) \left|\left\|\left|+\|\left|(A X-X B) a^{B}\right|\right| \mid\right)\right.\right.\right.\right. \\
& \leqslant \frac{|\log a|}{2}\left(\left\|a^{A}\right\|\left|\|A X-X B|\|+\|||A X-X B|\| \| a^{B}\right| \mid\right) \\
& \leqslant \frac{|\log a|}{2} 2\left(\max \left\{\left\|a^{A}\right\|, \| a^{B}| |\right\}\right)|\|A X-X B \mid\| \\
& =|\log a| \max \left\{\left\|a^{A}\right\|,\left\|a^{B}\right\|\right\}|\|A X-X B \mid\|
\end{aligned}
$$

The first inequality in the above inequalities follows from the triangle inequality for norms and the second follows from the well known inequality

$$
\|A B C \mid\| \leqslant\|A\|\| \| B\| \|\|C\|
$$

for all $A, B, C \in \mathbb{B}(\mathscr{H})$. This completes the proof of the proposition.
Theorem 2.2. Let $A, B \in \mathbb{B}(\mathscr{H})_{+}^{+}$and $X \in \mathscr{I}$. Then

$$
\begin{equation*}
\|\mid \Gamma(A) X-X \Gamma(B)\|\|\leqslant c(m, M)\|\|A X-X B\| \| \tag{2.1}
\end{equation*}
$$

for all unitarily invariant norms $|||\cdot|||$, where

$$
c(m, M)=\int_{1}^{\infty} \log t e^{-t} t^{M-1} d t-\int_{0}^{1} \log t e^{-t} t^{m-1} d t
$$

Proof. For inequality (2.1) to be valid, $c(m, M)$ must be finite. We claim that the integrals

$$
\int_{1}^{\infty} \log t e^{-t} t^{M-1} d t \quad \text { and } \quad \int_{0}^{1}(-\log t) e^{-t} t^{m-1} d t
$$

are finite. The Gamma function is defined by

$$
\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t, x>0, t>0
$$

For the first integral in $c(m, M)$, note that $\log t<t$ for all $t>0$. Therefore

$$
\log t e^{-t} t^{M-1} \leqslant t e^{-t} t^{M-1}
$$

for $1<t<\infty$. Therefore

$$
\begin{equation*}
0 \leqslant \int_{1}^{\infty} \log t e^{-t} t^{M-1} d t \leqslant \int_{1}^{\infty} t e^{-t} t^{M-1} d t \tag{2.2}
\end{equation*}
$$

But,

$$
\begin{aligned}
\int_{1}^{\infty} t e^{-t} t^{M-1} d t & =\int_{1}^{\infty} e^{-t} t^{M} d t \\
& \leqslant \int_{0}^{\infty} e^{-t} t^{M} d t=\Gamma(M+1)
\end{aligned}
$$

So inequality (2.2) implies that

$$
\int_{1}^{\infty} \log t e^{-t} t^{M-1} d t
$$

is finite. For the second integral, we have $e^{-t}<1$ for $t>0$. Therefore

$$
(-\log t) e^{-t} t^{m-1} \leqslant(-\log t) t^{m-1}
$$

for $0<t<1$. Then

$$
\begin{equation*}
0 \leqslant \int_{0}^{1}(-\log t) e^{-t} t^{m-1} d t \leqslant \int_{0}^{1}(-\log t) t^{m-1} d t \tag{2.3}
\end{equation*}
$$

Integrating the integral

$$
\int_{0}^{1}(-\log t) t^{m-1} d t
$$

by parts, it turns out to be equal to $\frac{1}{m^{2}}$. So from inequality (2.3) we conclude that

$$
\int_{0}^{1}(-\log t) e^{-t} t^{m-1} d t
$$

is finite. This establishes our claim and hence $c(m, M)$ is finite. Now we proceed to prove inequality (2.1). Note that

$$
\Gamma(x)=\int_{0}^{\infty} \frac{e^{-t}}{t} f_{t}(x) d t
$$

where $f_{t}(x)=t^{x}$. We shall first prove the inequality (2.1) for all functions $f_{t}, t>0$. By Proposition 2.1 with $a=t$, we have

$$
\begin{aligned}
\left\|\left|t^{A} X-X t^{B}\right|\right\| & \leqslant|\log t| \max \left\{\left\|t^{A}\right\|,\left\|t^{B}\right\|\right\}\| \| A X-X B|\|| \\
& =|\log t|\|A X-X B\| \|\left\{\begin{array}{l}
t^{M}, \text { if } t \geqslant 1 \\
t^{m}, \text { if } 0<t<1
\end{array}\right.
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\|\mid \Gamma(A) X-X \Gamma(B)\| \| & =\left\|\int_{0}^{\infty} \frac{e^{-t}}{t} f_{t}(A) d t X-X \int_{0}^{\infty} \frac{e^{-t}}{t} f_{t}(B) d t\right\| \\
& \left.=\left\|\int_{0}^{\infty} \frac{e^{-t}}{t}\left(f_{t}(A) X-X f_{t}(B)\right) d t\right\| \right\rvert\, \\
& \leqslant \int_{0}^{\infty}\| \| \frac{e^{-t}}{t}\left(f_{t}(A) X-X f_{t}(B)\right)\|\mid\| d t \\
& =\int_{0}^{\infty} \frac{e^{-t}}{t}\left|\left\|f_{t}(A) X-X f_{t}(B)|\|| t\right.\right. \\
& \leqslant\|A X-X B\| \|\left(\int_{0}^{1} \frac{e^{-t}}{t}|\log t| t^{m} d t+\int_{1}^{\infty} \frac{e^{-t}}{t}|\log t| t^{M} d t\right) \\
& =\|A X-X B\| \|\left(\int_{0}^{1}|\log t| e^{-t} t^{m-1} d t+\int_{1}^{\infty} \log t e^{-t} t^{M-1} d t\right) \\
& =\|\mid A X-X B\| \|\left(\int_{1}^{\infty} \log t e^{-t} t^{M-1} d t-\int_{0}^{1} \log t e^{-t} t^{m-1} d t\right) \\
& =c(m, M)|\|A X-X B\|| .
\end{aligned}
$$

This completes the proof.

Corollary 2.3. Let $A, B \in \mathbb{B}(\mathscr{H})_{+}^{+} \cap \mathscr{I}$. Then

$$
\||\Gamma(A) \Gamma(B)-\Gamma(B) \Gamma(A)|\| \leqslant c^{2}(m, M)|\|A B-B A \mid\|
$$

for all unitarily invariant norms ||| ||||.
Proof. Taking $B=A$ and $X=\Gamma(B)$ in Theorem 2.2., we obtain

$$
\begin{aligned}
\|\mid \Gamma(A) \Gamma(B)-\Gamma(B) \Gamma(A)\| \| & \leqslant c(m, M)\||A \Gamma(B)-\Gamma(B) A|\| \\
& =c(m, M)\|\mid\|(B) A-A \Gamma(B)\| \| \\
& \leqslant c^{2}(m, M)\|\mid\| A-A B\| \| \\
& =c^{2}(m, M)\|A B-B A \mid\|
\end{aligned}
$$

where the last inequality is obtained by taking $A=B$ and $X=A$ in Theorem 2.2. This completes the proof of the corollary.

Next we state and outline a proof for a similar norm inequality for the Bernstein function.

THEOREM 2.4. Let f be a Bernstein function. Then

$$
\|\|f(A) X-X f(B)\|\| \leqslant f^{\prime}(m)\| \| A X-X B\| \|
$$

for all $A, B \in \mathbb{B}(\mathscr{H})_{+}^{+}, X \in \mathscr{I}$ and all unitarily invariant norms $\|\|\cdot\|\|$.
Proof. It is known that the Bernstein function admits the integral representation

$$
f(x)=\alpha+\beta x+\int_{0}^{\infty}\left(1-e^{-t x}\right) d \mu(t), \quad x, t>0
$$

where μ is a positive measure on $(0, \infty)$ and $\alpha, \beta \geqslant 0$ (see [11]). Therefore

$$
\begin{align*}
\|\mid f(A) X-X f(B)\| \| & =\left\|\beta(A X-X B)+\int_{0}^{\infty}\left(X e^{-t B}-e^{-t A} X\right) d \mu(t)\right\| \\
& \leqslant \beta\| \|(A X-X B)\| \|+\int_{0}^{\infty}\| \| e^{-t A} X-X e^{-t B} \mid \| d \mu(t) \tag{2.4}
\end{align*}
$$

It follows by taking $a=e^{-t}$ in Proposition 2.1 that

$$
\begin{align*}
\left\|e^{-t A} X-X e^{-t B} \mid\right\| & \leqslant\left|\log e^{-t}\right| \max \left\{\left\|e^{-t A}\right\|,\left\|e^{-t B}\right\|\right\} \mid\|A X-X B\| \| \\
& =|-t| \max \left\{\left\|e^{-t A}\right\|, \| e^{-t B}| |\right\}|\|A X-X B \mid\| \\
& =\max \left\{\left\|t e^{-t A}\right\|, \| t e^{-t B}| |\right\} \mid\|A X-X B\| \| \\
& =t e^{-m t}|\|A X-X B \mid\| . \tag{2.5}
\end{align*}
$$

Using (2.5) in (2.4) we get the desired inequality.
We state the following corollary the proof for which is similar to the proof of Corollary 2.3.

Corollary 2.5. Let f be a Bernstein function and $A, B \in \mathbb{B}(\mathscr{H})_{+}^{+} \cap \mathscr{I}$. Then

$$
\left\|\|f(A) f(B)-f(B) f(A) \mid\| \leqslant\left(f^{\prime}(m)\right)^{2}\right\|\|A B-B A\| \|
$$

for all unitarily invariant norms $\|\|\cdot \mid\|$.
One may observe that a function may not be Bernstein function but the inverse (if exists) of the function may be a Bernstein function. Examples of such functions include $x^{r}, r \geqslant 1, e^{x}-1$.

THEOREM 2.6. Let a function $f:[0, \infty) \rightarrow(0, \infty)$ be such that its inverse function f^{-1} (if exists) is Bernstein function. Then for all $A, B \in \mathbb{B}(\mathscr{H})_{+}^{+}$and $X \in \mathscr{I}$,

$$
f^{\prime}(m)|\|A X-X B|\|\leqslant\|| f(A) X-X f(B)\| \|
$$

for all unitarily invariant norms $|||\cdot|||$.

Proof. Since f^{-1} is Bernstein function, we have from Theorem 2.4,

$$
\left\|\left\|f^{-1}(A) X-X f^{-1}(B)\left|\left\|\leqslant\left(f^{-1}\right)^{\prime}(m)\right\| A X-X B\right|\right\| .\right.
$$

On replacing A by $f(A)$ and B by $f(B)$, one gets

$$
\|\mid A X-X B\|\left\|\leqslant\left(f^{-1}\right)^{\prime}(f(m))\right\|\|f(A) X-X f(B)\| \|
$$

That $\left(f^{-1}\right)^{\prime}(f(m))$ is equal to $\left(f^{\prime}(m)\right)^{-1}$ follows from $\left(f^{-1} \circ f\right)(x)=x$ for all x.

Corollary 2.7. Let $A, B \in \mathbb{B}(\mathscr{H})_{+}^{+}$and $X \in \mathscr{I}$. Then

$$
r m^{r-1}\left|\left\|A X-X B\left|\|\leqslant\| A^{r} X-X B^{r}\right|\right\|, \quad r \geqslant 1\right.
$$

for all unitarily invariant norms $\|\|\cdot \mid\|$.

Proof. The inverse function $x^{\frac{1}{r}}$ of $x^{r}, r \geqslant 1$ is operator monotone and hence is Bernstein function. Therefore, Theorem 2.6 gives the desired inequality.

In case when \mathscr{H} is finite dimensional, a weaker version of the following corollary $(m=0)$ is proved in [12].

Corollary 2.8. Let $A, B \in \mathbb{B}(\mathscr{H})_{+}^{+}$and $X \in \mathscr{I}$. Then

$$
e^{m}\| \| A X-X B \mid\|\leqslant\| e^{A} X-X e^{B}\| \|
$$

for all unitarily invariant norms $\|\|\cdot\|\|$.

Proof. The inverse function $\log (x+1)$ of $e^{x}-1$ is operator monotone and hence is a Bernstein function. Therefore, Theorem 2.6 gives the desired inequality.

REMARK. From the definition of completely monotone function and the Bernstein function given in Section 1, it follows that a function f is a Bernstein function if its derivative is completely monotone. If f is nonnegative operator monotone function on $(0, \infty)$ then f admits the integral representation

$$
f(x)=\alpha+\beta x+\int_{0}^{\infty}\left(\frac{t}{t^{2}+1}-\frac{1}{x+t}\right) d \mu(t)
$$

where α is a real number, $\beta \geqslant 0$ and μ is a positive measure on $(0, \infty)$ such that

$$
\int_{0}^{\infty} \frac{1}{t^{2}+1} d \mu(t)<\infty
$$

(see [5]). From this integral representation, it follows that the derivative of an operator monotone function is completely monotone and hence it is a Bernstein function. Consequently, we see that Theorem 2.4. supplements and unifies the results proved by van Hemmen and Ando [8], Kittaneh and Kosaki [9], Bhatia [6] and A. G. Ghazanfari [7]. It is further remarked that the inequalities for log-convex functions are also studied in [2, 3].

Acknowledgements. The authors are very thankful to the referee for very progressive suggestions and pointing out references [1, 10]. The authors are also thankful to Professor Mandeep Singh for giving valuable suggestions.

REFERENCES

[1] A. Aggarwal, Y. Kapil, M. Singh, Contractive maps on operator ideals and norm inequalities II, Linear Algebra Appl., 513, 13 (2017), 182-200.
[2] J. S. Aujla, J. C. Bourin, Eigenvalue inequalities for convex and log-convex functions, Linear Algebra Appl., 424 (2007), 25-35.
[3] J. S. Aujla, M. Singh, H. L. Vasudeva, Log-convex matrix functions, Ser. Mat. 11 (2000), 19-32.
[4] J. S. Aujla, Some norm inequalities for completely monotone functions-II, Linear Algebra Appl., 359 (2003), 59-65.
[5] R. Bhatia, Matrix Analysis, Springer, New York, 1997.
[6] R. Bhatia, First and second order perturbation bounds for the operator absolute value, Linear Algebra Appl., 208/209 (1994), 367-376.
[7] A. G. GhaZanfari, Refined Heinz operator inequalities and norm inequalities, Oper. Matrices 15 (2021), 239-352.
[8] J. L. van Hemmen, T. Ando, An inequality for trace ideals, Commun. Math. Phys. 76 (1980), 143-148.
[9] F. Kittaneh, H. Kosaki, Inequalities for the Schatten p-norm V, Publ. Res. Inst. Math. Sci. 23 (1986), 433-443.
[10] H. Kosaki, Positive Definiteness of Functions with Applications to Operator Norm Inequalities, Memoirs Amer. Math. Soc., Providence, RI, 2011.
[11] R. L. Schilling, R. Song, Z. Vondraček, Bernstein Functions Theory and Applications, Studies in Mathematics 37, De Gruyter, 2010.
[12] M. Singh, J. S. Aujla, H. L. Vasudeva, Inequalities for Hadamard product and unitarily invariant norms of matrices, Linear and Multilinear Algebra 48 (2001), 247-262.
[13] D. V. Widder, Laplace Transforms, Princeton University Press, Princeton, N. J, 1968.

Manisha Devi
Department of Mathematics
National Institute of Technology
Jalandhar 144011, Punjab, India
e-mail: devimanisha076@gmail.com

Jaspal Singh Aujla
Department of Mathematics
National Institute of Technology
Jalandhar 144011, Punjab, India
e-mail: aujlajs@nitj.ac.in

[^0]: Mathematics subject classification (2020): 47A30, 47B15, 15A60.
 Keywords and phrases: Bernstein function, gamma function, positive definite matrix, unitarily invariant norm.

