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DILATIONS OF LINEAR MAPS ON VECTOR SPACES

K. MAHESH KRISHNA AND P. SAM JOHNSON ∗

(Communicated by D. Han)

Abstract. Dilation of linear maps on vector spaces has been recently introduced by Bhat, De,
and Rakshit. This notion is a variant of vector space dilation introduced by Han, Larson, Liu,
and Liu. We derive vector space versions of Wold decomposition, Halmos dilation, N-dilation,
inter-twining lifting theorem and a variant of Ando dilation. It is noted further that unlike a kind
of uniqueness of Halmos dilation of strict contractions on Hilbert spaces, vector space version of
Halmos dilation cannot be characterized.

1. Introduction

Using functional calculus and Weierstrass polynomial approximation theorem,
Halmos in 1950 proved an interesting result that every contraction on a Hilbert space
can be lifted to unitary.

THEOREM 1.1. [9] (Halmos dilation) Let H be a Hilbert space and T :H→H
be a contraction. Then the operator

U :=
(

T
√

I−TT ∗√
I−T ∗T −T ∗

)

is unitary on H⊕H . In other words,

T = PHU |H,

where PH : H⊕H→H⊕H is the orthogonal projection onto H .

Three years later, Sz. Nagy extended the result of Halmos which reads as follows.

THEOREM 1.2. [24] (Sz. Nagy dilation) Let H be a Hilbert space and T :
H → H be a contraction. Then there exists a Hilbert space K which contains H
isometrically and a unitary U : K→K such that

T n = PHUn|H, ∀n = 1,2, . . . ,

where PH : K→K is the orthogonal projection onto H .
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Following the Theorem 1.2, extension of contractions on Hilbert spaces became
an active area of research, known as dilation theory. Some standard references for this
theory are [26,17,2,22]. This study of contractions boosted the study of other classes of
operators not only on Hilbert spaces, but also on Banach spaces. In a recent paper [3],
Bhat, De, and Rakshit abstracted the key ingradients in Halmos and Sz. Nagy dilation
theorem and set up a set theoretic version of dilation theory.

DEFINITION 1.3. [3] Let A be a (non empty) set and h : A → A be a map. An
injective power dilation of h is a quadruple (B, i,v, p) , where B is a set, i : A → B ,
v : B → B are injective maps, p : B → B is an idempotent map such that p(B) = i(A)
and

i(hn(a)) = p(vn(i(a))), ∀a ∈ A,∀n ∈ Z+.

A dilation (B, i,v, p) of h is said to be minimal if

B = ∪∞
n=0v

n(i(A)).

It is a simple observation that for Hilbert spaces, every operator cannot be dilated
to unitary operator. However, the following is a surprising result for sets derived in [3].

THEOREM 1.4. [3] Every map h : A → A admits a minimal injective power
dilation.

Bhat, De, and Rakshit suceeded in obtaining fundamental theorems of dilations
such as Wold decomposition, Halmos dilation, Sz. Nagy dilation, inter-twining lifting
theorem, Sarason’s lemma, Ando dilation and BCL (Berger, Coburn and Lebow) theo-
rem. Definition 1.3 allowed the authors of [3] to introduce the dilation of linear maps
on vector spaces and showed that every linear map admits a minimal injective power
dilation (see Section 2 for definition).

In this paper, we give the abstract study of dilation initiated by Bhat, De, and
Rakshit for vector spaces. We follow a similar development as done in [3]. We first
derive Wold decomposition, followed by Halmos dilation. After that we derive an N-
dilation result which is motivated from the construction of Egervary. Followed by this,
we derive inter-twining lifting theorem. At present exact analogoue of Ando dilation is
not known but a variant of that is given. Before ending the introduction, we note that
there is another vector space approach of dilation theory by Han, Larson, Liu, and Liu
[13] which is motivated from the Naimark dilation theorem [7, 19, 20], dilation theory
of frames [16,10,11,12,6,15,14] and Stinespring dilation theorem [23]. Dilation results
presented by Han, Larson, Liu, and Liu in [13] try to dilate a unital linear map from an
algebra to the algebra of operators on a vector space to a unital homomorphism from the
same algebra to the algebra of operators on a bigger vector space. The dilation presented
in this paper is completely different than of dilation given in [13] for the following
reasons. First, we are dilating a linear map from vector space (and not a unital linear
map from an algebra) to injective or bijective linear operators (not a homomorphism
from an algebra). Second, there is no power dilation derived in [13] but we derive
power dilation. Third, there are no inter-twining lifting and commuting dilation derived
in [13] but we consider them.
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2. Dilations of linear maps

Let H be a Hilbert space. We recall that an operator T : H →H is called a shift
if ∩∞

n=0T
n(H) = {0} . Classical Wold decomposition is the following.

THEOREM 2.1. [26] (Wold decomposition) Let T be an isometry on a Hilbert
space H . Then H decomposes uniquely as H = Hu ⊕Hs , where Hu and Hs are
T -reducing subspaces of H , T |Hu : Hu →Hu is a unitary and T |Hs : Hs → Hs is a
shift.

We note that the definition of shift of an operator does not use the Hilbert space
structure. Thus it can be formulated for vector spaces without modifications.

DEFINITION 2.2. Let V ,W be vector spaces and T : V →W be a linear map on
V . The map T is said to be a shift if ∩∞

n=0T
n(V) = {0} .

We now have the vector space version of Wold decomposition.

THEOREM 2.3. (Wold decomposition for vector spaces) Let T be an injective
linear map on a vector space V . Then V decomposes as V = Vb ⊕Vs , where Vb is a
T -invariant subspace of V , T |Vb : Vb →Vb is a bijection and T |Vs : Vs →V is a shift.

Proof. Define Vb := ∩∞
n=0T

n(V) and let Vs be a vector space complement of Vb

in V . We clearly have V = Vb⊕Vs . Now T (Vb) = T (∩∞
n=0T

n(V))⊆∩∞
n=0T

n(V) =Vb .
Thus Vb is a T -invariant subspace of V . We now try to show that T |Vb is a bijection.
Since T is already injective, it suffices to show that T |Vb is surjective. Let y ∈ Vb .
Then there exists a sequence {xn}∞

n=1 in V such that y = Tx1 = T 2x2 = T 3x3 = · · · .
Since T is injective, we then have x1 = Tx2 = T 2x2 = · · · . Therefore y = Tx1 and
x1 ∈ Vb . Thus T |Vb is surjective. We are now left with proving that T |Vs is a shift. Let
y ∈ ∩∞

n=0(T |Vs)
n(Vs) ⊆ (∩∞

n=0T
n(V))∩Vs = Vb ∩Vs . Hence y = 0 which completes

the proof. �
Since vector space complements are not unique, note that, we do not have unique-

ness in Wold decomposition for vector spaces. We now derive Halmos dilation for
linear maps on vector spaces.

THEOREM 2.4. (Halmos dilation for vector spaces) Let V be a vector space and
T : V → V be a linear map. Then the operator

U :=
(

T I
I 0

)

is invertible on V ⊕V . In other words,

T = PVU |V ,

where PV : V ⊕V → V⊕V is the first coordinate projection onto V .
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Proof. It suffices to produce inverse map for U . A direct calculation says that

V :=
(

0 I
I −T

)

is the inverse of U . �

In the sequel, any invertible operator of the form(
T B
C D

)
,

where B,C,D : V → V are linear operators, will be called as a Halmos dilation of T .
Now we observe that Halmos dilation is not unique. Using the theory of block matrices
[18] we can produce a variety of Halmos dilations for a given operator. Following are
some classes of Halmos dilations.

(i) If T : V → V is an invertible linear map and the linear operators B,C,D : V → V
are such that D−CT−1B is invertible, then the operator

U :=
(

T B
C D

)
is a Halmos dilation of T on V ⊕V whose inverse is

(
T−1 +T−1B(D−CT−1B)−1 −T−1B(D−CT−1B)−1

−D−1C(D−CT−1B)−1 (D−CT−1B)−1

)
.

(ii) If D : V →V is an invertible linear map and the linear operators B,C : V →V are
such that T −BD−1C is invertible, then the operator(

T B
C D

)
is a Halmos dilation of T on V ⊕V whose inverse is

(
(T −BD−1C)−1 −(T −BD−1C)−1BD−1

−D−1C(T −BD−1C)−1 D−1 +D−1C(T −BD−1C)−1BD−1

)
.

(iii) If B : V →V is an invertible linear map and the linear operators C,D : V →V are
such that C−DB−1T is invertible, then the operator(

T B
C D

)
is a Halmos dilation of T on V ⊕V whose inverse is

( −(C−DB−1T )−1DB−1 (C−DB−1T )−1

B−1 +B−1T (C−DB−1T )−1DB−1 −B−1T (C−DB−1T )−1

)
.
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(iv) If C : V →V is an invertible linear map and the linear operators B,D : V →V are
such that B−TC−1D is invertible, then the operator

(
T B
C D

)
is a Halmos dilation of T on V ⊕V whose inverse is

(−C−1D(B−TC−1D)−1 C−1 +C−1D(B−TC−1D)−1TC−1

(B−TC−1D)−1 −(B−TC−1D)−1TC−1

)
.

Recently, Bhat and Mukherjee [4] proved that there is certain kind of uniqueness of
Halmos dilation for strict contractions in Hilbert spaces. Result reads as follows.

THEOREM 2.5. [4] Let H be a finite dimensional Hilbert space and T :H→H
be a strict contraction. Then Halmos dilation of T on H⊕H is unitarily equivalent to

(
T

√
I−TT ∗W√

I−T ∗T −T ∗W

)
, for some unitary operator W : H→H.

We next derive a negative result to Theorem 2.5 for Halmos dilation in vector
spaces.

THEOREM 2.6. Let V be a finite dimensional vector space and T : V → V be a
trace non-zero linear operator. Then there are Halmos dilations of T which are not
similar.

Proof. Note that (
T T − I

T + I T

)

is an invertible operator and hence is a Halmos dilation of T . It is now enough to show
that the matrices (

T T − I
T + I T

)
and

(
T I
I 0

)

are not similar. Since V is finite dimensional, we can use the property of trace map to
conclude that these matrices are not similar. �

It was Egervary [8] who observed that Halmos dilation of contraction can be ex-
tended finitely so that power of dilation will be dilation of power of contraction. This
can be formally stated as follows.



470 K. M. KRISHNA AND P. S. JOHNSON

THEOREM 2.7. [8] (N-dilation) Let H be a Hilbert space and T : H→H be
a contraction. Let N be a natural number. Then the operator

U :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T 0 0 · · · 0
√

I−TT ∗√
I−T ∗T 0 0 · · · 0 −T ∗

0 I 0 · · · 0 0
0 0 I · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 0
0 0 0 · · · I 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(N+1)×(N+1)

is unitary on ⊕N+1
k=1 H and

T k = PHUk|H, ∀k = 1, . . . ,N,

where PH : ⊕N+1
k=1 H→⊕N+1

k=1 H is the orthogonal projection onto H .

We now derive vector space version of Theorem 2.7.

THEOREM 2.8. (N-dilation for vector spaces) Let V be a vector space and T :
V → V be a linear map. Let N be a natural number. Then the operator

U :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T 0 0 · · · 0 I
I 0 0 · · · 0 0
0 I 0 · · · 0 0
0 0 I · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 0
0 0 0 · · · I 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(N+1)×(N+1)

is invertible on ⊕N+1
k=1 V and

Tk = PVUk|V , ∀k = 1, . . . ,N, (1)

where PV : ⊕N+1
k=1 V →⊕N+1

k=1 V is the first coordinate projection onto V .

Proof. A direct calculation of power of U gives Equation (1). To complete the
proof, now we need show that U is invertible. Define

V :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 I 0 0 · · · 0 0
0 0 I 0 · · · 0 0
0 0 0 I · · · 0 0
0 0 0 0 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · 0 I
I −T 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(N+1)×(N+1)
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Then UV =VU = I . Thus V is the inverse of U . �
Note that the Equation (1) holds only upto N and not for N +1 and higher natural

numbers. Therefore we seek a result which is valid for all natural numbers. In the
introduction we saw Sz. Nagy dilation theorem which holds for all natural numbers.
Original proof given by Sz. Nagy uses deep complex analysis. It was Schaffer [21]
who gave a proof of Sz. Nagy dilation theorem using infinite matrices. We now obtain
a similar result for vector spaces. In the following theorem, ⊕∞

n=−∞V is the vector
space defined by

⊕∞
n=−∞V := {{xn}∞

n=−∞,xn ∈ V ,∀n ∈ Z,xn �= 0 only for finitely many n′s}
with respect to natural operations.

THEOREM 2.9. Let V be a vector space and T : V → V be a linear map. Let
U := (un,m)−∞�n,m�∞ be the operator defined on ⊕∞

n=−∞V given by the infinite matrix
defined as follows:

u0,0 := T, un,n+1 := I, ∀n ∈ Z, un,m := 0 otherwise,

i.e.,

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
...

...
...

...
· · · 0 I 0 0 0 · · ·
· · · 0 0 I 0 0 · · ·
· · · 0 0 T I 0 · · ·
· · · 0 0 0 0 I · · ·
· · · 0 0 0 0 0 · · ·

...
...

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∞×∞

where T is in the (0,0) position (which is underlined), is invertible on ⊕∞
n=−∞V and

Tn = PVUn|V , ∀n ∈ N, (2)

where PV : ⊕∞
n=−∞V →⊕∞

n=−∞V is the first coordinate projection onto V .

Proof. We get Equation (2) by calculation of powers of U . The matrix V :=
(vn,m)−∞�n,m�∞ defined by

v0,0 := 0, v1,−1 := −T, vn,n−1 := I, ∀n ∈ Z, vn,m := 0 otherwise,

i.e.,

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
...

...
...

...
· · · I 0 0 0 0 · · ·
· · · 0 I 0 0 0 · · ·
· · · 0 −T I 0 0 · · ·
· · · 0 0 0 I 0 · · ·
· · · 0 0 0 0 I · · ·

...
...

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∞×∞
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where 0 is in the (0,0) position (which is underlined), satisfies UV = VU = I and
hence U is invertible which completes the proof. �

An important observation associated with Theorems 2.8 and 2.9 is that the dilation
is not optimal, i.e., even if the given operator is invertible, then also U is not same as
T . To overcome this, next we move on with the definition of dilation given by Bhat,
De, and Rakshit [3].

DEFINITION 2.10. [3] Let V be a vector space and T : V → V be a linear map.
A linear injective dilation of T is a quadruple (W , I,U,P) , where W is a vector space,
and I : V → W is an injective linear map, U : W → W is an injective linear map,
P : W →W is an idempotent linear map such that P(W) = I(W) and

(Dilation equation) IT nx = PUnIx, ∀n ∈ Z+,∀x ∈ V .

A dilation (W , I,U,P) of T is said to be minimal if

W = span{UnIx : n ∈ Z+,x ∈ V}.
An easier way to remember the dilation equation is the following commutative

diagram.

W W W

V V

Un P

I
Tn

I

In [3] vector space analogous of Sz. Nagy dilation result was proved.

THEOREM 2.11. [3] Every linear map T : V → V admits minimal injective lin-
ear dilation.

Proof. We reproduce the proof given by Bhat, De, and Rakshit [3] for the sake of
future use. Define

W := {(xn)∞
n=0 : xn ∈ V ,∀n ∈ Z+,xn �= 0 only for finitely many n′s}.

Clearly W is a vector space w.r.t. natural operations. Now define

I : V 
 x �→ (x,0, . . .) ∈W ,

U : W 
 (xn)∞
n=0 �→ (0,x0, . . .) ∈W ,

P : W 
 (xn)∞
n=0 �→

∞

∑
n=0

ITnxn ∈W .

Then (W , I,U,P) is a minimal injective linear dilation of T . �
We call the dilation (W , I,U,P) constructed in Theorem 2.11 as standard dilation

of T . We next consider inter-twining lifting theorem. For contractions acting on Hilbert
spaces this says that any operator which intertwines contractions can be lifted so that
the lifted operator intertwines dilation operator.
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THEOREM 2.12. [25] (inter-twining lifting theorem) Let T1 : H1 → H1 , T2 :
H2 →H2 be contractions, where H1 , H2 are Hilbert spaces. Let V1 : K1 →K1 , V2 :
K2 →K2 be minimal isometric dilations of T1,T2 , respectively. Assume that S : H2 →
H1 is a bounded linear operator such that T1S = ST2 . Then there exists a bounded
linear operator R : K2 → K1 such that V1R = RV2 , PH1RH⊥

2
= 0 , PH1RH2 = S and

‖R‖ = ‖S‖ . Conversely if R : K2 →K1 is a bounded linear operator such that V1R =
RV2 and PH1RH⊥

2
= 0 , then S := PH1RH2 satisfies T1S = ST2 .

THEOREM 2.13. (inter-twining lifting theorem for vector spaces) Let V1 , V2

be vector spaces, T1 : V1 → V1 , T2 : V2 → V2 be linear maps. Let (W1, I1,U1,P1) ,
(W2, I2,U2,P2) be standard dilations of T1 , T2 , respectively. If S : V2 →V1 is a linear
map such that T1S = ST2 , then there exists a linear map R : W2 →W1 such that

U1R = RU2, RP2 = P1R, RI2 = I1S. (3)

Conversely if R : W2 → W1 is a linear map such that U1R = RU2,RP2 = P1R, then
there exists a linear map S : V2 →V1 such that

RI2 = I1S, T1S = ST2. (4)

Proof. Define R :W2 
 (xn)∞
n=0 �→ (Sxn)∞

n=0 ∈W1 . We now verify three equalities
in Equation (3). Let (xn)∞

n=0 ∈W2 . Then

U1R(xn)∞
n=0 = U1(Sxn)∞

n=0 = (0,Sx0,Sx1, . . .),
RU2(xn)∞

n=0 = R(0,x0,x1, . . .) = (0,Sx0,Sx1, . . .),

RP2(xn)∞
n=0 = R

(
∞

∑
n=0

I2T
n
2 xn

)
=

∞

∑
n=0

RI2T
n
2 xn

=
∞

∑
n=0

R(Tn
2 xn,0,0, . . .) =

∞

∑
n=0

(STn
2 xn,0,0, . . .),

P1R(xn)∞
n=0 = P1(Sxn)∞

n=0 =
∞

∑
n=0

I1T
n
1 Sxn

=
∞

∑
n=0

I1STn
2 xn =

∞

∑
n=0

(STn
2 xn,0,0, . . .),

RI2x = R(x,0,0, . . .) = (Sx,0,0, . . .), I1Sx = (Sx,0,0, . . .).

We now consider the converse part. For this, first we have to define linear map S . Let
y∈ V2 . Now RP2(y,0, . . .) = P1R(y,0, . . .)∈ I1(V1) and I1 is injective implies that there
exists a unique x ∈ V2 such that RP2(y,0, . . .) = P1R(y,0, . . .) = I1(x) . We now define
Sy := x. Then S is well-defined and linear. Let y ∈ V2 and x ∈ V2 be such that Sy = x .
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Then I1Sy = RP2(y,0, . . .) = RI2y . Thus we verified first equality in (4). We are left
with verification of second equality. We now calculate

RP2U2(x,0, . . .) = RP2(0,x,0, . . .) = RI2T2x (5)

and

P1U1R(x,0, . . .) = P1RU2(x,0, . . .) = P1R(0,x,0 . . .) (6)

= RP2(0,x,0 . . .) = RI2T2x, ∀x ∈ V2. (7)

Given conditions produce

RP2U2 = P1RU2 = P1U1R. (8)

Equation (8) says that (5) and (6) are equal which completes the proof. �
Sz. Nagy’s dilation theorem brings us to the question of dilating more than one

operators which are commuting. After a decade of work of Sz. Nagy, Ando derived the
following result.

THEOREM 2.14. [1] (Ando dilation theorem) Let H be a Hilbert space and
T1,T2 : H→H be commuting contractions. Then there exist a Hilbert space K which
contains H isometrically and a pair of commuting unitaries U1,U2 : K→K such that

T n
1 Tm

2 = PHUn
1U2

m
|H , ∀n,m = 1,2, . . . ,

where PH : K→K is the orthogonal projection onto H .

It is known that Ando dilation theorem cannot be extended for more than two
commuting contractions [5]. However, it is a surprising result obtained by Bhat, De,
and Rakshit [3] that for set theoretic consideration, Ando dilation holds for arbitary
number functions. We do not know Ando dilation for linear maps on vector spaces but
have a variant of it which is given in the following theorem. On the other hand, we note
that any number of doubly commuting contractions on a Hilbert space can be dilated to
commuting unitaries [22].

THEOREM 2.15. Let V be a vector space and T,S : V → V be commuting linear
maps. Then there are dilations (W , I,U1,P) and (W , I,U2,P) of T,S respectively,
such that

(
0c U

)
=
(

0r

V

)

and

ITnSmx = PUnVmIx, ∀n,m ∈ Z+,∀x ∈ V ,

where 0c denotes the infinite column matrix of zero vectors and 0r denotes the infinite
row matrix of zero vectors.
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Proof. We extend the construction in the proof of Theorem 2.11. Define

W :=
{⎛⎜⎜⎜⎝

x0,0 x0,1 x0,2 · · ·
x1,0 x1,1 x1,2 · · ·
x2,0 x2,1 x2,2 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠

∞×∞

: xn,m ∈ V ,∀n,m ∈ Z+,xn,m �= 0

only for finitely many (n,m)′s
}

.

Then W becomes a vector space with respect to natural operations. We now define the
following four linear maps:

I : V 
 x �→

⎛
⎜⎜⎜⎝

x 0 0 · · ·
0 0 0 · · ·
0 0 0 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ ∈W

U : W 


⎛
⎜⎜⎜⎝

x0,0 x0,1 x0,2 · · ·
x1,0 x1,1 x1,2 · · ·
x2,0 x2,1 x2,2 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ �→

⎛
⎜⎜⎜⎝

0 0 0
x0,0 x0,1 x0,2 · · ·
x1,0 x1,1 x1,2 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ ∈W

V : W 


⎛
⎜⎜⎜⎝

x0,0 x0,1 x0,2 · · ·
x1,0 x1,1 x1,2 · · ·
x2,0 x2,1 x2,2 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ �→

⎛
⎜⎜⎜⎝

0 x0,0 x0,1 · · ·
0 x1,0 x1,1 · · ·
0 x2,0 x2,1 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ ∈W

P : W 


⎛
⎜⎜⎜⎝

x0,0 x0,1 x0,2 · · ·
x1,0 x1,1 x1,2 · · ·
x2,0 x2,1 x2,2 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ �→

∞

∑
m=0

∞

∑
n=0

IT nSmxn,m ∈W .

We then have

(
0c U

)
=

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 · · ·
0 x0,0 x0,1 x0,2 · · ·
0 x1,0 x1,1 x1,2 · · ·
0 x2,0 x2,1 x2,2 · · ·
0

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠=

(
0r

V

)
.

Now PUnIx = IT nx, PVnIx = ISmx , ∀x ∈ V , ∀n,m ∈ Z+ . Hence (W , I,U1,P) and
(W , I,U2,P) are dilations of T,S , respectively. A calculation now shows that IT nSmx =
PUnVmIx,∀n,m ∈ Z+,∀x ∈ V . �

We end by presenting a generalization of Theorem 2.15.
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THEOREM 2.16. Let n ∈ N and T1, . . . ,Tn : V → V be commuting linear maps.
Then there are dilations (W , I,U1,P), . . . ,(W , I,Un,P) of T1, . . . ,Tn , respectively, such
that

IT j1
1 · · ·T jn

n x = PU j1
1 · · ·U jn

n Ix, ∀ j1, . . . , jn ∈ Z+,∀x ∈ V (9)

and U1, . . . ,Un commute.

Proof. Define

W :=
⊕

(i1,...,in)∈Zn
+

V(i1,...,in), V(i1,...,in) = V , ∀(i1, . . . , in) ∈ Z
n
+.

Now define the maps as follows.

I : V 
 x �→ (x,0, . . . ,0) ∈W ,

Uk : W 
 ({x(r)
i1
}r, . . . ,{x(r)

ik
}r, . . . ,{x(r)

in
}r) �→ ({x(r)

i1
}r, . . . ,{x(r)

ik+1
}r, . . . ,{x(r)

in
}r) ∈W ,

∀1 � k � n,

P : W 
 ({x(r)
i1
}r, . . . ,{x(r)

in }r) �→ ∑
(i1,...,in)∈Zn

+

IUi1
1 · · ·Uin

n ({x(r)
i1
}r, . . . ,{x(r)

in }r) ∈W .

Then each Uj commutes with Uk for 1 � j,k � n , (W , I,Uj,P) is a dilation of Tj for
1 � j � n and Equation (9) holds. �
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