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REFINING SOME INEQUALITIES ON

2× 2 BLOCK ACCRETIVE MATRICES

HONG HUANG

(Communicated by F. Kittaneh)

Abstract. We obtain some matrix inequalities on the off-diagonal blocks of 2×2 block accretive
matrices and the geometric mean of its diagonal blocks. They improve some results of Liu et al.
[Operators and Matrices, 15, 2(2021), 581–587] and refine an inequality of Yang et al. [Journal
of Inequalities and Applications (2020) 2020:90].

1. Introduction

Let Mn be the space of n×n complex matrices with the identity matrix I . For X ∈
Mn , X � (>)0 means X is a positive semidefinite (definite) matrix. For any X ∈ Mn ,

the singular values s j(X) , which are the eigenvalues of |X | = (X∗X)
1
2 , are arranged in

nonincreasing order as s1(X) � s2(X) � · · · � sn(X) . For X ,Y ∈ Mn , if

k

∏
i=1

si(X) �
k

∏
i=1

si(Y )

for all k = 1,2, · · · ,n , then we say the singular values of X are weakly log majorized
by the singular values of Y and we write S(X) ≺wlog S(Y ) . More information on ma-
jorization can be found in [9]. When X ,Y ∈ Mn with X ,Y > 0, the geometric mean
X�Y is defined by

X�Y = X
1
2 (X− 1

2YX− 1
2 )

1
2 X

1
2 .

Note this definition could be extended to positive semidefinite matrices X ,Y by a
limit:

X�Y = lim
ε↓0

(X + εI)�(Y + εI).

More information on the geometric mean can be found in [1, Chapter 4].
A matrix X ∈ Mn is called accretive if RX = X+X∗

2 � 0. Recently Drury [10]
defined the geometric mean for two accretive matrices X ,Y ∈ Mn by

X�Y :=
(

2
π

∫ ∞

0
(vX + v−1Y )−1 dv

v

)−1

. (1)
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A weighted version of (1) was given by Raissouli et al. in [11]. It is noted that if X ,Y
are accretive, then so is X�Y .

Let X =
(

A W
Y ∗ B

)
∈ M2(Mn) , and X τ =

(
A Y ∗
W B

)
. We say X is PPT (i.e., pos-

itive partial transpose) if both X and X τ are positive semidefinite. In [12], the authors
introduced the notion of APT (i.e., accretive partial transpose). We say X is APT if
both X and X τ are accretive.

Clearly, the class of APT matrices includes the class of PPT.
Moreover, in [12], Liu et al. proved the following results.

THEOREM 1. Let H =
(

A X
Y ∗ B

)
∈ M2(Mn) be APT. Then

S

(
X +Y

2

)
≺wlog S(A�B). (2)

and

|X +Y | � R(A�B+U(A�B)U), (3)

for some unitary matrix U ∈ Mn .

Let Hua matrix be given by

(
(I−X∗X)−1 (I−Y∗X)−1

(I−X∗Y )−1 (I−Y ∗Y )−1

)
, (4)

where X ,Y ∈ Mm×n are strictly contractive, i.e, ‖X‖,‖Y‖ < 1. Lin and Wolkowicz in
[6] proved the following inequality for every unitarily invariant norm ‖ · ‖u .

2‖(I−X∗Y )−1‖u � ‖(I−X∗X)−1 +(I−Y ∗Y )−1‖u.

Since Hua matrix is PPT, Yang et.al. in [7] gave a generalization of the above inequality.

‖(I−X∗Y )−1‖u � ‖(I−X∗X)−1�(I−Y∗Y )−1‖u. (5)

Moreover, Liu et al. in [12] also proved the following inequalities related to X�X∗

X�X∗ � RX ; (6)

and

‖X�X∗‖u � ‖X‖u, (7)

where X ∈ Mn is accretive.
In this paper, using a result in [5], we present some new related inequalities, which

are refinements of (2), (3), (5) and (7) respectively.
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2. Main results

Before we give our first main results, we need the following lemmas.

LEMMA 1. [5] If X ,Y ∈ Mn with X ,Y � 0 , then

k

∏
j=1

s2
j (X�Y ) �

k

∏
j=1

s j(X)s j(Y ), k = 1, · · · ,n. (8)

LEMMA 2. [5] Let

(
A Y
Y ∗ B

)
∈ M2(Mn) be PPT and let Y = U |Y | be the polar

decomposition of Y . Then

|Y | � (A�B)�(U∗(A�B)U), (9)

and
|Y ∗| � (A�B)�(U∗(A�B)U). (10)

LEMMA 3. [1, 2] Let A,B,C,D be positive semidefinite. Then

(i) A�B = B�A;

(ii) A � C and B � D ⇒ A�B � C�D;

(iii) A�B � A+B
2 ;

(iv) A�B = A
1
2VB

1
2 for some unitary V .

The following lemma about geometric mean can been found in [8].

LEMMA 4. [8] Let A,B ∈ Mn be accretive. Then

(RA)�(RB) � R(A�B). (11)

LEMMA 5. [9, p. 63] If H ∈ Mn , then

s j(RH) � s j(H), j = 1, · · · ,n. (12)

LEMMA 6. (Weyl’s Monotonicity Theorem) [2, p. 63] If A,B ∈ Mn with 0 �
A � B, then

s j(A) � s j(B), j = 1, · · · ,n. (13)

LEMMA 7. (Fan Dominance Theorem) [2, p. 93] If A,B ∈ Mn with

‖A‖(k) � ‖B‖(k) for k = 1,2, · · · ,n,

then
‖A‖u � ‖B‖u, (14)

where ‖A‖(k) = ∑k
i=1 si(A), 1 � k � n.
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Now, we are in the position to state our first main result which is recited in the
following.

THEOREM 2. Let T =
(

A X
Y ∗ B

)
∈ M2(Mn) be APT and let X +Y =U |X +Y | be

the polar decomposition of X +Y . Then
∣∣∣∣X +Y

2

∣∣∣∣ � R(A�B)�R(U∗(A�B)U)

� R(A�B+U∗(A�B)U)
2

. (15)

and ∣∣∣∣X
∗ +Y ∗

2

∣∣∣∣ � R(A�B)�R(U∗(A�B)U)

� R(A�B+U∗(A�B)U)
2

. (16)

Proof. Since

T =
(

A X
Y ∗ B

)

is APT, we have that

RT =
(

RA (X +Y )/2
(X∗ +Y∗)/2 RB

)

is PPT. From Lemma 2, we get
∣∣∣∣X +Y

2

∣∣∣∣ � (RA�RB)�(U∗(RA�RB)U) (by (9))

� R(A�B)�R(U∗(A�B)U) (by Lemma 4 and Lemma 3 (ii))

� R(A�B)+R(U∗(A�B)U)
2

(by Lemma 3 (iii))

=
R(A�B+U∗(A�B)U)

2
.

We also have ∣∣∣∣X
∗ +Y∗

2

∣∣∣∣ � (RA�RB)�(U∗(RA�RB)U) (by (10))

� R(A�B+U∗(A�B)U)
2

. �

REMARK 1. It is clear that (15) is a refinement of (3).

The following result follows from Theorem 2 and Lemma 5.



REFINING SOME INEQUALITIES ON 2×2 BLOCK ACCRETIVE MATRICES 461

COROLLARY 1. Let T =
(

A X
Y ∗ B

)
∈ M2(Mn) be APT and let X +Y = U |X +Y |

be the polar decomposition of X +Y . Then for i = 1,2, · · · ,n

si

(
X +Y

2

)
� si ((RA�RB)�(U∗(RA�RB)U))

� si

(
R(A�B+U∗(A�B)U)

2

)
� si

(
A�B+U∗(A�B)U

2

)
. (17)

COROLLARY 2. Let T =
(

A X
Y ∗ B

)
∈ M2(Mn) be APT and let X +Y = U |X +Y |

be the polar decomposition of X +Y . Then

S

(
X +Y

2

)
≺wlog S ((RA�RB)�(U∗(RA�RB)U))

≺wlog S(A�B). (18)

Proof. Using the first inequality in (17), for k = 1,2, · · · ,n we have

k

∏
i=1

si

(
X +Y

2

)

�
k

∏
i=1

si((RA�RB)�(U∗(RA�RB)U)) (by (17))

�
k

∏
i=1

s
1
2
i (RA�RB)s

1
2
i (U∗(RA�RB)U) (by Lemma 1)

=
k

∏
i=1

s
1
2
i (RA�RB)s

1
2
i (RA�RB)

=
k

∏
i=1

si (RA�RB)

�
k

∏
i=1

si (R(A�B)) (by Lemma 4)

�
k

∏
i=1

si (A�B) (by Lemma 5). �

REMARK 2. Inequality (18) gives a refinement of (2).

THEOREM 3. If Hua matrix is as in (4) and let (I−A∗B)−1 = U |(I−A∗B)−1| be
the polar decomposition of (I−A∗B)−1 , then for i = 1, · · · ,n

si
(
(I−A∗B)−1)

� si
((

(I−A∗A)−1�(I−B∗B)−1)�
(
U∗(I−A∗A)−1�(I−B∗B)−1U

))
� 1

2
si

((
(I−A∗A)−1�(I−B∗B)−1)+

(
U∗(I−A∗A)−1�(I−B∗B)−1U

))
. (19)
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Proof. Since Hua matrix is PPT, then by Lemma 2 and Lemma 3 (iii), we have

∣∣(I−A∗B)−1
∣∣ �

(
(I−A∗A)−1�(I−B∗B)−1)�

(
U∗(I−A∗A)−1�(I−B∗B)−1U

)
� 1

2

(
(I−A∗A)−1�(I−B∗B)−1 +U∗(I−A∗A)−1�(I−B∗B)−1U

)
,

which implies the desired result by Lemma 6. �

From Theorem 3, we obtain the following result for unitarily invariant norm which
is a refinement of (5).

COROLLARY 3. If Hua matrix is as in (4), then for every unitarily invariant norm
‖ · ‖u

∥∥(I−A∗B)−1
∥∥

u

�
∥∥((I−A∗A)−1�(I−B∗B)−1)�(U∗(I−A∗A)−1�(I−B∗B)−1U)

∥∥
u

� 1
2

∥∥(
(I−A∗A)−1�(I−B∗B)−1)+

(
U∗(I−A∗A)−1�(I−B∗B)−1U

)∥∥
�

∥∥(I−A∗A)−1�(I−B∗B)−1
∥∥

u , (20)

where U ∈ Mn is some unitary matrix.

Proof. The first and the second inequalities follow from (19) and Lemma 7, and
the third inequality follows from triangle inequality for the unitarily invariant norm
‖ · ‖u . �

REMARK 3. Inequality (20) presents a refinement of (5).

3. Inequalities related to X�X∗

In this section, we give a refinement of (7) and some related inequalities.

THEOREM 4. If X ∈Mn is accretive and let X =U |X | be the polar decomposition
of X , then for every unitarily invariant norm ‖ · ‖u

‖X‖u � ‖(X�X∗)�(U∗(X�X∗)U‖u � ‖X�X∗‖u. (21)

Proof. Since M =
(

X�X∗ X
X∗ X�X∗

)
is positive semidefinite(see [12]), and Mτ =(

X�X∗ X∗
X X�X∗

)
=

(
X∗�X X∗

X X∗�X

)
is also positive semidefinite, M is PPT.

Therefore, by Lemma 2,

|X | � (X�X∗)�(U∗(X�X∗)U),
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which means

‖X‖u � ‖(X�X∗)�(U∗(X�X∗)U)‖u

� 1
2
‖(X�X∗)+ (U∗(X�X∗)U)‖u

� ‖X�X∗‖u. �

REMARK 4. It is clear that (21) is a refinement of (7).

THEOREM 5. If X ∈ Mn is accretive and X −X∗ = U |X −X∗| is the polar de-
composition of X −X∗ , then

|X −X∗| � (U∗(A�B)U)�(A�B) � U∗(A�B)U +A�B
2

. (22)

where A = X�X∗+RX ,B = X�X∗ −RX .

Proof. Since M =
(

X�X∗ X
X∗ X�X∗

)
� 0, we have

1√
2

[(
I I
−I I

)](
X�X∗ X
X∗ X�X∗

)[
1√
2

(
I −I
I I

)]

=
(

X�X∗ +RX X −X∗
X∗ −X X�X∗ −RX

)
� 0.

We also have (
X�X∗ +RX X∗ −X

X −X∗ X�X∗ −RX

)
� 0.

Hence, (
X�X∗ +RX X −X∗

X∗ −X X�X∗ −RX

)

is PPT.
By Lemma 2 and Lemma 3 (iii), the result follows. �

COROLLARY 4. If X ∈ Mn is accretive and X − X∗ = U |X − X∗| is the polar
decomposition of X −X∗ , then

‖X −X∗‖u � ‖(U∗(A�B)U)�(A�B)‖u � ‖A�B‖u. (23)

where A = X�X∗+RX ,B = X�X∗ −RX .
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