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COMPLEX SYMMETRIC WEIGHTED

COMPOSITION–DIFFERENTIATION OPERATORS OF

ORDER n ON THE WEIGHTED BERGMAN SPACES

MAHBUBE MORADI, MAHSA FATEHI ∗ AND CHRISTOPHER N. B. HAMMOND

(Communicated by G. Misra)

Abstract. We study the complex symmetry of weighted composition–differentiation operators
of order n on the weighted Bergman spaces A2

α . Several concrete examples are provided.

1. Preliminaries

Let D denote the open disk in the complex plane C . For α > −1, the weighted
Bergman space A2

α is the Hilbert space consisting of all analytic functions f (z) =
∑∞

j=0 a jz j on D such that ‖ f‖2 = ∑∞
j=0 |a j|2β ( j)2 < ∞ , where

β ( j) = ‖z j‖ =

√
j!Γ(α +2)

Γ( j + α +2)

for each non-negative integer j . The inner product of two functions in this space is
given by the rule 〈

∞

∑
j=0

a jz
j,

∞

∑
j=0

b jz
j

〉
=

∞

∑
j=0

a jb jβ ( j)2.

It is well known that this space is a reproducing kernel Hilbert space; for any w in D

and any non-negative integer m , there is a kernel function K[m]
w such that

〈
f ,K[m]

w
〉

=

f (m)(w) for each f in A2
α . To simplify notation, we write Kw to denote K[0]

w . In
particular,

Kw(z) =
1

(1−wz)α+2 =
∞

∑
j=0

wjz j

β ( j)2

and

K[m]
w (z) =

(α +2) . . .(α +m+1)zm

(1−wz)m+α+2 =
m!zm

β (m)2 (1−wz)m+α+2

Mathematics subject classification (2020): Primary 47B38; Secondary 30H10, 47A05, 47B15, 47B33.
Keywords and phrases: Weighted composition–differentiation operator, complex symmetric, normal,

self-adjoint, weighted Bergman spaces.
∗ Corresponding author.

c© � � , Zagreb
Paper OaM-16-37

479

http://dx.doi.org/10.7153/oam-2022-16-37


480 M. MORADI, M. FATEHI AND C. N. B. HAMMOND

for m � 1 (note that from [2, p. 20], we can see that K[m]
w (z) = dmK

dwm , where K(z,w) =
Kw(z) for each z,w ∈ D and β (m)2 = m!

(α+2)...(α+m+1) ). Moreover, for each non-
negative integer m , we have

∥∥K[m]
w

∥∥2 =
∞

∑
j=m

(|w|2) j−m

β ( j)2

(
j!

( j−m)!

)2

(note that K[m]
w (z) = ∑∞

j=m
j!

β ( j)2( j−m)!w
j−mz j by [2, Theorem 2.16]). Recall that H∞

is the Banach space consisting of all bounded analytic functions defined on D , with
supremum norm ‖ f‖∞ = supz∈D | f (z)| . Let Pα denote the projection of L2(D,dAα)
onto A2

α . Given a function h in L∞(D) , the Toeplitz operator Th on A2
α is defined by

the rule
Th( f ) = Pα(h f )

for f in A2
α . If h belongs to H∞ , it is easy to see that Th( f ) = h · f . For an analytic

self-map ϕ : D → D , the composition operator Cϕ is defined by the rule

Cϕ( f ) = f ◦ϕ

for f in A2
α . All Toeplitz operators and all composition operators are bounded on A2

α .
As a natural generalization of both of these classes, consider the operator Cψ,ϕ that
takes f to ψ · ( f ◦ϕ) , where ϕ : D → D and ψ : D → C are both analytic on D . Such
an operator is called a weighted composition operator.

For a positive integer n , we define the differentiation operator of order n on A2
α

by D(n)( f ) = f (n) . None of these operators is bounded on A2
α . Nevertheless, for

many analytic self-maps ϕ , the operator CϕD(n) is bounded on A2
α . This class of

operators was initially considered by Hibschweiler and Portnoy [9] and by Ohno [11],
and has been studied further by other researchers (see [4], [5], and [12]). Ohno [11]
characterized the boundedness and compactness of CϕD(1) on the Hardy space; Stević
[12] obtained analogous results for CϕD(n) on the weighted Bergman spaces. We will
write Dϕ,n to denote CϕD(n) , particularly when such an operator is bounded on A2

α ,
referring to it as a composition–differentiation operator of order n . For an analytic
function ψ : D → C , the weighted composition–differentiation operator of order n on
A2

α is defined by the rule
Dψ,ϕ,n( f ) = ψ · ( f (n) ◦ϕ

)
.

Note that Dψ,ϕ,n is actually the product of the Toeplitz operator Tψ and Dϕ,n , whenever
ψ belongs to H∞ and Dϕ,n is bounded. To avoid trivial situations, we will assume
throughout this paper that ϕ is not constant and that ψ is not identically 0.

A bounded linear operator T is called complex symmetric on a complex Hilbert
space H if there exits a conjugation C (i.e., an antilinear isometric involution) such
that CT ∗C = T ; for a particular conjugation C , we say that T is C-symmetric. Garcia
and Putinar initiated the study of complex symmetric operators on Hilbert spaces of an-
alytic functions (see [7] and [8]). Complex symmetric weighted composition operators
have been considered in [3], [6], [10], and [13]. In this paper, we use the symbol J to
denote the specific conjugation (J f )(z) = f (z) .
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Any complex number z can be represented z = |z|eiθ , where 0 � θ < 2π . We
write Arg(z) to denote this value of θ , taking Arg(0) = 0.

2. Complex symmetric operators Dψ,ϕ,n

For an analytic ϕ : D → D and α > −1, the generalized Nevanlinna counting
function Nϕ,α+2 is defined by the rule

Nϕ,α+2(w) = ∑
ϕ(z)=w

(
ln(1/|z|))α+2

,

where w belongs to D\{ϕ(0)} . The next proposition provides necessary and sufficient
conditions for Dϕ,n to be bounded and compact.

PROPOSITION 2.1. [12, Theorem 9] Let ϕ be an analytic self-map of D , with n
in N and α > −1 .

a) An operator Dϕ,n : A2
α → A2

α is bounded if and only if

Nϕ,α+2(w) = O
((

ln(1/|w|))α+2+2n
)

.

b) An operator Dϕ,n : A2
α → A2

α is compact if and only if

Nϕ,α+2(w) = o
((

ln(1/|w|))α+2+2n
)

, as |w| → 1−.

Since ln(1/|w|) is comparable to 1− |w| as |w| → 1− , the following characteri-
zation holds in the case where ϕ is univalent on D .

COROLLARY 2.2. Let ϕ be a univalent self-map of D , with n in N and α >−1 .

a) An operator Dϕ,n is bounded on A2
α if and only if

sup
w∈D

(1−|w|)α+2

(1−|ϕ(w)|)α+2+2n < ∞.

b) An operator Dϕ,n is compact on A2
α if and only if

lim
|w|→1

(1−|w|)α+2

(1−|ϕ(w)|)α+2+2n = 0.

Note that Corollary 2.2 shows that if Dϕ,n is bounded, then ϕ does not have finite
angular derivative at any point on ∂D (see [2, Theorem 2.44]). Moreover, we infer from
Corollary 2.2 that an operator Dϕ,n is bounded if ‖ϕ‖∞ < 1 and so Dψ,ϕ,n is bounded
on A2

α whenever ψ belongs to H∞ . We will employ the following lemma frequently.
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LEMMA 2.3. If an operator Dψ,ϕ,n is bounded on A2
α , then

D∗
ψ,ϕ,n(Kw) = ψ(w)K[n]

ϕ(w).

Proof. Observe that

〈 f ,D∗
ψ,ϕ,n(Kw)〉 = 〈Dψ,ϕ,n f ,Kw〉 = ψ(w) f (n)(ϕ(w)) =

〈
f ,ψ(w)K[n]

ϕ(w)

〉
for any f in A2

α . Our result follows from the fact that the span of the kernel functions
Kw is dense in A2

α . �
Throughout this paper, we set t = (α + 2)(α + 3) . . .(α + n + 1) , which will be

appeared several times in this paper. We will now make a few observations about J -
symmetric operators Dψ,ϕ,n , which will be used in the proof of Theorem 2.7.

PROPOSITION 2.4. If an operator Dψ,ϕ,n is J -symmetric on A2
α , the following

conditions hold:

(i) ψ(m)(0) = 0 for each 0 � m < n;

(ii) ψ(n)(0) 	= 0 ;

(iii) ψ(w) 	= 0 for any w in D\ {0} ;

(iv) the map ϕ is univalent.

Proof. Suppose that Dψ,ϕ,n is J -symmetric. Observe that

JDψ,ϕ,n(K0) = 0. (2.1)

Lemma 2.3 shows that
D∗

ψ,ϕ,nJ(K0) = ψ(0)K[n]
ϕ(0). (2.2)

Since Dψ,ϕ,n is J -symmetric, it follows from (2.1) and (2.2) that ψ(0) = 0. Assume
that ψ(m)(0) = 0 for m < n−1. One can see that

JDψ,ϕ,nK
[m+1]
0 = 0. (2.3)

On the other hand, for any f in A2
α , we obtain

〈
f ,D∗

ψ,ϕ,nJK[m+1]
0

〉
=

〈
f ,D∗

ψ,ϕ,nK
[m+1]
0

〉
=

〈
Dψ,ϕ,n f ,K[m+1]

0

〉
=

(
ψ · ( f (n) ◦ϕ)

)(m+1)(0)

=
m+1

∑
j=0

(
m+1

j

)
ψ(m+1− j)(0)

(
f (n) ◦ϕ

)( j)(0)
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= ψ(m+1)(0) f (n)(ϕ(0))

+
m+1

∑
j=1

(
m+1

j

)
ψ(m+1− j)(0)

(
f (n) ◦ϕ

)( j)(0)

= ψ(m+1)(0) f (n)(ϕ(0))

=
〈
f ,ψ(m+1)(0)K[n]

ϕ(0)

〉
, (2.4)

so
D∗

ψ,ϕ,nJK[m+1]
0 = D∗

ψ,ϕ,nK
[m+1]
0 = ψ(m+1)(0)K[n]

ϕ(0). (2.5)

If Dψ,ϕ,n is J -symmetric, then (2.3) and (2.5) imply that ψ(m+1)(0) = 0. By the same
idea as in (2.4), we have

D∗
ψ,ϕ,nJK[n]

0 = D∗
ψ,ϕ,nK

[n]
0 = ψ(n)(0)K[n]

ϕ(0), (2.6)

since ψ(m)(0) = 0 for any m < n . Because

JDψ,ϕ,nK
[n]
0 = tn!J(ψ) (2.7)

and ψ is not identically 0, it follows from (2.6) and (2.7) that ψ(n)(0) 	= 0. Now
suppose that ψ(w) = 0 for some w in D . Lemma 2.3 shows that D∗

ψ,ϕ,nJ(Kw) = 0.
Moreover,

JDψ,ϕ,n(Kw) =
twnJ(ψ)(

1−wJ(ϕ)
)n+α+2 .

Since Dψ,ϕ,n is J -symmetric and ψ is not identically zero, we observe that w = 0.
Now assume that Dψ,ϕ,n is J -symmetric and that there exist distinct points w1 and

w2 in D with ϕ(w1) = ϕ(w2) . (If either w1 or w2 is zero, the open mapping theorem
allows us to find a pair of distinct nonzero points w3 and w4 in D with ϕ(w3) = ϕ(w4) .
Hence we may assume that w1 and w2 are both nonzero.) One can easily see that the
kernel of Dψ,ϕ,n consists of the set of all polynomials with degree less than n . Lemma
2.3 implies that

D∗
ψ,ϕ,nJ(ψ(w2)Kw1 −ψ(w1)Kw2) = D∗

ψ,ϕ,n

(
ψ(w2)Kw1 −ψ(w1)Kw2

)
= ψ(w1)ψ(w2)K

[n]
ϕ(w1)

−ψ(w1)ψ(w2)K
[n]
ϕ(w2)

= 0.

Since Dψ,ϕ,n is J -symmetric, it follows that ψ(w2)Kw1 −ψ(w1)Kw2 is a polynomial
of degree less than n . Therefore

ψ(w2)
∞

∑
j=n

Γ( j +2+ α)(w1) jz j

j!Γ(α +2)
−ψ(w1)

∞

∑
j=n

Γ( j +2+ α)(w2) jz j

j!Γ(α +2)
= 0.

Thus ψ(w2)w1
m = ψ(w1)w2

m for each m � n . We observe that

ψ(w1)wn+1
2 = ψ(w2)wn+1

1 = ψ(w2)wn
1w1 = ψ(w1)wn

2w1,

so w1 = w2 . Consequently ϕ must be univalent. �
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REMARK 2.5. We can follow the outline of the proof of Proposition 2.4 to see
that an analogue of Proposition 2.4 holds for any normal operator Dψ,ϕ,n .

If

ϕ(z) =
az+b
cz+d

is a nonconstant linear fractional self-map of D , then the map

σ(z) =
az− c

−bz+d

also takes D into itself (see [1, Lemma 1]). Recall that ‖σ‖∞ < 1 whenever ‖ϕ‖∞ < 1,
in which case both Dϕ,n and Dσ ,n are bounded operators on A2

α . Cowen [1] deter-
mined the adjoint of Cϕ acting on the Hardy space H2 . Similarly, the second and third
authors investigated the adjoints of certain weighted composition–differentiation oper-
ators Dψ,ϕ,1 on H2 (see [4, Theorem 1]). Our next result shows that an analogue of
[4, Theorem 1] holds in the context of the weighted Bergman spaces A2

α . Recall that
t = (α +2)(α +3) . . .(α +n+1) .

PROPOSITION 2.6. For the linear fractional self-maps ϕ and σ described above,
it follows that

D∗
K[n]

σ(0) ,ϕ,n
= D

K
[n]
ϕ(0),σ ,n

.

Proof. We know that

K[n]
ϕ(0)(z) =

tzn(
1− (b/d)z

)n+α+2 =
tdn+α+2zn

(d−bz)n+α+2

and

K[n]
σ(0)(z) =

tzn

(1+(c/d)z)n+α+2 =
tdn+α+2zn

(cz+d)n+α+2 .

We see that

D
K

[n]
ϕ(0),σ ,n

(Kw)(z) = T
K

[n]
ϕ(0)

(
twn(

1−wσ(z)
)n+α+2

)

=
t2dn+α+2wnzn

(−bz+d−waz+wc)n+α+2
(2.8)

(note that D(n)(Kw) = dnKw
dzn = twn(

1−wz
)n+α+2 ). By Lemma 2.3, we obtain

D∗
K

[n]
σ(0),ϕ,n

(Kw)(z) =
tdn+α+2wn

(cw+d)n+α+2
K[n]

ϕ(w)(z)

=
t2dn+α+2wnzn(

cw+d− (aw+b)z
)n+α+2 . (2.9)
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Since the span of the reproducing kernel functions Kw is dense in A2
α , the result follows

from (2.8) and (2.9). �

Now we give an example for Proposition 2.6.

EXAMPLE 1. Suppose that ϕ(z) = i
2 z+ 1

3 . We can see that σ(z) =
−i
2 z

1
3 z+1

, ϕ(0) =

1/3, and σ(0) = 0. Then by Proposition 2.6, we can see that n!
β (n)2 D

∗
zn,ϕ,n = D

K[n]
1
3

,σ ,n
.

Some more examples for Proposition 2.6 will be seen in the proofs of Theorem
2.7 and Propositions 3.1 and 3.2.

Our next theorem completely describes the J -symmetric operators Dψ,ϕ,n .

THEOREM 2.7. A bounded operator Dψ,ϕ,n is J -symmetric on A2
α if and only if

ψ(z) =
a

tn!
K[n]

c (z) =
azn

n!(1− cz)n+α+2

and

ϕ(z) = c+
bz

1− cz
,

where a = ψ(n)(0) and b = ϕ ′(0) are both nonzero complex number and c = ϕ(0)
belongs to D .

Proof. Suppose that Dψ,ϕ,n is J -symmetric. By (2.6), (2.7), and Proposition 2.4,

we conclude that J(ψ) = ψ(n)(0)
tn! K[n]

ϕ(0) and so ψ = ψ(n)(0)
tn! K[n]

ϕ(0)
= ψ(n)(0)zn

n!
(
1−ϕ(0)z

)n+α+2 ,

where ψ(n)(0) 	= 0. By the general Leibniz rule, we can see that

ψ(n+1)(z) =
ψ(n)(0)

n!

n+1

∑
k=0

(
n+1

k

)(
zn)(n+1−k)

(
1(

1−ϕ(0)z
)n+α+2

)(k)

.

Since
(
zn

)(n+1−k)(0) = 0, when 0 � k � n+1 and k 	= 1, we obtain

ψ(n+1)(0) = (n+1)(n+ α +2)ϕ(0)ψ(n)(0). (2.10)

Observe that

JDψ,ϕ,n
(
K[n+1]

0

)
(z) = t(n+1)!(α +n+2)J(ψ)(z)J(ϕ)(z)

=
t(n+1)(n+ α +2)ψ(n)(0)zn(

1−ϕ(0)z
)n+α+2 J(ϕ)(z). (2.11)
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By the proof of (2.4), we can see that for any f ∈ A2
α , we obtain

〈
f ,D∗

ψ,ϕ,nK
[n+1]
0

〉
= ψ(n+1)(0) f (n)(ϕ(0))

+
n+1

∑
j=1

(
n+1

j

)
ψ(n+1− j)(0)

(
f (n) ◦ϕ

)( j)(0)

= ψ(n+1)(0) f (n)(ϕ(0))+ (n+1)ψ(n)(0)
(
f (n) ◦ϕ

)(1)(0)

+
n+1

∑
j=2

(
n+1

j

)
ψ(n+1− j)(0)

(
f (n) ◦ϕ

)( j)(0)

= ψ(n+1)(0) f (n)(ϕ(0))+ (n+1)ψ(n)(0)ϕ ′(0) f (n+1)(ϕ(0)) (2.12)

(note that Proposition 2.4(i) implies that ψ(n+1− j)(0) = 0 for each 2 � j � n + 1).
Hence by (2.12), we have

D∗
ψ,ϕ,n

(
K[n+1]

0

)
(z) = ψ(n+1)(0)K[n]

ϕ(0)(z)+ (n+1)ψ(n)(0)ϕ ′(0)K[n+1]
ϕ(0) (z). (2.13)

Therefore by (2.10) and (2.13), we observe that

D∗
ψ,ϕ,nJ

(
K[n+1]

0

)
(z) = D∗

ψ,ϕ,n

(
K[n+1]

0

)
(z)

= ψ(n+1)(0)K[n]
ϕ(0)(z)+ (n+1)ψ(n)(0)ϕ ′(0)K[n+1]

ϕ(0) (z)

=
t(n+1)(n+ α +2)ϕ(0)ψ(n)(0)zn(

1−ϕ(0)z
)n+α+2

+
t(n+1)(n+ α +2)ψ(n)(0)ϕ ′(0)zn+1(

1−ϕ(0)z
)n+α+3 . (2.14)

Because Dψ,ϕ,n is J -symmetric, it follows from (2.11) and (2.14) that

J(ϕ)(z) = ϕ(0)+
ϕ ′(0)z

1−ϕ(0)z
,

and so

ϕ(z) = ϕ(0)+
ϕ ′(0)z

1−ϕ(0)z
,

with ϕ ′(0) 	= 0 because ϕ is nonconstant.
Conversely, take ψ and ϕ as in the statement of the theorem. For each f in A2

α ,
we have

JDψ,ϕ,n( f )(z) = J(ψ)(z)J( f (n)(ϕ(z))) = J(ψ)(z) f (n)(ϕ(z)). (2.15)

On the other hand, by Proposition 2.6, we see that

D∗
ψ,ϕ,nJ =

a
n!t

D∗
K

[n]
σ(0),ϕ,n

J =
a
n!t

D
K

[n]
ϕ(0),σ ,n

J.
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Thus

D∗
ψ,ϕ,nJ( f )(z) =

a
n!t

K[n]
ϕ(0)(z) f (n)(σ(z)) = J(ψ)(z) f (n)(ϕ(z)). (2.16)

Therefore, by (2.15) and (2.16), the operator Dψ,ϕ,n is J -symmetric. �
We infer from the paragraph after Corollary 2.2, from [10, Lemma 4.8], and from

the proof of [10, Theorem 4.10] that an operator Dψ,ϕ,n from Theorem 2.7 is bounded
on A2

α whenever 2|c+ c(b− c2)| < 1−|b− c2|2 .
By an idea similar to one stated in the proof of [3, Proposition 2.1] (see also [13,

Theorem 4.1]), we remark that Cψ,ϕ is unitary and J -symmetric on A2
α if and only if

either

ψ(z) =
α

(
1−|p|2) α+2

2

(1− pz)α+2 (2.17)

and

ϕ(z) =
p
p

p− z
1− pz

, (2.18)

where p belongs to D\{0} and |α|= 1, or ψ ≡ μ and ϕ(z) = λ z , where |μ |= |λ |=
1. In the case that p 	= 0, we denote the linear functional transformations in (2.17) and
(2.18) by ψp and ϕp respectively. Invoking [3, Lemma 2.2], we observe that Cλ zJ and
Cψp,ϕpJ are conjugations. Next we will characterize the complex symmetric operators
Dψ,ϕ,n with conjugations Cλ zJ and Cψp,ϕpJ .

THEOREM 2.8. Suppose that

ϕ̃(z) = c+
bz

1− cz

and that

ψ̃(z) =
azn

n!(1− cz)n+α+2 ,

where a and b belong to C\{0} and c belongs to D . Assume that Dψ̃,ϕ̃ ,n is bounded
on A2

α .

(1) For p 	= 0 , an operator Dψ,ϕ,n on A2
α is complex symmetric with conjugation

Cψp,ϕpJ if and only if ϕ = ϕ̃ ◦ϕp and ψ = ψp · (ψ̃ ◦ϕp) for some ϕ̃ and ψ̃ .

(2) For |μ | = |λ | = 1 , an operator Dψ,ϕ,n on A2
α is complex symmetric with conju-

gation Cμ,λ zJ if and only if ψ(z) = μψ̃(λ z) and ϕ(z) = ϕ̃(λ z) for some ϕ̃ and
ψ̃ .

Proof. (1) Let p 	= 0 and suppose that Dψ,ϕ,n is Cψp,ϕpJ -symmetric. As men-
tioned in the paragraph preceding the statement of Theorem 2.8, the operator C∗

ψp,ϕp
is

unitary and J -symmetric, so it is not difficult to see that C∗
ψp,ϕp

is Cψp,ϕpJ -symmetric.
Then [3, Proposition 2.3] implies that C∗

ψp,ϕp
Dψ,ϕ,n is J -symmetric. It follows from

Theorem2.7 that there is a J -symmetric operator Dψ̃,ϕ̃,n so that Dψ,ϕ,n =Cψp,ϕpDψ̃,ϕ̃,n .
Hence we observe that ϕ = ϕ̃ ◦ϕp and ψ = ψp · (ψ̃ ◦ϕp) .
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Conversely, suppose that ϕ = ϕ̃ ◦ ϕp and ψ = ψp · (ψ̃ ◦ ϕp) for some ϕ̃ and
ψ̃ . Then Dψ,ϕ,n = Cψp,ϕpDψ̃,ϕ̃,n . Since the weighted composition operator Cψp,ϕp is
unitary and J -symmetric and the operator Dψ̃ ,ϕ̃,n is J -symmetric (see Theorem 2.7),
the operator Dψ,ϕ,n is Cψp,ϕpJ -symmetric by [3, Proposition 2.3].

(2) The result follows immediately from the technique demonstrated in the proof
of part (1). �

In the following example, we give some complex symmetric weighted composition–
differentiation operators.

EXAMPLE 2. a) Suppose that

ϕ(z) =
1
4

+
1+2iz

4+ i
2 +(2i−1)z

and

ψ(z) =
3α+2

(
z− i

2

)n

4α+1n!
(
1+ i

8 +
(

i
2 − 1

4

)
z
)n+α+2 .

We can see that ϕ = ϕ̃ ◦ϕp and ψ = ψp · (ψ̃ ◦ϕp) , where p = i/2, ϕp(z) = z−i/2
1+iz/2 ,

ϕ̃(z) = 1
4 + iz/2

1−z/4 , ψp(z) = (3/4)α+2

(1+iz/2)α+2 , and ψ̃(z) = 4zn

n!(1−z/4)n+α+2 . It is easy to see

that ‖ϕ̃‖∞ < 1 and so Dψ̃,ϕ̃,n is bounded on A2
α . Invoking Theorem 2.7, the operator

Dψ̃,ϕ̃,n is J -symmetric and it satisfies the conditions of Proposition 2.4. Theorem 2.8
shows that Dψ,ϕ,n is Cψp,ϕpJ -symmetric.

b) Suppose that ϕ(z) = 1
5 +

(
(i/10)+1/100

)
iz

1−iz/5 and ψ(z) = eiπ/4inzn

n!(1−iz/5)n+α+2 . We can

see that ϕ(z) = ϕ̃(λ z) and ψ(z) = μψ̃(λ z) , where ϕ̃(z) = 1
5 +

(
(i/10)+1/100

)
z

1−z/5 , ψ̃(z) =
zn

n!(1−z/5)n+α+2 , λ = i , and μ = eiπ/4 . One can see that Dψ̃,ϕ̃,n is bounded and by The-
orem 2.7, it is J -symmetric. Theorem 2.8 implies that Dψ,ϕ,n is Ceiπ/4,izJ -symmetric.

3. Some examples of complex symmetric operators

In this section, we will show that the complex symmetric operators Dψ,ϕ,n we
have already identified include all the self-adjoint operators Dψ,ϕ,n and some of the
normal operators Dψ,ϕ,n . The next proposition provides a characterization of self-
adjoint weighted composition–differentiation operators of order n on A2

α .

PROPOSITION 3.1. A bounded operator Dψ,ϕ,n is self-adjoint on A2
α if and only

if

ψ(z) =
azn

n!(1− cz)n+α+2 =
a

tn!
K[n]

c (z)

and

ϕ(z) = c+
bz

1− cz
,
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where a = ψ(n)(0) and b = ϕ ′(0) are both nonzero real numbers and c = ϕ(0) belongs
to D . Furthermore, for the self-adjoint operator Dψ,ϕ,n , one of the following holds:

(i) If c = 0 , then Dψ,ϕ,n is J -symmetric.

(ii) If c 	= 0 , then Dψ,ϕ,n is Ce−2iθ zJ -symmetric, where θ = Arg(c) .

Proof. Suppose that Dψ,ϕ,n is self-adjoint on A2
α . By (2.4) and Remark 2.5, we

have D∗
ψ,ϕ,nK

[n]
0 = ψ(n)(0)K[n]

ϕ(0) . Moreover, we can see that Dψ,ϕ,nK
[n]
0 (z)= Dψ,ϕ,n(tzn)

= tn!ψ(z) . Since Dψ,ϕ,n is self-adjoint, we conclude that

ψ(z) =
ψ(n)(0)

tn!
K[n]

ϕ(0)(z) =
ψ(n)(0)zn

n!
(
1−ϕ(0)z

)n+α+2 . (3.1)

Differentiating both sides of (3.1) n times with respect to z , we obtain

ψ(n)(z) =
ψ(n)(0)

n!

n

∑
j=0

(
n
j

)(
zn)(n− j)

(
1(

1−ϕ(0)z
)n+α+2

)( j)

=
ψ(n)(0)

n!

n

∑
j=0

(
n
j

)
n!
j!

z j
(

1(
1−ϕ(0)z

)n+α+2

)( j)

(3.2)

(note that
(
zn

)(t) = n!
(n−t)!z

n−t for each t with 0 � t � n ). It follows from (3.2) that

ψ(n)(0) = ψ(n)(0) , and so ψ(n)(0) is real. Moreover, note that ψ(n)(0) 	= 0 since ψ
is not identically 0. On the other hand, differentiating both sides of (3.1) n+ 1 times
with respect to z yields

ψ(n+1)(0) = (n+1)(n+ α +2)ϕ(0)ψ(n)(0). (3.3)

We can see that

Dψ,ϕ,n
(
K[n+1]

0

)
(z) = Dψ,ϕ,n

(
t(n+ α +2)zn+1)

=
t(n+1)(n+ α +2)ψ(n)(0)zn(

1−ϕ(0)z
)n+α+2 ϕ(z). (3.4)

Furthermore, by the idea from (2.4) and the fact that ψ(m)(0) = 0 for each m < n (see
Remark 2.5), we have

D∗
ψ,ϕ,n

(
K[n+1]

0

)
(z) = ψ(n+1)(0)K[n]

ϕ(0)(z)+ (n+1)ψ(n)(0)ϕ ′(0)K[n+1]
ϕ(0) (z)

=
tψ(n+1)(0)zn(

1−ϕ(0)z
)n+α+2

+
(n+1)ψ(n)(0)ϕ ′(0)t(n+ α +2)zn+1(

1−ϕ(0)z
)n+α+3 . (3.5)
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Since Dψ,ϕ,n is self-adjoint, by combining (3.3), (3.4), and (3.5), we see that

ϕ(z) = ϕ(0)+
ϕ ′(0)z

1−ϕ(0)z
. (3.6)

Differentiating both sides of (3.6) with respect to z and taking z = 0, we observe that
ϕ ′(0) is real. In addition, because ϕ is not constant, we see that ϕ ′(0) 	= 0.

For the converse, take ϕ and ψ as in the statement of the proposition and suppose
that Dψ,ϕ,n is bounded on A2

α . Proposition 2.6 dictates that

D∗
ψ,ϕ,n =

a
tn!

D∗
K

[n]
σ(0) ,ϕ,n

=
a

tn!
D

K
[n]
ϕ(0),σ ,n

= Dψ,ϕ,n.

Thus Dψ,ϕ,n is self-adjoint.
We infer from Theorem 2.7 that the operator Dψ,ϕ,n is J -symmetric when c = 0.

Now take c 	= 0 and set ψ̃(z) = ae2niθ zn

n!(1−cz)n+α+2 and ϕ̃(z) = c+ be2iθ z
1−cz . From Theorem 2.7,

the operator Dψ̃,ϕ̃,n is J -symmetric. By [3, Lemma 2.2] and [3, Proposition 2.3], we
observe that Ce−2iθ zDψ̃,ϕ̃,n is Ce−2iθ zJ -symmetric. (As stated in the paragraph preceding
Theorem 2.8, the composition operator Ce−2iθ z is unitary and J -symmetric.) A direct
computation shows that Ce−2iθ zDψ̃,ϕ̃ ,n = Dψ,ϕ,n , so the result follows. �

Now we will characterize those operators Dψ,ϕ,n on A2
α that are normal in the

case where ϕ(0) = 0.

PROPOSITION 3.2. Suppose that an operator Dψ,ϕ,n is bounded on A2
α and that

ϕ(0) = 0 . Then Dψ,ϕ,n is normal if and only if ψ(z) = azn and ϕ(z) = bz, where
a belongs to C \ {0} and b belongs to D \ {0} . Moreover, in this case Dψ,ϕ,n is
J -symmetric.

Proof. Assume that Dψ,ϕ,n is normal on A2
α . We can see that

∥∥Dψ,ϕ,nK
[n]
0

∥∥2 =
∥∥∥∥
(

n!
β (n)

)2

ψ
∥∥∥∥

2

=
(

n!
β (n)

)4 ∞

∑
j=0

(
β ( j)

j!

)2∣∣ψ( j)(0)
∣∣2. (3.7)

On the other hand, by (2.4) and Remark 2.5, we observe that

∥∥D∗
ψ,ϕ,nK

[n]
0

∥∥2 =
∥∥ψ(n)(0)K[n]

0

∥∥2 =
∣∣ψ(n)(0)

∣∣2( n!
β (n)

)2

. (3.8)

Because Dψ,ϕ,n is normal, by Remark 2.5, (3.7), and (3.8), we conclude that

|ψ(n)(0)|2
(

n!
β (n)

)2

=
(

n!
β (n)

)4 ∞

∑
j=n

(
β ( j)

j!

)2∣∣ψ( j)(0)
∣∣2. (3.9)
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Remark 2.5 implies that ψ(n)(0) 	= 0, so (3.9) shows that ψ( j)(0) = 0 for each j > n .
Since Remark 2.5 also shows that ψ( j)(0) = 0 for any j < n , the map ψ must have the
form ψ(z) = azn for some a in C\ {0} . We have

Dψ,ϕ,n
(
K[n+1]

0

)
(z) =

(
(n+1)!
β (n+1)

)2

ψ(z)ϕ(z) (3.10)

=
(

(n+1)!
β (n+1)

)2

aznϕ(z).

On the other hand, by using (2.4) and the fact that ψ(m)(0) = 0 for each m 	= n , we see
that

D∗
ψ,ϕ,n

(
K[n+1]

0

)
(z) = (n+1)ψ(n)(0)ϕ ′(0)K[n+1]

0 (z)

= aϕ ′(0)
(

(n+1)!
β (n+1)

)2

zn+1.

= aϕ ′(0)(n+1)!K[n+1]
0 (z), (3.11)

so K[n+1]
0 is an eigenvalue for D∗

ψ,ϕ,n corresponding to eigenvalue aϕ ′(0)(n + 1)! .
Therefore

Dψ,ϕ,nK
[n+1]
0 = aϕ ′(0)(n+1)!K[n+1]

0 . (3.12)

Since Dψ,ϕ,n is normal on A2
α , by (3.10) and (3.12), we see that

aϕ ′(0)(n+1)!K[n+1]
0 (z) =

(
(n+1)!
β (n+1)

)2

aznϕ(z).

Thus ϕ(z) = ϕ ′(0)z . Because ϕ is not identically 0, we conclude that ϕ(z) = bz for
some b in D\ {0} .

For the converse, take ψ and ϕ as in the statement of the proposition and assume
that Dψ,ϕ,n is bounded on A2

α . Proposition 2.6 implies that D∗
azn,bz,n = Dazn,bz,n . After

some computation, we see that

Dazn,bz,nD
∗
azn,bz,n( f )(z) = Dazn,bz,nDazn,bz,n( f )(z)

= Dazn,bz,n
(
azn f (n)(bz)

)
= |a|2zn

n

∑
j=0

(
n
j

)
n!
j!
|b|2 jz j f (n+ j)(|b|2z) (3.13)

for each f in A2
α ; similarly,

D∗
azn,bz,nDazn,bz,n( f )(z) = |a|2zn

n

∑
j=0

(
n
j

)
n!
j!
|b|2 jz j f (n+ j)(|b|2z). (3.14)

Hence (3.13) and (3.14) show that Dψ,ϕ,n is normal. Furthermore, Theorem 2.7 shows
that Dψ,ϕ,n is J -symmetric. �

Next we describe the conditions under which the analytic functions ϕ and ψ from
Proposition 3.1 induce a normal operator Dψ,ϕ,n .
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PROPOSITION 3.3. Suppose that Dψ,ϕ,n is a bounded operator, with

ψ(z) =
azn

n!(1− cz)n+α+2

and

ϕ(z) = c+
bz

1− cz
,

where a = ψ(n)(0) and b = ϕ ′(0) are both nonzero complex numbers and c = ϕ(0)
belongs to D . The operator Dψ,ϕ,n is normal on A2

α if and only if either b belongs to
R\ {0} or c = 0 . Moreover, when Dψ,ϕ,n is normal, one of the following holds:

(i) If c = 0 , then Dψ,ϕ,n is J -symmetric.

(ii) If c 	= 0 , then Dψ,ϕ,n is Ce−2iθ z J-symmetric, where θ = Arg(c) .

Proof. If b belongs to R \ {0} or c = 0, Propositions 3.1 and 3.2 imply that
Dψ,ϕ,n is normal.

For the converse, suppose that b and c belong to C\R . We have

Dψ,ϕ,n
(
K 1

2

)
(z) =

tψ(z)

2n
(
1− 1

2ϕ(z)
)n+α+2 =

a
2nn!(1− c/2)n+α+2K[n]

p1 (z),

where p1 = c+ b/2
1−c/2 . On the other hand, by Lemma 2.3, we see that

D∗
ψ,ϕ,n

(
K 1

2

)
(z) = ψ(1/2)K[n]

ϕ(1/2)(z) =
a

2nn!(1− c/2)n+α+2K[n]
p2 (z),

where p2 = c+ b/2
1−c/2 .

If Dψ,ϕ,n were normal, then

∥∥Dψ,ϕ,n
(
K 1

2

)∥∥2 =
∣∣∣∣ a
2nn!(1− c/2)n+α+2

∣∣∣∣
2∥∥K[n]

p1

∥∥2

=
∣∣∣∣ a
2nn!(1− c/2)n+α+2

∣∣∣∣
2 ∞

∑
j=n

(|p1|2) j−n

β ( j)2

(
j!

( j−n)!

)2

would equal

∥∥D∗
ψ,ϕ,n

(
K 1

2

)∥∥2 =
∣∣∣∣ a
2nn!(1− c/2)n+α+2

∣∣∣∣
2∥∥K[n]

p2

∥∥2

=
∣∣∣∣ a
2nn!(1− c/2)n+α+2

∣∣∣∣
2 ∞

∑
j=n

(|p2|2) j−n

β ( j)2

(
j!

( j−n)!

)2

.

Therefore |p1|2 = |p2|2 . Thus(
c+

b
2− c

)(
c+

b
2− c

)
=

(
c+

b
2− c

)(
c+

b
2− c

)
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|c|2 +
bc

2− c
+

bc
2− c

+
|b|2

|2− c|2 = |c|2 +
cb

2− c
+

bc
2− c

+
|b|2

|2− c|2

c(b−b)
2− c

=
c(b−b)
2− c

c
2− c

=
c

2− c
.

Then b = b or c = c , which is a contradiction. If Dψ,ϕ,n were normal, with b be-
longing to C \R and c belonging to R \ {0} , a similar argument would show that
‖D∗

ψ,ϕ,nK i
2
‖ 	= ‖Dψ,ϕ,nK i

2
‖ , which is also a contradiction. The rest of the proof is ob-

tained by an argument similar to that of Proposition 3.1. �

Now, we give examples for the results of this section.

EXAMPLE 3. Suppose that ϕ1(z) = 1
4 + iz/2

1−z/4 , ϕ2(z) = e
iπ
3
4 + z/2

1− e
−iπ
3
4 z

, ψ1(z) =

3zn

n!(1−z/4)n+α+2 , and ψ2(z) = 3zn

n!
(
1− e

−iπ
3
4 z

)n+α+2
. It is easy to see that ‖ϕ1‖∞ < 1 and

‖ϕ2‖∞ < 1 and so Dψ1,ϕ1,n and Dψ2,ϕ2,n are bounded on A2
α . By Theorem 2.7, the

operator Dψ1,ϕ1,n is J -symmetric. Proposition 3.3 implies that Dψ1,ϕ1,n is not normal.
We observe that Dψ2,ϕ2,n is self-adjoint and C

e
−2π

3 iz
J -symmetric by Proposition 3.1.
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