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Abstract. In the present paper we give a matrix form of local derivations of the complex finite
dimensional simple (non-Lie) Malcev algebra M , and a direct proof of the statement that ev-
ery 2-local derivation of M is a derivation. We have some description of local and 2-local
derivations of complex finite-dimensional semisimple binary Lie algebras.

Introduction

The present paper is devoted to local and 2-local derivations of Malcev algebras.
The history of local derivations began in the paper of Kadison [14]. Kadison proved
that every continuous local derivation from a von Neumann algebra into its dual Banach
bimodule is a derivation. A similar notion of 2-local derivations was introduced by
Šemrl. He proved that any 2-local derivation of the algebra B(H) of all bounded
linear operators on the infinite-dimensional separable Hilbert space H is a derivation
[22]. After his works, numerous new results related to the description of local and
2-local derivations of associative algebras have appeared. For example, the papers
[1, 5, 6, 17, 18, 20] are devoted to local and 2-local derivations of associative algebras.

The study of local and 2-local derivations of nonassociative algebras was initiated
in the papers of Ayupov and Kudaybergenov (for the case of Lie algebras, see [7, 8]).
In particular, they proved that there are no nontrivial local and 2-local derivations on
semisimple finite-dimensional Lie algebras. In the paper [10] one can find examples of
2-local derivations on nilpotent Lie algebras which are not derivations. After the cited
works, the study of local and 2-local derivations was continued for Leibniz algebras
[9] and Jordan algebras [2], [3]. Local and 2-local automorphisms were also studied in
many cases. For example, local and 2-local automorphisms on Lie algebras have been
studied in [7, 11].

The variety of Malcev algebras is a generalization of the variety of Lie algebras
[21]. It is closely related to other classes of nonassociative structures: it is a proper sub-
variety of binary Lie algebras, under the multiplication ab− ba an alternative algebra
is a Malcev algebra. Moreover, they have connections to various classes of algebraic
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systems such as Moufang loops, Poisson-Malcev algebras, etc. The study of gener-
alizations of derivations of simple Malcev algebras was initiated by Filippov in [13]
and continued in some papers of Kaygorodov and Popov [15, 16]. In [4] Sh.Ayupov,
A.Elduque and K.Kudaybergenov obtain descriptions of local and 2-local derivations
of the seven dimensional simple non-Lie Malcev algebras over fields of characteristic
�= 2,3.

In the present paper, we continue the study of generalizations of derivations of
simple Malcev algebras. Namely, we give a matrix form of local derivations of the
finite dimensional simple (non-Lie) Malcev algebra M7 over algebraically closed field
F of characteristic zero, and a direct proof of the statement that every 2-local derivation
of M7 is a derivation. As a corollary we have some description of local and 2-local
derivations of complex finite dimensional semisimple binary Lie algebras.

1. Preliminaries

Malcev algebras are anticommutative algebras satisfying the following identity:

J(x,y,xz) = J(x,y,z)x,

where J(x,y,z) = (xy)z+(yz)x+(zx)y is the Jacobiator of x,y,z.
From [19] it follows that there is only one complex finite-dimensional simple non-

Lie Malcev algebra. It is the seven-dimensional algebra M7 . In the case of the alge-
braically closed field F of characteristic zero M7 has a basis {x,y,z,x′,y′,z′,h}, and
the multiplication table in this basis is as follows:

hx = 2x, hy = 2y, hz = 2z, hx′ = −2x′, hy′ = −2y′, hz′ = −2z′,

xx′ = h, yy′ = h, zz′ = h,

xy = 2z′, yz = 2x′, zx = 2y′, x′y′ = −2z, y′z′ = −2x, z′x′ = −2y.

Let M be an algebra. A linear map D : M → M is called a derivation if D(xy) =
D(x)y+ xD(y) for any two elements x , y ∈ M . A linear map D : M → M is called an
inner derivation if it is a derivation and belongs to the subalgebra of gl(M) generated
by left and right multiplication operators.

THEOREM 1.1. Let M be a Malcev algebra. Then any inner derivation can be
written as follows:

∑(Rxy +RxRy−RyRx),

where Ra , a∈M , is a right multiplication operator, i.e., Ra(b)= ab, b∈M . Moreover,
each derivation of M7 is inner.

Our principal tool for the description of local and 2-local derivations of M7 is the
following Proposition.

PROPOSITION 1.2. A linear map D : M7 → M7 is a derivation if and only if the
matrix of D in the standard basis has the following form:
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

αx βx γx 0 γh −βh 2βz′
αy βy γy −γh 0 αh −2αz′
αz βz −αx −βy βh −αh 0 2αy′
0 −αy′ −αz′ −αx −αy −αz −2αh

αy′ 0 −βz′ −βx −βy −βz −2βh

αz′ βz′ 0 −γx −γy αx + βy −2γh

αh βh γh −βz′ αz′ −αy′ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here the action of D corresponds to multiplying the matrix by a column on the right.

Proof. The proof is carried out by checking the derivation property on algebra
M7. �

2. Local derivations of M7

Let M be an algebra. A linear map ∇ : M → M is called a local derivation if for
any element x ∈ M there exists a derivation D : M → M such that ∇(x) = D(x) .

THEOREM 2.1. The following conditions are valid

1. a linear map ∇ : M7 → M7 is a local derivation if and only if the matrix of ∇ in
the standard basis has the following form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αx βx γx 0 γ h −β h 2β z′
αy βy γy −γ h 0 αh −2αz′

αz βz −Λ β h −αh 0 2αy′
0 −αy′ −αz′ −αx −αy −αz −2αh

αy′ 0 −βz′ −βx −βy −βz −2βh

αz′ βz′ 0 −γx −γy Λ −2γh

αh βh γh −β z′ αz′ −αy′ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

2. the local derivation ∇ : M7 → M7 is a derivation if and only if

αh = αh, αy′ = αy′ , αz′ = αz′ ,

β z′ = βz′ , β h = βh, γ h = γh

and
Λ = αx + βy.

Proof. Proof of (1): Let ∇ be an arbitrary local derivation on M7 . By the defini-
tion for any a ∈ M7 there exists a derivation Da on M7 such that

∇(a) = Da(a).
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By Proposition 1.2, the derivation Da has the following matrix form:

Aa =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αa
x β a

x γa
x 0 γa

h −β a
h 2β a

z′
αa

y β a
y γa

y −γa
h 0 αa

h −2αa
z′

αa
z β a

z −αa
x −β a

y β a
h −αa

h 0 2αa
y′

0 −αa
y′ −αa

z′ −αa
x −αa

y −αa
z −2αa

h

αa
y′ 0 −β a

z′ −β a
x −β a

y −β a
z −2β a

h

αa
z′ β a

z′ 0 −γa
x −γa

y αa
x + β a

y −2γa
h

αa
h β a

h γa
h −β a

z′ αa
z′ −αa

y′ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let A be the matrix of ∇, then by choosing subsequently a = x , a = y, . . . ,a = h,
and using ∇(a) = Da(a), it is easy to see that

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αx
x β y

x γz
x 0 γy′

h −β z′
h 2β h

z′
αx

y β y
y γz

y −γx′
h 0 αz′

h −2αh
z′

αx
z β y

z −αz
x −β z

y β x′
h −αy′

h 0 2αh
y′

0 −αy
y′ −αz

z′ −αx′
x −αy′

y −αz′
z −2αh

h

αx
y′ 0 −β z

z′ −β x′
x −β y′

y −β z′
z −2β h

h

αx
z′ β y

z′ 0 −γx′
x −γy′

y αz′
x + β z′

y −2γh
h

αx
h β y

h γz
h −β x′

z′ αy′
z′ −αz′

y′ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

From ∇(x+ y) = ∇(x)+ ∇(y) we have

αx+y
y′ = αx

y′ , αx+y
y′ = αy

y′ , i.e. αy
y′ = αx

y′ .

Analogously, from ∇(y+ z) = ∇(y)+ ∇(z) we deduce

β y+z
z′ = β y

z′ , β y+z
z′ = β z

z′ , i.e. β y
z′ = β z

z′ .

Similarly, we obtain

αx
x = αx′

x , αx
y = αy′

y , αx
z = αz′

z ,

αh
y′ = αz′

y′ , αx
z′ = αz

z′ , αy′
z′ = αh

z′ ,

αx
h = αh

h , αz′
h = αy′

h , β y
x = β x′

x ,

β y
y = β y′

y , β y
z = β z′

z , β y
h = β h

h

β z′
h = β x′

h , γz
x = γx′

x , γz
y = γy′

y ,

γh
h = γz

h, γx′
h = γy′

h , β h
z′ = β x′

z′ ,

αz
x + β z

y = αz′
x + β z′

y .
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By these equalities we can represent the matrix A as the sum of the following two
matrices:

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 β y
x γz

x 0 0 0 0
αx

y 0 γz
y 0 0 0 0

αx
z β y

z 0 0 0 0 0
0 0 0 0 −αx

y −αx
z 0

0 0 0 −β y
x 0 −β y

z 0
0 0 0 −γz

x −γz
y 0 0

0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αx
x 0 0 0 γx′

h −β x′
h 2β x′

z′

0 β y
y 0 −γx′

h 0 αy′
h −2αy′

z′

0 0 −αz
x −β z

y β x′
h −αy′

h 0 2αz′
y′

0 −αx
y′ −αx

z′ −αx
x 0 0 −2αx

h

αx
y′ 0 −β y

z′ 0 −β y
y 0 −2β y

h
αx

z′ β y
z′ 0 0 0 αz

x + β z
y −2γz

h

αx
h β y

h γz
h −β x′

z′ αy′
z′ −αz′

y′ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let D1 be the linear operator defined by the matrix A1. By Proposition 1.2, D1 is
a derivation. It follows that ∇′ = ∇−D1 is a new local derivation with the matrix A′.

Hence, we can represent the matrix A′ as the sum of the following two matrices:

A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

αx
x 0 0 0 0 0 0
0 β y

y 0 0 0 0 0
0 0 −αx

x −β y
y 0 0 0 0

0 0 0 −αx
x 0 0 0

0 0 0 0 −β y
y 0 0

0 0 0 0 0 αx
x + β y

y 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A′′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 γx′
h −β x′

h 2β x′
z′

0 0 0 −γx′
h 0 αy′

h −2αy′
z′

0 0 Λ β x′
h −αy′

h 0 2αz′
y′

0 −αx
y′ −αx

z′ 0 0 0 −2αx
h

αx
y′ 0 −β y

z′ 0 0 0 −2β y
h

αx
z′ β y

z′ 0 0 0 −Λ −2γz
h

αx
h β y

h γz
h −β x′

z′ αy′
z′ −αz′

y′ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where Λ = αx
x + β y

y −αz
x −β z

y .
Let D2 be a linear operator defined by the matrix A2. By Proposition 1.2, D2 is a

derivation. Then ∇′′ = ∇′ −D2 is a local derivation.
Let

αy′ = αx
y′ −αz′

y′ , αz′ = αy′
z′ −αx

z′ , αh = αy′
h −αx

h ,

β z′ = β y
z′ −β x′

z′ , β h = β x′
h −β y

h , γ h = γx′
h − γz

h.
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Then we can represent the matrix A′′ as the sum of the following two matrices:

A3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 γz
h −β y

h 2β y
z′

0 0 0 −γz
h 0 αx

h −2αx
z′

0 0 0 β y
h −αx

h 0 2αx
y′

0 −αx
y′ −αx

z′ 0 0 0 −2αx
h

αx
y′ 0 −β y

z′ 0 0 0 −2β y
h

αx
z′ β y

z′ 0 0 0 0 −2γz
h

αx
h β y

h γz
h −β y

z′ αx
z′ −αx

y′ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A′′′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 γ h −β h −2β z′
0 0 0 −γ h 0 αh −2αz′

0 0 Λ β h −αh 0 −2αy′
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 −Λ 0

0 0 0 β z′ α z′ αy′ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let D3 be a linear operator defined by the matrix A3. By Proposition 1.2, D3 is a
derivation. Then ∇′′′ = ∇′′ −D3 is a local derivation.

Now we prove that the linear operator, defined by the matrix A′′′ is a local deriva-
tion.

Let a be an element in M7 . Then we can write

a = a1x+a2y+a3z+a4x
′ +a5y

′ +a6z
′ +a7h,

for some elements a1 , a2 , a3 , a4 , a5 , a6 , a7 in F . Throughout of the paper let
a = (a1,a2,a3,a4,a5,a6,a7)T .

If, for each element a ∈ M7 , there exists a matrix B of the form in proposition 1.2
such that

Ba = A′′′a,

then the linear operator, defined by the matrix A′′′ is a local derivation. In other words,
if, for each element a ∈ M7 , the system of linear equations
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1αx +a2βx +a3γx +a5γh−a6βh +2a7βz′ = a5γ h−a6β h −2a7β z′ ;
a1αy +a2βy +a3γy −a4γh +a6αh −2a7αz′ = −a4γ h +a6αh −2a7αz′ ;

a1αz +a2βz−a3(αx + βy)+a4βh−a5αh +2a7αy′ = a3Λ+a4β h−a5αh −2a7αy′ ;
−a2αy′ −a3αz′ −a4αx −a5αy −a6αz −2a7αh = 0;
a1αy′ −a3βz′ −a4βx −a5βy −a6βz−2a7βh = 0;
a1αz′ +a2βz′ −a4γx −a5γy +a6(αx + βy)−2a7γh = −a6Λ;

a1αh +a2βh +a3γh −a4βz′ +a5αz′ −a6αy′ = a4β z′ +a5αz′ +a6αy′ .
(2.1)

has a solution with respect to the variables

αa
x , β a

x , γa
x , αa

y , β a
y , γa

y , αa
z , β a

z , αa
y′ , αa

z′ , β a
z′ , αa

h , β a
h , γa

h ,
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then the linear operator, defined by the matrix A′′′ is a local derivation. The main matrix
of this system we can write as follows

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αx αy αz αy′ αz′ αh βx βy βz βz′ βh γx γy γh
a1 0 0 0 0 0 a2 0 0 2a7 −a6 a3 0 a5
0 a1 0 0 −2a7 a6 0 a2 0 0 0 0 a3 −a4

−a3 0 a1 2a7 0 −a5 0 −a3 a2 0 a4 0 0 0
−a4 −a5 −a6 −a2 −a3 −2a7 0 0 0 0 0 0 0 0
0 0 0 a1 0 0 −a4 −a5 −a6 −a3 −2a7 0 0 0
a6 0 0 0 a1 0 0 a6 0 a2 0 −a4 −a5 −2a7
0 0 0 −a6 a5 a1 0 0 0 −a4 a2 0 0 a3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We will need the following matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ αy′ αz′ αh βz′ βh γh
0 0 0 0 −2a7 −a6 a5
0 0 −2a7 a6 0 0 −a4
a3 −2a7 0 −a5 0 a4 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

−a6 0 0 0 0 0 0
0 a6 a5 0 a4 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

from the right part of this system of linear equations.
We replace the 4-th row to the below of the matrices and vanish the (7,1)-th com-

ponent of the first matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αx αy αz αy′ αz′ αh βx βy βz βz′ βh γx γy γh

a1 0 0 0 0 0 a2 0 0 2a7 −a6 a3 0 a5

0 a1 0 0 −2a7 a6 0 a2 0 0 0 0 a3 −a4

−a3 0 a1 2a7 0 −a5 0 −a3 a2 0 a4 0 0 0
0 0 0 a1 0 0 −a4 −a5 −a6 −a3 −2a7 0 0 0
a6 0 0 0 a1 0 0 a6 0 a2 0 −a4 −a5 −2a7

0 0 0 −a6 a5 a1 0 0 0 −a4 a2 0 0 a3

0 −a5 −a6 −a2 −a3 −2a7
a4
a1

a2 0 0 a4
a1

2a7 − a4
a1

a6
a4
a1

a3 0 a4
a1

a5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ αy′ αz′ αh βz′ βh γh

0 0 0 0 −2a7 −a6 a5

0 0 −2a7 a6 0 0 −a4

a3 −2a7 0 −a5 0 a4 0
0 0 0 0 0 0 0

−a6 0 0 0 0 0 0
0 a6 a5 0 a4 0 0
0 0 0 0 −2 a4

a1
a7 − a4

a1
a6

a4
a1

a5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and so on. Thus, the last 7-th row of the matrices vanishes and we have

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αx αy αz αy′ αz′ αh βx βy βz βz′ βh γx γy γh

a1 0 0 0 0 0 a2 0 0 2a7 −a6 a3 0 a5

0 a1 0 0 −2a7 a6 0 a2 0 0 0 0 a3 −a4

−a3 0 a1 2a7 0 −a5 0 −a3 a2 0 a4 0 0 0
0 0 0 a1 0 0 −a4 −a5 −a6 −a3 −2a7 0 0 0
a6 0 0 0 a1 0 0 a6 0 a2 0 −a4 −a5 −2a7

0 0 0 −a6 a5 a1 0 0 0 −a4 a2 0 0 a3

0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ αy′ αz′ αh βz′ βh γh

0 0 0 0 −2a7 −a6 a5

0 0 −2a7 a6 0 0 −a4

a3 −2a7 0 −a5 0 a4 0
0 0 0 0 0 0 0

−a6 0 0 0 0 0 0
0 a6 a5 0 a4 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is not hard to see that the appropriate system of linear equations has solution for any
a2 , a3 , a4 , a5 , a6 , a7 in F .

Since x , y and z are symmetric with respect to the multiplication we have simi-
larly calculations for a2 �= 0, a3 �= 0.

Thus, we may consider the case a1 = a2 = a3 = 0. In this case we get

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αx αy αz αy′ αz′ αh βx βy βz βz′ βh γx γy γh
0 0 0 0 0 0 0 0 0 2a7 −a6 0 0 a5
0 0 0 0 −2a7 a6 0 0 0 0 0 0 0 −a4
0 0 0 2a7 0 −a5 0 0 0 0 a4 0 0 0

−a4 −a5 −a6 0 0 −2a7 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −a4 −a5 −a6 0 −2a7 0 0 0
a6 0 0 0 0 0 0 a6 0 0 0 −a4 −a5 −2a7
0 0 0 −a6 a5 0 0 0 0 −a4 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ αy′ αz′ αh βz′ βh γh
0 0 0 0 −2a7 −a6 a5
0 0 −2a7 a6 0 0 −a4
0 −2a7 0 −a5 0 a4 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

−a6 0 0 0 0 0 0
0 a6 a5 0 a4 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Now, suppose that a4 �= 0. Then, preforming some replacements, we get
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αx γh βx βz′ γx βh αz βy βz αy′ αh αz′ γy αy

0 a4 0 0 0 0 0 0 0 0 a6 −2a7 0 0
0 0 0 0 0 a4 0 0 0 2a7 −a5 0 0 0

−a4 0 0 0 0 0 −a6 0 0 0 −2a7 0 0 −a5
0 0 −a4 0 0 −2a7 0 −a5 −a6 0 0 0 0 0
a6 −2a7 0 0 −a4 0 0 a6 0 0 0 0 −a5 0
0 0 0 −a4 0 0 0 0 0 −a6 0 a5 0 0
0 a5 0 2a7 0 −a6 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ αy′ αz′ αh βz′ βh γh
0 0 −2a7 a6 0 0 −a4
0 −2a7 0 −a5 0 a4 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

−a6 0 0 0 0 0 0
0 a6 a5 0 a4 0 0
0 0 0 0 −2a7 −a6 a5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Now we replace some columns:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γh βh αx βz′ γx βx αz βy βz αy′ αh αz′ γy αy

a4 0 0 0 0 0 0 0 0 0 a6 −2a7 0 0
0 a4 0 0 0 0 0 0 0 2a7 −a5 0 0 0
0 0 −a4 0 0 0 −a6 0 0 0 −2a7 0 0 −a5
0 0 0 −a4 0 0 0 0 0 −a6 0 a5 0 0

−2a7 0 a6 0 −a4 0 0 a6 0 0 0 0 −a5 0
0 −2a7 0 0 0 −a4 0 −a5 −a6 0 0 0 0 0
a5 −a6 0 2a7 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ αy′ αz′ αh βz′ βh γh
0 0 −2a7 a6 0 0 −a4
0 −2a7 0 −a5 0 a4 0
0 0 0 0 0 0 0
0 a6 a5 0 a4 0 0

−a6 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 −2a7 −a6 a5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

It is not difficult to see that the last 7-th row of the matrix can be vanished. It is
not hard to see that the appropriate system of linear equations has solution for any a5 ,
a6 , a7 in F .

Since x′ , y′ and z′ are symmetric in the table of multiplication we have similarly
calculations for a5 �= 0, a6 �= 0.

Thus, we may consider the case a1 = a2 = a3 = a4 = a5 = a6 = 0. In this case we
get
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αx αy αz αy′ αz′ αh βx βy βz βz′ βh γx γy γh
0 0 0 0 0 0 0 0 0 2a7 0 0 0 0
0 0 0 0 −2a7 0 0 0 0 0 0 0 0 0
0 0 0 2a7 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −2a7 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −2a7 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −2a7
0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ αy′ αz′ αh βz′ βh γh
0 0 0 0 −2a7 0 0
0 0 −2a7 0 0 0 0
0 −2a7 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

that is, we have ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2a7βz′ = −2a7β z′ ;
−2a7αz′ = −2a7αz′ ;
2a7αy′ = −2a7αy′ ;
−2a7αh = 0;
−2a7βh = 0;
−2a7γh = 0.

The last system of linear equation always has a solution. Hence, the system of linear
equation (2.1) always has a solution. Therefore, the linear operator, defined by the
matrix A′′′ is a local derivation.

Item (2) of the theorem follows by Proposition 1.2. This completes the proof. �

EXAMPLE 2.2. Let ∇ be a linear operator on M7 with the nonzero matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 γ h −β h −2β z′
0 0 0 −γ h 0 αh −2αz′

0 0 Λ β h −αh 0 −2αy′
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 −Λ 0

0 0 0 β z′ αz′ αy′ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where αy′ , αz′ , αh , β z′ , β h , γ h , Λ are elements in the field F . Then, by Theorem
2.1, ∇ is a local derivation which is not a derivation.
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For example, the linear operator with the nonzero matrix
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

is a local derivation which is not a derivation.

3. 2 -Local derivations of M7

Let M be an algebra. A (not necessary linear) map Δ : M → M is called a 2-local
derivation if for any two elements x , y∈M there exists a derivation Dx,y : M→M such
that Δ(x) = Dx,y(x) , Δ(y) = Dx,y(y) . The following theorem was proved by Sh.Ayupov,
A.Elduque and K.Kudaybergenov in [4]. Here we give a direct proof of this theorem.

THEOREM 3.1. Each 2 -local derivation of M7 is a derivation.

Proof. Let � be an arbitrary 2-local derivation of M7 . By definition, for every
a , b ∈ M7 there exists a derivation Da,b of M7 such that

�(a) = Da,b(a), �(b) = Da,b(b).

By Proposition 1.2, the derivation Da,b has the following matrix form:

Aa,b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αab
x β ab

x γab
x 0 γab

h −β ab
h 2β ab

z′
αab

y β ab
y γab

y −γab
h 0 αab

h −2αab
z′

αab
z β ab

z −αab
x −β ab

y β ab
h −αab

h 0 2αab
y′

0 −αab
y′ −αab

z′ −αab
x −αab

y −αab
z −2αab

h

αab
y′ 0 −β ab

z′ −β ab
x −β ab

y −β ab
z −2β ab

h

αab
z′ β ab

z′ 0 −γab
x −γab

y αab
x + β ab

y −2γab
h

αab
h β ab

h γab
h −β ab

z′ αab
z′ −αab

y′ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let a = λxx+ λyy+ λzz+ λx′x
′ + λy′y

′ + λz′z
′ + λhh be an arbitrary element from

M7 . For every v ∈ M7 there exists a derivation Dv,a such that

�(v) = Dv,a(v), �(a) = Dv,a(a).

Then from
Dh,v(h) = Dh,a(h), v ∈ M7

it follows that

β hv
z′ x−αhv

z′ y+ αhv
y′ z−αhv

h x′ −β hv
h y′ − γhv

h z′

= β ha
z′ x−αha

z′ y+ αha
y′ z−αha

h x′ −β ha
h y′ − γha

h z′.
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Hence,
β hv

z′ = β ha
z′ , αhv

z′ = αha
z′ , αhv

y′ = αha
y′ ,

αhv
h = αha

h , β hv
h = β ha

h , γhv
h = γha

h .

Then we can write

Ah,a =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αha
x β ha

x γha
x 0 γha

h −β ha
h 2β hv

z′
αha

y β ha
y γha

y −γha
h 0 αha

h −2αhv
z′

αha
z β ha

z −αha
x −β ha

y β ha
h −αha

h 0 2αhv
y′

0 −αha
y′ −αha

z′ −αha
x −αha

y −αha
z −2αhv

h

αha
y′ 0 −β ha

z′ −β ha
x −β ha

y −β ha
z −2β hv

h

αha
z′ β ha

z′ 0 −γha
x −γha

y αha
x + β ha

y −2γhv
h

αhv
h β hv

h γhv
h −β hv

z′ αhv
z′ −αhv

y′ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Hence,
�(a) = Dh,a(a) = μha

x x+ μha
y y+ μha

z z+ μha
x′ x′ + μha

y′ y′μha
z′ z′

+(αhv
h λx + β hv

h λy + γhv
h λz−β hv

z′ λx′ + αhv
z′ λy′ −αhv

y′ λz′)h,

for some elements μha
x , μha

y , μha
z , μha

x′ , μha
y′ , μha

z′ ∈ C. Similarly, from

Dx,v(x) = Dx,a(x), v ∈ M7

it follows that
αxv

x = αxa
x , αxv

y = αxa
y , αxv

z = αxa
z ,

αxv
y′ = αxa

y′ , αxv
z′ = αxa

z′ , αxv
h = αxa

h .

Then we can write

�(a) = Dxa(a) = μxa
x x+ μxa

y y+ μxa
z z

+(−αxv
y′ λy −αxv

z′ λz−αxv
x λx′ −αxv

y λy′ −αxv
z λz′ −2αxv

h λh)x′

+μxa
y′ y′ + μxa

z′ z′ + μxa
h h

for some elements μxa
x , μxa

y , μxa
z , μxa

y′ , μxa
z′ , μxa

h ∈ C.
From

Dy,v(y) = Dy,a(y), v ∈ M7

it follows that
β yv

x = β ya
x , β yv

y = β ya
y , β yv

z = β ya
z ,

αyv
y′ = αya

y′ , β yv
z′ = β ya

z′ , β yv
h = β ya

h .

Then we can write

�(a) = Dya(a) = μya
x x+ μya

y y+ μya
z z+ μya

x′ x
′

+(αyv
y′ λx −β yv

z′ λz−β yv
x λx′ −β yv

y λy′ −β yv
z λz′ −2β yv

h λh)y′

+μya
z′ z′ + μya

h h
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for some elements μya
x , μya

y , μya
z , μya

x′ , μya
z′ , μya

h ∈ C .
From

Dz,v(z) = Dz,a(z), v ∈ M7

it follows that
γzv
x = γza

x , γzv
y = γza

y , αzv
x + β zv

y = αza
x + β za

y ,

αzv
z′ = αza

z′ , β zv
z′ = β za

z′ , γzv
h = γza

h .

Then we can write

�(a) = Dza(a) = μ za
x x+ μ za

y y+ μ za
z z+ μ za

x′ x
′ + μ za

y′ y
′

+(αzv
z′ λx + β zv

z′ λy − γzv
x λx′ − γzv

y λy′ +(αzv
x + β zv

y )λz′ −2γzv
h λh)z′

+μ za
h h

for some elements μ za
x , μ za

y , μ za
z , μ za

x′ , μ za
y′ , μ za

h ∈ C.
From

Dx′,v(x′) = Dx′,a(x′), v ∈ M7

it follows that
γx′v
h = γx′a

h , β x′v
h = β x′a

h , αx′v
x = αx′a

x ,

β x′v
x = β x′a

x , γx′v
x = γx′a

x , β x′v
z′ = β x′a

z′ .

Then we can write

�(a) = Dx′a(a) = (αx′v
x λx + β x′v

x λy − γx′v
x λz + γx′v

h λy′ −β x′v
h λz′ +2β x′v

z′ λh)x

+μx′a
y y+ μx′a

z z++μx′a
x′ x′ + μx′a

y′ y′ + μx′a
z′ z′ + μx′a

h h

for some elements μx′a
y , μx′a

z , μx′a
x′ , μx′a

y′ , μx′a
z′ , μx′a

h ∈ C .
From

Dy′,v(y
′) = Dy′,a(y

′), v ∈ M7

it follows that
γy′v
h = γy′a

h , αy′v
h = αy′a

h , αy′v
y = αy′a

y ,

β y′v
y = β y′a

y , γy′v
y = γy′a

y , αy′v
z′ = αy′a

z′ .

Then we can write

�(a) = Dy′a(a) = μy′a
x x+(αy′v

y λx + β y′v
y λy + γy′v

y λz− γy′v
h λx′ + αy′v

h λz′ −2αy′v
z′ λh)y

+μy′a
z z++μy′a

x′ x′ + μy′a
y′ y′ + μy′a

z′ z′ + μy′a
h h

for some elements μy′a
x , μy′a

z , μy′a
x′ , μy′a

y′ , μy′a
z′ , μy′a

h ∈ C.
From

Dz′,v(z
′) = Dz′,a(z

′), v ∈ M7
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it follows that
β z′v

h = β z′a
h , αz′v

h = αz′a
h , αz′v

z = αz′a
z ,

β z′v
z = β z′a

z , αz′v
x + β z′v

y = αz′a
x + β z′a

y , αz′v
y′ = αz′a

y′ .

Then we can write
�(a) = Dz′a(a) = μ z′a

x x+ μ z′a
y y

+(αz′v
z λx + β z′v

z λy − (αz′v
x + β z′v

y )λz−β z′v
h λx′ −αz′v

h λy′ +2αz′v
y′ λh)z

+μ z′a
x′ x′ + μ z′a

y′ y′ + μ z′a
z′ z′ + μ z′a

h h

for some elements μ z′a
x , μ z′a

y , μ z′a
x′ , μ z′a

y′ , μ z′a
z′ , μ z′a

h ∈ C. Hence,

�(a) = Dh,a(a) = Dx,a(a) = Dy,a(a) = Dz,a(a) = Dx′a(a) = Dy′,a(a) = Dz′,a(a)

= (αx′v1
x λx + β x′v1

x λy− γx′v1
x λz + γx′v1

h λy′ −β x′v1
h λz′ +2β x′v1

z′ λh)x

+(αy′v2
y λx + β y′v2

y λy + γy′v2
y λz− γy′v2

h λx′ + αy′v2
h λz′ −2αy′v2

z′ λh)y

+(αz′v3
z λx + β z′v3

z λy − (αz′v3
x + β z′v3

y )λz −β z′v3
h λx′ −αz′v3

h λy′ +2αz′v3
y′ λh)z

+(−αxv4
y′ λy −αxv4

z′ λz−αxv4
x λx′ −αxv4

y λy′ −αxv4
z λz′ −2αxv4

h λh)x′

+(αyv5
y′ λx −β yv5

z′ λz−β yv5
x λx′ −β yv5

y λy′ −β yv5
z λz′ −2β yv5

h λh)y′

+(αzv6
z′ λx + β zv6

z′ λy − γzv6
x λx′ − γzv6

y λy′ +(αzv6
x + β zv

y )λz′ −2γzv6
h λh)z′

+(αhv7
h λx + β hv7

h λy + γhv7
h λz−β hv7

z′ λx′ + αhv7
z′ λy′ −αhv7

y′ λz′)h (1.1)

for any v1 , v2 , v3 , v4 , v5 , v6 , v7 ∈ M7 . Note that the components in this last sum do
not depend on the element a . Therefore the map � is linear and it is a local derivation.

Now, by Theorem 2.1, the linear map � has the following matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αx βx γx 0 γ h −β h 2β z′
αy βy γy −γ h 0 αh −2αz′

αz βz −Λ β h −αh 0 2αy′
0 −αy′ −αz′ −αx −αy −αz −2αh

αy′ 0 −βz′ −βx −βy −βz −2βh

αz′ βz′ 0 −γx −γy Λ −2γh

αh βh γh −β z′ α z′ −αy′ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

From
Az,x′ z = Az , Az,x′x′ = Ax′.

it follows that
γh = γz,x′

h = γ h,

i.e.,
γh = γ h.
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Similarly, from

Ay,x′ y = Ay, Ay,x′x′ = Ax′.

it follows that
βh = β y,x′

h = β h,

i.e.,
βh = β h.

and so on. Thus, we get

αh = αh, αy′ = αy′ , α z′ = αz′ ,

β z′ = βz′ , β h = βh, γ h = γh.

Hence, the linear map � has the following matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

αx βx γx 0 γh −βh 2βz′
αy βy γy −γh 0 αh −2αz′
αz βz −Λ βh −αh 0 2αy′
0 −αy′ −αz′ −αx −αy −αz −2αh

αy′ 0 −βz′ −βx −βy −βz −2βh

αz′ βz′ 0 −γx −γy Λ −2γh

αh βh γh −βz′ αz′ −αy′ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 −Λ′ 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 Λ′ 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where Λ′ = Λ− (αx +βy) . Let D1 be the linear operator defined by the matrix A−A1.
By Proposition 1.2, D1 is a derivation. From this it follows that �′ = �−D1 is a new
local derivation with the matrix A1.

We take
Δ(z) = A1 z = Az,x z = Az,y z ,

Δ(x) = A1x = Az,x x, Δ(y) = A1y = Az,y y.

From this it follows that

Λ = αx,z
x + β x,z

y = αy,z
x + β y,z

y

and
αx,z

x = 0,β y,z
y = 0.

Hence,
Λ = β x,z

y = αy,z
x . (1)
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Now, take
Δ(x+ y) = Δ(x)+ Δ(y).

Then

αx+y,x
y + β x+y,x

y = αx,z
y + β x,z

y , αx,z
y = αx+y,x

y = 0, β x+y,x
y = β x,z

y .

αx+y,x
y + β x+y,x

y = αx,y
y + β x,y

y , αx,y
y = αx+y,x

y = 0, β x+y,x
y = β x,y

y = 0.

Hence,
β x,z

y = β x+y,x
y = β x,y

y = 0.

By (1) we get
Λ = 0.

Therefore, Λ = αx + βy and � is a derivation. This completes the proof. �

4. Local and 2 -local derivations of binary Lie algebras

The variety of binary Lie algebras was introduced in [21] and it is defined by
the following property: each 2 -generated subalgebra of a binary Lie algebra is a Lie
algebra. It is known that the variety of Malcev and the variety of anticommutative
CD-algebras are proper subvarieties of the variety of binary Lie algebras. On the other
hand, it was proved that each complex finite-dimensional semisimple binary Lie algebra
is Malcev [12] and each complex finite-dimensional semisimple Malcev algebra is a
direct sum of some simple Lie algebras and some copies of M7 [19]. It was proved
that every 2-local derivation of a complex finite-dimensional Lie algebra or M7 is a
derivation (see, [10] and Theorem 2.1). Hence, we have the following result.

COROLLARY 4.1. Let Ξ be a 2 -local derivation of a complex finite-dimensional
semisimple binary Lie algebra. Then Ξ is a derivation.
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