A CRITERION OF LOCAL DERIVATIONS ON THE SEVEN-DIMENSIONAL SIMPLE MALCEV ALGEBRA

F. Arzikulov and I. A. Karimjanov

(Communicated by P. Šemrl)

Abstract

In the present paper we give a matrix form of local derivations of the complex finite dimensional simple (non-Lie) Malcev algebra \mathbb{M}, and a direct proof of the statement that every 2 -local derivation of \mathbb{M} is a derivation. We have some description of local and 2-local derivations of complex finite-dimensional semisimple binary Lie algebras.

Introduction

The present paper is devoted to local and 2-local derivations of Malcev algebras. The history of local derivations began in the paper of Kadison [14]. Kadison proved that every continuous local derivation from a von Neumann algebra into its dual Banach bimodule is a derivation. A similar notion of 2 -local derivations was introduced by Semrl. He proved that any 2 -local derivation of the algebra $B(H)$ of all bounded linear operators on the infinite-dimensional separable Hilbert space H is a derivation [22]. After his works, numerous new results related to the description of local and 2 -local derivations of associative algebras have appeared. For example, the papers [$1,5,6,17,18,20$] are devoted to local and 2 -local derivations of associative algebras.

The study of local and 2-local derivations of nonassociative algebras was initiated in the papers of Ayupov and Kudaybergenov (for the case of Lie algebras, see [7, 8]). In particular, they proved that there are no nontrivial local and 2 -local derivations on semisimple finite-dimensional Lie algebras. In the paper [10] one can find examples of 2 -local derivations on nilpotent Lie algebras which are not derivations. After the cited works, the study of local and 2-local derivations was continued for Leibniz algebras [9] and Jordan algebras [2], [3]. Local and 2-local automorphisms were also studied in many cases. For example, local and 2 -local automorphisms on Lie algebras have been studied in [7, 11].

The variety of Malcev algebras is a generalization of the variety of Lie algebras [21]. It is closely related to other classes of nonassociative structures: it is a proper subvariety of binary Lie algebras, under the multiplication $a b-b a$ an alternative algebra is a Malcev algebra. Moreover, they have connections to various classes of algebraic

[^0]systems such as Moufang loops, Poisson-Malcev algebras, etc. The study of generalizations of derivations of simple Malcev algebras was initiated by Filippov in [13] and continued in some papers of Kaygorodov and Popov [15, 16]. In [4] Sh.Ayupov, A.Elduque and K.Kudaybergenov obtain descriptions of local and 2-local derivations of the seven dimensional simple non-Lie Malcev algebras over fields of characteristic $\neq 2,3$.

In the present paper, we continue the study of generalizations of derivations of simple Malcev algebras. Namely, we give a matrix form of local derivations of the finite dimensional simple (non-Lie) Malcev algebra \mathbb{M}_{7} over algebraically closed field \mathbb{F} of characteristic zero, and a direct proof of the statement that every 2-local derivation of \mathbb{M}_{7} is a derivation. As a corollary we have some description of local and 2-local derivations of complex finite dimensional semisimple binary Lie algebras.

1. Preliminaries

Malcev algebras are anticommutative algebras satisfying the following identity:

$$
J(x, y, x z)=J(x, y, z) x
$$

where $J(x, y, z)=(x y) z+(y z) x+(z x) y$ is the Jacobiator of x, y, z.
From [19] it follows that there is only one complex finite-dimensional simple nonLie Malcev algebra. It is the seven-dimensional algebra \mathbb{M}_{7}. In the case of the algebraically closed field \mathbb{F} of characteristic zero \mathbb{M}_{7} has a basis $\left\{x, y, z, x^{\prime}, y^{\prime}, z^{\prime}, h\right\}$, and the multiplication table in this basis is as follows:

$$
\begin{gathered}
h x=2 x, h y=2 y, h z=2 z, h x^{\prime}=-2 x^{\prime}, h y^{\prime}=-2 y^{\prime}, h z^{\prime}=-2 z^{\prime} \\
x x^{\prime}=h, y y^{\prime}=h, z z^{\prime}=h \\
x y=2 z^{\prime}, y z=2 x^{\prime}, z x=2 y^{\prime}, x^{\prime} y^{\prime}=-2 z, y^{\prime} z^{\prime}=-2 x, z^{\prime} x^{\prime}=-2 y
\end{gathered}
$$

Let \mathbb{M} be an algebra. A linear map $D: \mathbb{M} \rightarrow \mathbb{M}$ is called a derivation if $D(x y)=$ $D(x) y+x D(y)$ for any two elements $x, y \in \mathbb{M}$. A linear map $D: \mathbb{M} \rightarrow \mathbb{M}$ is called an inner derivation if it is a derivation and belongs to the subalgebra of $\mathfrak{g l}(\mathbb{M})$ generated by left and right multiplication operators.

Theorem 1.1. Let \mathbb{M} be a Malcev algebra. Then any inner derivation can be written as follows:

$$
\sum\left(R_{x y}+R_{x} R_{y}-R_{y} R_{x}\right)
$$

where $R_{a}, a \in \mathbb{M}$, is a right multiplication operator, i.e., $R_{a}(b)=a b, b \in \mathbb{M}$. Moreover, each derivation of \mathbb{M}_{7} is inner.

Our principal tool for the description of local and 2-local derivations of \mathbb{M}_{7} is the following Proposition.

Proposition 1.2. A linear map $D: \mathbb{M}_{7} \rightarrow \mathbb{M}_{7}$ is a derivation if and only if the matrix of D in the standard basis has the following form:

$$
\left(\begin{array}{ccccccc}
\alpha_{x} & \beta_{x} & \gamma_{x} & 0 & \gamma_{h} & -\beta_{h} & 2 \beta_{z^{\prime}} \\
\alpha_{y} & \beta_{y} & \gamma_{y} & -\gamma_{h} & 0 & \alpha_{h} & -2 \alpha_{z^{\prime}} \\
\alpha_{z} & \beta_{z} & -\alpha_{x}-\beta_{y} & \beta_{h} & -\alpha_{h} & 0 & 2 \alpha_{y^{\prime}} \\
0 & -\alpha_{y^{\prime}} & -\alpha_{z^{\prime}} & -\alpha_{x}-\alpha_{y} & -\alpha_{z} & -2 \alpha_{h} \\
\alpha_{y^{\prime}} & 0 & -\beta_{z^{\prime}} & -\beta_{x} & -\beta_{y} & -\beta_{z} & -2 \beta_{h} \\
\alpha_{z^{\prime}} & \beta_{z^{\prime}} & 0 & -\gamma_{x} & -\gamma_{y} & \alpha_{x}+\beta_{y} & -2 \gamma_{h} \\
\alpha_{h} & \beta_{h} & \gamma_{h} & -\beta_{z^{\prime}} & \alpha_{z^{\prime}} & -\alpha_{y^{\prime}} & 0
\end{array}\right) .
$$

Here the action of D corresponds to multiplying the matrix by a column on the right.

Proof. The proof is carried out by checking the derivation property on algebra \mathbb{M}_{7}.

2. Local derivations of \mathbb{M}_{7}

Let \mathbb{M} be an algebra. A linear map $\nabla: \mathbb{M} \rightarrow \mathbb{M}$ is called a local derivation if for any element $x \in \mathbb{M}$ there exists a derivation $D: \mathbb{M} \rightarrow \mathbb{M}$ such that $\nabla(x)=D(x)$.

THEOREM 2.1. The following conditions are valid

1. a linear map $\nabla: \mathbb{M}_{7} \rightarrow \mathbb{M}_{7}$ is a local derivation if and only if the matrix of ∇ in the standard basis has the following form:

$$
\left(\begin{array}{ccccccc}
\alpha_{x} & \beta_{x} & \gamma_{x} & 0 & \bar{\gamma}_{h} & -\bar{\beta}_{h} & 2 \bar{\beta}_{z^{\prime}} \\
\alpha_{y} & \beta_{y} & \gamma_{y} & -\bar{\gamma}_{h} & 0 & \bar{\alpha}_{h} & -2 \bar{\alpha}_{z^{\prime}} \\
\alpha_{z} & \beta_{z} & -\Lambda & \bar{\beta}_{h} & -\bar{\alpha}_{h} & 0 & 2 \bar{\alpha}_{y^{\prime}} \\
0 & -\alpha_{y^{\prime}} & -\alpha_{z^{\prime}} & -\alpha_{x} & -\alpha_{y} & -\alpha_{z} & -2 \alpha_{h} \\
\alpha_{y^{\prime}} & 0 & -\beta_{z^{\prime}} & -\beta_{x} & -\beta_{y} & -\beta_{z} & -2 \beta_{h} \\
\alpha_{z^{\prime}} & \beta_{z^{\prime}} & 0 & -\gamma_{x} & -\gamma_{y} & \Lambda & -2 \gamma_{h} \\
\alpha_{h} & \beta_{h} & \gamma_{h} & -\bar{\beta}_{z^{\prime}} & \bar{\alpha}_{z^{\prime}} & -\bar{\alpha}_{y^{\prime}} & 0
\end{array}\right) .
$$

2. the local derivation $\nabla: \mathbb{M}_{7} \rightarrow \mathbb{M}_{7}$ is a derivation if and only if

$$
\begin{gathered}
\bar{\alpha}_{h}=\alpha_{h}, \quad \bar{\alpha}_{y^{\prime}}=\alpha_{y^{\prime}}, \quad \bar{\alpha}_{z^{\prime}}=\alpha_{z^{\prime}} \\
\bar{\beta}_{z^{\prime}}=\beta_{z^{\prime}}, \quad \bar{\beta}_{h}=\beta_{h}, \quad \bar{\gamma}_{h}=\gamma_{h}
\end{gathered}
$$

and

$$
\Lambda=\alpha_{x}+\beta_{y}
$$

Proof. Proof of (1): Let ∇ be an arbitrary local derivation on \mathbb{M}_{7}. By the definition for any $a \in \mathbb{M}_{7}$ there exists a derivation D_{a} on \mathbb{M}_{7} such that

$$
\nabla(a)=D_{a}(a)
$$

By Proposition 1.2, the derivation D_{a} has the following matrix form:

$$
A^{a}=\left(\begin{array}{ccccccc}
\alpha_{x}^{a} & \beta_{x}^{a} & \gamma_{x}^{a} & 0 & \gamma_{h}^{a} & -\beta_{h}^{a} & 2 \beta_{z^{\prime}}^{a} \\
\alpha_{y}^{a} & \beta_{y}^{a} & \gamma_{y}^{a} & -\gamma_{h}^{a} & 0 & \alpha_{h}^{a} & -2 \alpha_{z^{\prime}}^{a} \\
\alpha_{z}^{a} & \beta_{z}^{a} & -\alpha_{x}^{a}-\beta_{y}^{a} & \beta_{h}^{a} & -\alpha_{h}^{a} & 0 & 2 \alpha_{y^{\prime}}^{a} \\
0 & -\alpha_{y^{\prime}}^{a} & -\alpha_{z^{\prime}}^{a} & -\alpha_{x}^{a}-\alpha_{y}^{a} & -\alpha_{z}^{a} & -2 \alpha_{h}^{a} \\
\alpha_{y^{\prime}}^{a} & 0 & -\beta_{z^{\prime}}^{a} & -\beta_{x}^{a}-\beta_{y}^{a} & -\beta_{z}^{a} & -2 \beta_{h}^{a} \\
\alpha_{z^{\prime}}^{a} & \beta_{z^{\prime}}^{a} & 0 & -\gamma_{x}^{a} & -\gamma_{y}^{a} & \alpha_{x}^{a}+\beta_{y}^{a} & -2 \gamma_{h}^{a} \\
\alpha_{h}^{a} & \beta_{h}^{a} & \gamma_{h}^{a} & -\beta_{z^{\prime}}^{a} & \alpha_{z^{\prime}}^{a} & -\alpha_{y^{\prime}}^{a} & 0
\end{array}\right) .
$$

Let A be the matrix of ∇, then by choosing subsequently $a=x, a=y, \ldots, a=h$, and using $\nabla(a)=D_{a}(a)$, it is easy to see that

$$
A=\left(\begin{array}{ccccccc}
\alpha_{x}^{x} & \beta_{x}^{y} & \gamma_{x}^{z} & 0 & \gamma_{h}^{y^{\prime}} & -\beta_{h}^{z^{\prime}} & 2 \beta_{z^{\prime}}^{h} \\
\alpha_{y}^{x} & \beta_{y}^{y} & \gamma_{y}^{z} & -\gamma_{h}^{x^{\prime}} & 0 & \alpha_{h}^{z^{\prime}} & -2 \alpha_{z^{\prime}}^{h} \\
\alpha_{z}^{x} & \beta_{z}^{y} & -\alpha_{x}^{z}-\beta_{y}^{z} & \beta_{h}^{x^{\prime}} & -\alpha_{h}^{y^{\prime}} & 0 & 2 \alpha_{y^{\prime}}^{h} \\
0 & -\alpha_{y^{\prime}}^{y} & -\alpha_{z^{\prime}}^{z} & -\alpha_{x}^{x^{\prime}} & -\alpha_{y}^{y^{\prime}} & -\alpha_{z}^{z^{\prime}} & -2 \alpha_{h}^{h} \\
\alpha_{y^{\prime}}^{x} & 0 & -\beta_{z^{\prime}}^{z} & -\beta_{x}^{x^{\prime}}-\beta_{y}^{y^{\prime}} & -\beta_{z}^{z^{\prime}} & -2 \beta_{h}^{h} \\
\alpha_{z^{\prime}}^{x} & \beta_{z^{\prime}}^{y} & 0 & -\gamma_{x}^{x^{\prime}} & -\gamma_{y}^{y^{\prime}} & \alpha_{x}^{z^{\prime}}+\beta_{y}^{z^{\prime}} & -2 \gamma_{h}^{h} \\
\alpha_{h}^{x} & \beta_{h}^{y} & \gamma_{h}^{z} & -\beta_{z^{\prime}}^{x^{\prime}} & \alpha_{z^{\prime}}^{y^{\prime}} & -\alpha_{y^{\prime}}^{z^{\prime}} & 0
\end{array}\right) .
$$

From $\nabla(x+y)=\nabla(x)+\nabla(y)$ we have

$$
\alpha_{y^{\prime}}^{x+y}=\alpha_{y^{\prime}}^{x}, \quad \alpha_{y^{\prime}}^{x+y}=\alpha_{y^{\prime}}^{y}, \quad \text { i.e. } \alpha_{y^{\prime}}^{y}=\alpha_{y^{\prime}}^{x}
$$

Analogously, from $\nabla(y+z)=\nabla(y)+\nabla(z)$ we deduce

$$
\beta_{z^{\prime}}^{y+z}=\beta_{z^{\prime}}^{y}, \quad \beta_{z^{\prime}}^{y+z}=\beta_{z^{\prime}}^{z}, \quad \text { i.e. } \beta_{z^{\prime}}^{y}=\beta_{z^{\prime}}^{z}
$$

Similarly, we obtain

$$
\begin{gathered}
\alpha_{x}^{x}=\alpha_{x}^{x^{\prime}}, \quad \alpha_{y}^{x}=\alpha_{y}^{y^{\prime}}, \quad \alpha_{z}^{x}=\alpha_{z}^{z^{\prime}} \\
\alpha_{y^{\prime}}^{h}=\alpha_{y^{\prime}}^{z^{\prime}}, \quad \alpha_{z^{\prime}}^{x}=\alpha_{z^{\prime}}^{z}, \quad \alpha_{z^{\prime}}^{y^{\prime}}=\alpha_{z^{\prime}}^{h} \\
\alpha_{h}^{x}=\alpha_{h}^{h}, \quad \alpha_{h}^{z^{\prime}}=\alpha_{h}^{y^{\prime}}, \quad \beta_{x}^{y}=\beta_{x}^{x^{\prime}} \\
\beta_{y}^{y}=\beta_{y}^{y^{\prime}}, \quad \beta_{z}^{y}=\beta_{z}^{z^{\prime}}, \quad \beta_{h}^{y}=\beta_{h}^{h} \\
\beta_{h}^{z^{\prime}}=\beta_{h}^{x^{\prime}}, \quad \gamma_{x}^{z}=\gamma_{x}^{x^{\prime}}, \quad \gamma_{y}^{z}=\gamma_{y}^{y^{\prime}} \\
\gamma_{h}^{h}=\gamma_{h}^{z}, \quad \gamma_{h}^{x^{\prime}}=\gamma_{h}^{y^{\prime}}, \quad \beta_{z^{\prime}}^{h}=\beta_{z^{\prime}}^{x^{\prime}} \\
\alpha_{x}^{z}+\beta_{y}^{z}=\alpha_{x}^{z^{\prime}}+\beta_{y}^{z^{\prime}}
\end{gathered}
$$

By these equalities we can represent the matrix A as the sum of the following two matrices:

$$
\begin{gathered}
A_{1}=\left(\begin{array}{ccccccc}
0 & \beta_{x}^{y} & \gamma_{x}^{z} & 0 & 0 & 0 & 0 \\
\alpha_{y}^{x} & 0 & \gamma_{y}^{z} & 0 & 0 & 0 & 0 \\
\alpha_{z}^{x} & \beta_{z}^{y} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -\alpha_{y}^{x} & -\alpha_{z}^{x} & 0 \\
0 & 0 & 0 & -\beta_{x}^{y} & 0 & -\beta_{z}^{y} & 0 \\
0 & 0 & 0 & -\gamma_{x}^{z} & -\gamma_{y}^{z} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \\
A^{\prime}=\left(\begin{array}{ccccccc}
\alpha_{x}^{x} & 0 & 0 & 0 & \gamma_{h}^{x^{\prime}} & -\beta_{h}^{x^{\prime}} & 2 \beta_{z^{\prime}}^{x^{\prime}} \\
0 & \beta_{y}^{y} & 0 & -\gamma_{h}^{x^{\prime}} & 0 & \alpha_{h}^{y^{\prime}} & -2 \alpha_{z^{\prime}}^{y^{\prime}} \\
0 & 0 & -\alpha_{x}^{z}-\beta_{y}^{z} & \beta_{h}^{x^{\prime}} & -\alpha_{h}^{y^{\prime}} & 0 & 2 \alpha_{y^{\prime}}^{z^{\prime}} \\
0 & -\alpha_{y^{\prime}}^{x} & -\alpha_{z^{\prime}}^{x} & -\alpha_{x}^{x} & 0 & 0 & -2 \alpha_{h}^{x} \\
\alpha_{y^{\prime}}^{x} & 0 & -\beta_{z^{\prime}}^{y} & 0 & -\beta_{y}^{y} & 0 & -2 \beta_{h}^{y} \\
\alpha_{z^{\prime}}^{x} & \beta_{z^{\prime}}^{y} & 0 & 0 & 0 & \alpha_{x}^{z}+\beta_{y}^{z} & -2 \gamma_{h}^{z} \\
\alpha_{h}^{x} & \beta_{h}^{y} & \gamma_{h}^{z} & -\beta_{z^{\prime}}^{x^{\prime}} & \alpha_{z^{\prime}}^{y^{\prime}} & -\alpha_{y^{\prime}}^{z^{\prime}} & 0
\end{array}\right) .
\end{gathered}
$$

Let D_{1} be the linear operator defined by the matrix A_{1}. By Proposition 1.2, D_{1} is a derivation. It follows that $\nabla^{\prime}=\nabla-D_{1}$ is a new local derivation with the matrix A^{\prime}.

Hence, we can represent the matrix A^{\prime} as the sum of the following two matrices:

$$
\begin{aligned}
& A_{2}=\left(\begin{array}{ccccccc}
\alpha_{x}^{x} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \beta_{y}^{y} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -\alpha_{x}^{x}-\beta_{y}^{y} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\alpha_{x}^{x} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -\beta_{y}^{y} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \alpha_{x}^{x}+\beta_{y}^{y} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \\
& A^{\prime \prime}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & \gamma_{h}^{x^{\prime}} & -\beta_{h}^{x^{\prime}} & 2 \beta_{z^{\prime}}^{x^{\prime}} \\
0 & 0 & 0 & -\gamma_{h}^{x^{\prime}} & 0 & \alpha_{h}^{y^{\prime}} & -2 \alpha_{z^{\prime}}^{y^{\prime}} \\
0 & 0 & \Lambda & \beta_{h}^{x^{\prime}} & -\alpha_{h}^{y^{\prime}} & 0 & 2 \alpha_{y^{\prime}}^{z^{\prime}} \\
0 & -\alpha_{y^{\prime}}^{x} & -\alpha_{z^{\prime}}^{x} & 0 & 0 & 0 & -2 \alpha_{h}^{x} \\
\alpha_{y^{\prime}}^{x} & 0 & -\beta_{z^{\prime}}^{y} & 0 & 0 & 0 & -2 \beta_{h}^{y} \\
\alpha_{z^{\prime}}^{x} & \beta_{z^{\prime}}^{y} & 0 & 0 & 0 & -\Lambda & -2 \gamma_{h}^{z} \\
\alpha_{h}^{x} & \beta_{h}^{y} & \gamma_{h}^{z} & -\beta_{z^{\prime}}^{x^{\prime}} & \alpha_{z^{\prime}}^{y^{\prime}} & -\alpha_{y^{\prime}}^{z^{\prime}} & 0
\end{array}\right),
\end{aligned}
$$

where $\Lambda=\alpha_{x}^{x}+\beta_{y}^{y}-\alpha_{x}^{z}-\beta_{y}^{z}$.
Let D_{2} be a linear operator defined by the matrix A_{2}. By Proposition 1.2, D_{2} is a derivation. Then $\nabla^{\prime \prime}=\nabla^{\prime}-D_{2}$ is a local derivation.

Let

$$
\begin{gathered}
\bar{\alpha}_{y^{\prime}}=\alpha_{y^{\prime}}^{x}-\alpha_{y^{\prime}}^{z^{\prime}}, \quad \bar{\alpha}_{z^{\prime}}=\alpha_{z^{\prime}}^{y^{\prime}}-\alpha_{z^{\prime}}^{x}, \quad \bar{\alpha}_{h}=\alpha_{h}^{y^{\prime}}-\alpha_{h}^{x}, \\
\bar{\beta}_{z^{\prime}}=\beta_{z^{\prime}}^{y}-\beta_{z^{\prime}}^{x^{\prime}}, \quad \bar{\beta}_{h}=\beta_{h}^{x^{\prime}}-\beta_{h}^{y}, \quad \bar{\gamma}_{h}=\gamma_{h}^{x^{\prime}}-\gamma_{h}^{z} .
\end{gathered}
$$

Then we can represent the matrix $A^{\prime \prime}$ as the sum of the following two matrices:

$$
\begin{gathered}
A_{3}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & \gamma_{h}^{z} & -\beta_{h}^{y} & 2 \beta_{z^{\prime}}^{y} \\
0 & 0 & 0 & -\gamma_{h}^{z} & 0 & \alpha_{h}^{x} & -2 \alpha_{z^{\prime}}^{x} \\
0 & 0 & 0 & \beta_{h}^{y} & -\alpha_{h}^{x} & 0 & 2 \alpha_{y^{\prime}}^{x^{\prime}} \\
0 & -\alpha_{y^{\prime}}^{x} & -\alpha_{z^{\prime}}^{x} & 0 & 0 & 0 & -2 \alpha_{h}^{x} \\
\alpha_{y^{\prime}}^{x} & 0 & -\beta_{z^{\prime}}^{y} & 0 & 0 & 0 & -2 \beta_{h}^{y} \\
\alpha_{z^{\prime}}^{x} & \beta_{z^{\prime}}^{y} & 0 & 0 & 0 & 0 & -2 \gamma_{h}^{z} \\
\alpha_{h}^{x} & \beta_{h}^{y} & \gamma_{h}^{z} & -\beta_{z^{\prime}}^{y} & \alpha_{z^{\prime}}^{x} & -\alpha_{y^{\prime}}^{x} & 0
\end{array}\right), \\
A^{\prime \prime \prime}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & \bar{\gamma}_{h} & -\bar{\beta}_{h} & -2 \bar{\beta}_{z^{\prime}} \\
0 & 0 & 0 & -\bar{\gamma}_{h} & 0 & \bar{\alpha}_{h} & -2 \bar{\alpha}_{z^{\prime}} \\
0 & 0 & \Lambda & \bar{\beta}_{h} & -\bar{\alpha}_{h} & 0 & -2 \bar{\alpha}_{y^{\prime}} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -\Lambda & 0 \\
0 & 0 & 0 & \bar{\beta}_{z^{\prime}} & \bar{\alpha}_{z^{\prime}} & \bar{\alpha}_{y^{\prime}} & 0
\end{array}\right)
\end{gathered}
$$

Let D_{3} be a linear operator defined by the matrix A_{3}. By Proposition $1.2, D_{3}$ is a derivation. Then $\nabla^{\prime \prime \prime}=\nabla^{\prime \prime}-D_{3}$ is a local derivation.

Now we prove that the linear operator, defined by the matrix $A^{\prime \prime \prime}$ is a local derivation.

Let a be an element in \mathbb{M}_{7}. Then we can write

$$
a=a_{1} x+a_{2} y+a_{3} z+a_{4} x^{\prime}+a_{5} y^{\prime}+a_{6} z^{\prime}+a_{7} h
$$

for some elements $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}$ in \mathbb{F}. Throughout of the paper let $\bar{a}=\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right)^{T}$.

If, for each element $a \in \mathbb{M}_{7}$, there exists a matrix B of the form in proposition 1.2 such that

$$
B \bar{a}=A^{\prime \prime \prime} \bar{a}
$$

then the linear operator, defined by the matrix $A^{\prime \prime \prime}$ is a local derivation. In other words, if, for each element $a \in \mathbb{M}_{7}$, the system of linear equations

$$
\left\{\begin{array}{l}
a_{1} \alpha_{x}+a_{2} \beta_{x}+a_{3} \gamma_{x}+a_{5} \gamma_{h}-a_{6} \beta_{h}+2 a_{7} \beta_{z^{\prime}}=a_{5} \bar{\gamma}_{h}-a_{6} \bar{\beta}_{h}-2 a_{7} \bar{\beta}_{z^{\prime}} \tag{2.1}\\
a_{1} \alpha_{y}+a_{2} \beta_{y}+a_{3} \gamma_{y}-a_{4} \gamma_{h}+a_{6} \alpha_{h}-2 a_{7} \alpha_{z^{\prime}}=-a_{4} \bar{\gamma}_{h}+a_{6} \bar{\alpha}_{h}-2 a_{7} \bar{\alpha}_{z^{\prime}} \\
a_{1} \alpha_{z}+a_{2} \beta_{z}-a_{3}\left(\alpha_{x}+\beta_{y}\right)+a_{4} \beta_{h}-a_{5} \alpha_{h}+2 a_{7} \alpha_{y^{\prime}}=a_{3} \Lambda+a_{4} \bar{\beta}_{h}-a_{5} \bar{\alpha}_{h}-2 a_{7} \bar{\alpha}_{y^{\prime}} ; \\
-a_{2} \alpha_{y^{\prime}}-a_{3} \alpha_{z^{\prime}}-a_{4} \alpha_{x}-a_{5} \alpha_{y}-a_{6} \alpha_{z}-2 a_{7} \alpha_{h}=0 \\
a_{1} \alpha_{y^{\prime}}-a_{3} \beta_{z^{\prime}}-a_{4} \beta_{x}-a_{5} \beta_{y}-a_{6} \beta_{z}-2 a_{7} \beta_{h}=0 \\
a_{1} \alpha_{z^{\prime}}+a_{2} \beta_{z^{\prime}}-a_{4} \gamma_{x}-a_{5} \gamma_{y}+a_{6}\left(\alpha_{x}+\beta_{y}\right)-2 a_{7} \gamma_{h}=-a_{6} \Lambda \\
a_{1} \alpha_{h}+a_{2} \beta_{h}+a_{3} \gamma_{h}-a_{4} \beta_{z^{\prime}}+a_{5} \alpha_{z^{\prime}}-a_{6} \alpha_{y^{\prime}}=a_{4} \bar{\beta}_{z^{\prime}}+a_{5} \bar{\alpha}_{z^{\prime}}+a_{6} \bar{\alpha}_{y^{\prime}}
\end{array}\right.
$$

has a solution with respect to the variables

$$
\alpha_{x}^{a}, \beta_{x}^{a}, \gamma_{x}^{a}, \alpha_{y}^{a}, \beta_{y}^{a}, \gamma_{y}^{a}, \alpha_{z}^{a}, \beta_{z}^{a}, \alpha_{y^{\prime}}^{a}, \alpha_{z^{\prime}}^{a}, \beta_{z^{\prime}}^{a}, \alpha_{h}^{a}, \beta_{h}^{a}, \gamma_{h}^{a}
$$

then the linear operator, defined by the matrix $A^{\prime \prime \prime}$ is a local derivation. The main matrix of this system we can write as follows

$$
\left(\begin{array}{cccccccccccccc}
\alpha_{x} & \alpha_{y} & \alpha_{z} & \alpha_{y^{\prime}} & \alpha_{z^{\prime}} & \alpha_{h} & \beta_{x} & \beta_{y} & \beta_{z} & \beta_{z^{\prime}} & \beta_{h} & \gamma_{x} & \gamma_{y} & \gamma_{h} \\
a_{1} & 0 & 0 & 0 & 0 & 0 & a_{2} & 0 & 0 & 2 a_{7} & -a_{6} & a_{3} & 0 & a_{5} \\
0 & a_{1} & 0 & 0 & -2 a_{7} & a_{6} & 0 & a_{2} & 0 & 0 & 0 & 0 & a_{3} & -a_{4} \\
-a_{3} & 0 & a_{1} & 2 a_{7} & 0 & -a_{5} & 0 & -a_{3} & a_{2} & 0 & a_{4} & 0 & 0 & 0 \\
-a_{4} & -a_{5} & -a_{6} & -a_{2} & -a_{3} & -2 a_{7} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & a_{1} & 0 & 0 & -a_{4} & -a_{5} & -a_{6} & -a_{3} & -2 a_{7} & 0 & 0 & 0 \\
a_{6} & 0 & 0 & 0 & a_{1} & 0 & 0 & a_{6} & 0 & a_{2} & 0 & -a_{4} & -a_{5} & -2 a_{7} \\
0 & 0 & 0 & -a_{6} & a_{5} & a_{1} & 0 & 0 & 0 & -a_{4} & a_{2} & 0 & 0 & a_{3}
\end{array}\right)
$$

We will need the following matrix

$$
\left(\begin{array}{ccccccc}
\Lambda & \alpha_{y^{\prime}} & \alpha_{z^{\prime}} & \alpha_{h} & \beta_{z^{\prime}} & \beta_{h} & \gamma_{h} \\
0 & 0 & 0 & 0 & -2 a_{7}-a_{6} & a_{5} \\
0 & 0 & -2 a_{7} & a_{6} & 0 & 0 & -a_{4} \\
a_{3} & -2 a_{7} & 0 & -a_{5} & 0 & a_{4} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-a_{6} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & a_{6} & a_{5} & 0 & a_{4} & 0 & 0
\end{array}\right)
$$

from the right part of this system of linear equations.
We replace the 4-th row to the below of the matrices and vanish the $(7,1)$-th component of the first matrix:

$$
\left(\begin{array}{cccccccccccccc}
\alpha_{x} & \alpha_{y} & \alpha_{z} & \alpha_{y^{\prime}} & \alpha_{z^{\prime}} & \alpha_{h} & \beta_{x} & \beta_{y} & \beta_{z} & \beta_{z^{\prime}} & \beta_{h} & \gamma_{x} & \gamma_{y} & \gamma_{h} \\
a_{1} & 0 & 0 & 0 & 0 & 0 & a_{2} & 0 & 0 & 2 a_{7} & -a_{6} & a_{3} & 0 & a_{5} \\
0 & a_{1} & 0 & 0 & -2 a_{7} & a_{6} & 0 & a_{2} & 0 & 0 & 0 & 0 & a_{3} & -a_{4} \\
-a_{3} & 0 & a_{1} & 2 a_{7} & 0 & -a_{5} & 0 & -a_{3} & a_{2} & 0 & a_{4} & 0 & 0 & 0 \\
0 & 0 & 0 & a_{1} & 0 & 0 & -a_{4} & -a_{5} & -a_{6} & -a_{3} & -2 a_{7} & 0 & 0 & 0 \\
a_{6} & 0 & 0 & 0 & a_{1} & 0 & 0 & a_{6} & 0 & a_{2} & 0 & -a_{4} & -a_{5} & -2 a_{7} \\
0 & 0 & 0 & -a_{6} & a_{5} & a_{1} & 0 & 0 & 0 & -a_{4} & a_{2} & 0 & 0 & a_{3} \\
0 & -a_{5} & -a_{6} & -a_{2} & -a_{3} & -2 a_{7} & \frac{a_{4}}{a_{1}} a_{2} & 0 & 0 & \frac{a_{4}}{a_{1}} 2 a_{7} & -\frac{a_{4}}{a_{1}} a_{6} & \frac{a_{4}}{a_{1}} a_{3} & 0 & \frac{a_{4}}{a_{1}} a_{5}
\end{array}\right)
$$

$$
\left(\begin{array}{ccccccc}
\Lambda & \alpha_{y^{\prime}} & \alpha_{z^{\prime}} & \alpha_{h} & \beta_{z^{\prime}} & \beta_{h} & \gamma_{h} \\
0 & 0 & 0 & 0 & -2 a_{7} & -a_{6} & a_{5} \\
0 & 0 & -2 a_{7} & a_{6} & 0 & 0 & -a_{4} \\
a_{3} & -2 a_{7} & 0 & -a_{5} & 0 & a_{4} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-a_{6} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & a_{6} & a_{5} & 0 & a_{4} & 0 & 0 \\
0 & 0 & 0 & 0 & -2 \frac{a_{4}}{a_{1}} a_{7} & -\frac{a_{4}}{a_{1}} a_{6} & \frac{a_{4}}{a_{1}} a_{5}
\end{array}\right)
$$

and so on. Thus, the last 7-th row of the matrices vanishes and we have

$$
\begin{aligned}
& \left(\begin{array}{cccccccccccccc}
\alpha_{x} & \alpha_{y} & \alpha_{z} & \alpha_{y^{\prime}} & \alpha_{z^{\prime}} & \alpha_{h} & \beta_{x} & \beta_{y} & \beta_{z} & \beta_{z^{\prime}} & \beta_{h} & \gamma_{x} & \gamma_{y} & \gamma_{h} \\
a_{1} & 0 & 0 & 0 & 0 & 0 & a_{2} & 0 & 0 & 2 a_{7} & -a_{6} & a_{3} & 0 & a_{5} \\
0 & a_{1} & 0 & 0 & -2 a_{7} & a_{6} & 0 & a_{2} & 0 & 0 & 0 & 0 & a_{3} & -a_{4} \\
-a_{3} & 0 & a_{1} & 2 a_{7} & 0 & -a_{5} & 0 & -a_{3} & a_{2} & 0 & a_{4} & 0 & 0 & 0 \\
0 & 0 & 0 & a_{1} & 0 & 0 & -a_{4} & -a_{5} & -a_{6} & -a_{3} & -2 a_{7} & 0 & 0 & 0 \\
a_{6} & 0 & 0 & 0 & a_{1} & 0 & 0 & a_{6} & 0 & a_{2} & 0 & -a_{4}-a_{5} & -2 a_{7} \\
0 & 0 & 0 & -a_{6} & a_{5} & a_{1} & 0 & 0 & 0 & -a_{4} & a_{2} & 0 & 0 & a_{3} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& \\
& \left(\begin{array}{ccccccccc}
\Lambda & \alpha_{y^{\prime}} & \alpha_{z^{\prime}} & \alpha_{h} & \beta_{z^{\prime}} & \beta_{h} & \gamma_{h} \\
0 & 0 & 0 & 0 & -2 a_{7} & -a_{6} & a_{5} \\
0 & 0 & -2 a_{7} & a_{6} & 0 & 0 & -a_{4} \\
a_{3} & -2 a_{7} & 0 & -a_{5} & 0 & a_{4} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-a_{6} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & a_{6} & a_{5} & 0 & a_{4} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

It is not hard to see that the appropriate system of linear equations has solution for any $a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}$ in \mathbb{F}.

Since x, y and z are symmetric with respect to the multiplication we have similarly calculations for $a_{2} \neq 0, a_{3} \neq 0$.

Thus, we may consider the case $a_{1}=a_{2}=a_{3}=0$. In this case we get

$$
\begin{gathered}
\left(\begin{array}{cccccccccccccc}
\alpha_{x} & \alpha_{y} & \alpha_{z} & \alpha_{y^{\prime}} & \alpha_{z^{\prime}} & \alpha_{h} & \beta_{x} & \beta_{y} & \beta_{z} & \beta_{z^{\prime}} & \beta_{h} & \gamma_{x} & \gamma_{y} & \gamma_{h} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 a_{7} & -a_{6} & 0 & 0 & a_{5} \\
0 & 0 & 0 & 0 & -2 a_{7} & a_{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -a_{4} \\
0 & 0 & 0 & 2 a_{7} & 0 & -a_{5} & 0 & 0 & 0 & 0 & a_{4} & 0 & 0 & 0 \\
-a_{4} & -a_{5} & -a_{6} & 0 & 0 & -2 a_{7} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -a_{4} & -a_{5} & -a_{6} & 0 & -2 a_{7} & 0 & 0 & 0 \\
a_{6} & 0 & 0 & 0 & 0 & 0 & 0 & a_{6} & 0 & 0 & 0 & -a_{4} & -a_{5} & -2 a_{7} \\
0 & 0 & 0 & -a_{6} & a_{5} & 0 & 0 & 0 & 0 & -a_{4} & 0 & 0 & 0 & 0
\end{array}\right) \\
\\
\left(\begin{array}{ccccccccc}
\Lambda & \alpha_{y^{\prime}} & \alpha_{z^{\prime}} & \alpha_{h} & \beta_{z^{\prime}} & \beta_{h} & \gamma_{h} \\
0 & 0 & 0 & 0 & -2 a_{7}-a_{6} & a_{5} \\
0 & 0 & -2 a_{7} & a_{6} & 0 & 0 & -a_{4} \\
0 & -2 a_{7} & 0 & -a_{5} & 0 & a_{4} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-a_{6} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & a_{6} & a_{5} & 0 & a_{4} & 0 & 0
\end{array}\right)
\end{gathered}
$$

Now, suppose that $a_{4} \neq 0$. Then, preforming some replacements, we get

$$
\begin{gathered}
\left(\begin{array}{cccccccccccccc}
\alpha_{x} & \gamma_{h} & \beta_{x} & \beta_{z^{\prime}} & \gamma_{x} & \beta_{h} & \alpha_{z} & \beta_{y} & \beta_{z} & \alpha_{y^{\prime}} & \alpha_{h} & \alpha_{z^{\prime}} & \gamma_{y} & \alpha_{y} \\
0 & a_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & a_{6} & -2 a_{7} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & a_{4} & 0 & 0 & 0 & 2 a_{7} & -a_{5} & 0 & 0 & 0 \\
-a_{4} & 0 & 0 & 0 & 0 & 0 & -a_{6} & 0 & 0 & 0 & -2 a_{7} & 0 & 0 & -a_{5} \\
0 & 0 & -a_{4} & 0 & 0 & -2 a_{7} & 0 & -a_{5} & -a_{6} & 0 & 0 & 0 & 0 & 0 \\
a_{6} & -2 a_{7} & 0 & 0 & -a_{4} & 0 & 0 & a_{6} & 0 & 0 & 0 & 0 & -a_{5} & 0 \\
0 & 0 & 0 & -a_{4} & 0 & 0 & 0 & 0 & 0 & -a_{6} & 0 & a_{5} & 0 & 0 \\
0 & a_{5} & 0 & 2 a_{7} & 0 & -a_{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
\\
\left(\begin{array}{cccccccc}
\Lambda & \alpha_{y^{\prime}} & \alpha_{z^{\prime}} & \alpha_{h} & \beta_{z^{\prime}} & \beta_{h} & \gamma_{h} \\
0 & 0 & -2 a_{7} & a_{6} & 0 & 0 & -a_{4} \\
0 & -2 a_{7} & 0 & -a_{5} & 0 & a_{4} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-a_{6} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & a_{6} & a_{5} & 0 & a_{4} & 0 & 0 \\
0 & 0 & 0 & 0 & -2 a_{7} & -a_{6} & a_{5}
\end{array}\right)
\end{gathered}
$$

Now we replace some columns:

$$
\begin{gathered}
\left(\begin{array}{cccccccccccccc}
\gamma_{h} & \beta_{h} & \alpha_{x} & \beta_{z^{\prime}} & \gamma_{x} & \beta_{x} & \alpha_{z} & \beta_{y} & \beta_{z} & \alpha_{y^{\prime}} & \alpha_{h} & \alpha_{z^{\prime}} & \gamma_{y} & \alpha_{y} \\
a_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & a_{6} & -2 a_{7} & 0 & 0 \\
0 & a_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 a_{7} & -a_{5} & 0 & 0 & 0 \\
0 & 0 & -a_{4} & 0 & 0 & 0 & -a_{6} & 0 & 0 & 0 & -2 a_{7} & 0 & 0 & -a_{5} \\
0 & 0 & 0 & -a_{4} & 0 & 0 & 0 & 0 & 0 & -a_{6} & 0 & a_{5} & 0 & 0 \\
-2 a_{7} & 0 & a_{6} & 0 & -a_{4} & 0 & 0 & a_{6} & 0 & 0 & 0 & 0 & -a_{5} & 0 \\
0 & -2 a_{7} & 0 & 0 & 0 & -a_{4} & 0 & -a_{5}-a_{6} & 0 & 0 & 0 & 0 & 0 \\
a_{5} & -a_{6} & 0 & 2 a_{7} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
\\
\left(\begin{array}{ccccccccc}
\Lambda & \alpha_{y^{\prime}} & \alpha_{z^{\prime}} & \alpha_{h} & \beta_{z^{\prime}} & \beta_{h} & \gamma_{h} \\
0 & 0 & -2 a_{7} & a_{6} & 0 & 0 & -a_{4} \\
0 & -2 a_{7} & 0 & -a_{5} & 0 & a_{4} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & a_{6} & a_{5} & 0 & a_{4} & 0 & 0 \\
-a_{6} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -2 a_{7}-a_{6} & a_{5}
\end{array}\right)
\end{gathered}
$$

It is not difficult to see that the last 7-th row of the matrix can be vanished. It is not hard to see that the appropriate system of linear equations has solution for any a_{5}, a_{6}, a_{7} in \mathbb{F}.

Since x^{\prime}, y^{\prime} and z^{\prime} are symmetric in the table of multiplication we have similarly calculations for $a_{5} \neq 0, a_{6} \neq 0$.

Thus, we may consider the case $a_{1}=a_{2}=a_{3}=a_{4}=a_{5}=a_{6}=0$. In this case we get

$$
\begin{gathered}
\left(\begin{array}{cccccccccccccc}
\alpha_{x} & \alpha_{y} & \alpha_{z} & \alpha_{y^{\prime}} & \alpha_{z^{\prime}} & \alpha_{h} & \beta_{x} & \beta_{y} & \beta_{z} & \beta_{z^{\prime}} & \beta_{h} & \gamma_{x} & \gamma_{y} & \gamma_{h} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 a_{7} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -2 a_{7} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 a_{7} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -2 a_{7} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 a_{7} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 a_{7} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
\left.\qquad \begin{array}{cccccccccc}
\Lambda & \alpha_{y^{\prime}} & \alpha_{z^{\prime}} & \alpha_{h} & \beta_{z^{\prime}} & \beta_{h} & \gamma_{h} \\
0 & 0 & 0 & 0 & -2 a_{7} & 0 & 0 \\
0 & 0 & -2 a_{7} & 0 & 0 & 0 & 0 \\
0 & -2 a_{7} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),
\end{gathered}
$$

that is, we have

$$
\left\{\begin{array}{l}
2 a_{7} \beta_{z^{\prime}}=-2 a_{7} \bar{\beta}_{z^{\prime}} \\
-2 a_{7} \alpha_{z^{\prime}}=-2 a_{7} \\
2 a_{7} \alpha_{y^{\prime}}=-2 a_{7} \bar{\alpha}_{y^{\prime}} \\
-2 a_{7} \alpha_{h}=0 \\
-2 a_{7} \beta_{h}=0 \\
-2 a_{7} \gamma_{h}=0
\end{array}\right.
$$

The last system of linear equation always has a solution. Hence, the system of linear equation (2.1) always has a solution. Therefore, the linear operator, defined by the matrix $A^{\prime \prime \prime}$ is a local derivation.

Item (2) of the theorem follows by Proposition 1.2. This completes the proof.

EXAMPLE 2.2. Let ∇ be a linear operator on \mathbb{M}_{7} with the nonzero matrix

$$
\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & \bar{\gamma}_{h} & -\bar{\beta}_{h} & -2 \bar{\beta}_{z^{\prime}} \\
0 & 0 & 0 & -\bar{\gamma}_{h} & 0 & \bar{\alpha}_{h} & -2 \bar{\alpha}_{z^{\prime}} \\
0 & 0 & \Lambda & \bar{\beta}_{h} & -\bar{\alpha}_{h} & 0 & -2 \bar{\alpha}_{y^{\prime}} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -\Lambda & 0 \\
0 & 0 & 0 & \bar{\beta}_{z^{\prime}} & \bar{\alpha}_{z^{\prime}} & \bar{\alpha}_{y^{\prime}} & 0
\end{array}\right)
$$

where $\bar{\alpha}_{y^{\prime}}, \bar{\alpha}_{z^{\prime}}, \bar{\alpha}_{h}, \bar{\beta}_{z^{\prime}}, \bar{\beta}_{h}, \bar{\gamma}_{h}, \Lambda$ are elements in the field \mathbb{F}. Then, by Theorem 2.1, ∇ is a local derivation which is not a derivation.

For example, the linear operator with the nonzero matrix

$$
\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

is a local derivation which is not a derivation.

3. 2-Local derivations of \mathbb{M}_{7}

Let \mathbb{M} be an algebra. A (not necessary linear) map $\Delta: \mathbb{M} \rightarrow \mathbb{M}$ is called a 2-local derivation if for any two elements $x, y \in \mathbb{M}$ there exists a derivation $D_{x, y}: \mathbb{M} \rightarrow \mathbb{M}$ such that $\Delta(x)=D_{x, y}(x), \Delta(y)=D_{x, y}(y)$. The following theorem was proved by Sh.Ayupov, A.Elduque and K.Kudaybergenov in [4]. Here we give a direct proof of this theorem.

THEOREM 3.1. Each 2-local derivation of \mathbb{M}_{7} is a derivation.
Proof. Let \triangle be an arbitrary 2-local derivation of \mathbb{M}_{7}. By definition, for every $a, b \in \mathbb{M}_{7}$ there exists a derivation $D_{a, b}$ of \mathbb{M}_{7} such that

$$
\triangle(a)=D_{a, b}(a), \quad \triangle(b)=D_{a, b}(b)
$$

By Proposition 1.2, the derivation $D_{a, b}$ has the following matrix form:

$$
A^{a, b}=\left(\begin{array}{ccccccc}
\alpha_{x}^{a b} & \beta_{x}^{a b} & \gamma_{x}^{a b} & 0 & \gamma_{h}^{a b} & -\beta_{h}^{a b} & 2 \beta_{z^{\prime}}^{a b} \\
\alpha_{y}^{a b} & \beta_{y}^{a b} & \gamma_{y}^{a b} & -\gamma_{h}^{a b} & 0 & \alpha_{h}^{a b} & -2 \alpha_{z^{\prime}}^{a b} \\
\alpha_{z}^{a b} & \beta_{z}^{a b} & -\alpha_{x}^{a b}-\beta_{y}^{a b} & \beta_{h}^{a b} & -\alpha_{h}^{a b} & 0 & 2 \alpha_{y^{\prime}}^{a b} \\
0 & -\alpha_{y^{\prime}}^{a b} & -\alpha_{z^{\prime}}^{a b} & -\alpha_{x}^{a b}-\alpha_{y}^{a b} & -\alpha_{z}^{a b} & -2 \alpha_{h}^{a b} \\
\alpha_{y^{\prime}}^{a b} & 0 & -\beta_{z^{\prime}}^{a b} & -\beta_{x}^{a b} & -\beta_{y}^{a b} & -\beta_{z}^{a b} & -2 \beta_{h}^{a b} \\
\alpha_{z^{\prime}}^{a b} & \beta_{z^{\prime}}^{a b} & 0 & -\gamma_{x}^{a b} & -\gamma_{y}^{a b} & \alpha_{x}^{a b}+\beta_{y}^{a b} & -2 \gamma_{h}^{a b} \\
\alpha_{h}^{a b} & \beta_{h}^{a b} & \gamma_{h}^{a b} & -\beta_{z^{\prime}}^{a b} & \alpha_{z^{\prime}}^{a b} & -\alpha_{y^{\prime}}^{a b} & 0
\end{array}\right) .
$$

Let $a=\lambda_{x} x+\lambda_{y} y+\lambda_{z} z+\lambda_{x^{\prime}} x^{\prime}+\lambda_{y^{\prime}} y^{\prime}+\lambda_{z^{\prime}} z^{\prime}+\lambda_{h} h$ be an arbitrary element from \mathbb{M}_{7}. For every $v \in \mathbb{M}_{7}$ there exists a derivation $D_{v, a}$ such that

$$
\triangle(v)=D_{v, a}(v), \quad \triangle(a)=D_{v, a}(a)
$$

Then from

$$
D_{h, v}(h)=D_{h, a}(h), v \in \mathbb{M}_{7}
$$

it follows that

$$
\begin{aligned}
& \beta_{z^{\prime}}^{h v} x-\alpha_{z^{\prime}}^{h v} y+\alpha_{y^{\prime}}^{h v} z-\alpha_{h}^{h v} x^{\prime}-\beta_{h}^{h v} y^{\prime}-\gamma_{h}^{h v} z^{\prime} \\
= & \beta_{z^{\prime}}^{h a} x-\alpha_{z^{\prime}}^{h a} y+\alpha_{y^{\prime}}^{h a} z-\alpha_{h}^{h a} x^{\prime}-\beta_{h}^{h a} y^{\prime}-\gamma_{h}^{h a} z^{\prime} .
\end{aligned}
$$

Hence,

$$
\begin{array}{ll}
\beta_{z^{\prime}}^{h v}=\beta_{z^{\prime}}^{h a}, \quad \alpha_{z^{\prime}}^{h v}=\alpha_{z^{\prime}}^{h a}, \quad \alpha_{y^{\prime}}^{h v}=\alpha_{y^{\prime}}^{h a}, \\
\alpha_{h}^{h v}=\alpha_{h}^{h a}, \quad \beta_{h}^{h v}=\beta_{h}^{h a}, \quad \gamma_{h}^{h v}=\gamma_{h}^{h a} .
\end{array}
$$

Then we can write

$$
A^{h, a}=\left(\begin{array}{ccccccc}
\alpha_{x}^{h a} & \beta_{x}^{h a} & \gamma_{x}^{h a} & 0 & \gamma_{h}^{h a} & -\beta_{h}^{h a} & 2 \beta_{z^{\prime}}^{h v} \\
\alpha_{y}^{h a} & \beta_{y}^{h a} & \gamma_{y}^{h a} & -\gamma_{h}^{h a} & 0 & \alpha_{h}^{h a} & -2 \alpha_{z^{\prime}}^{h v} \\
\alpha_{z}^{h a} & \beta_{z}^{h a} & -\alpha_{x}^{h a}-\beta_{y}^{h a} & \beta_{h}^{h a} & -\alpha_{h}^{h a} & 0 & 2 \alpha_{y^{\prime}}^{h v} \\
0 & -\alpha_{y^{\prime}}^{h a} & -\alpha_{z^{\prime}}^{h a} & -\alpha_{x}^{h a}-\alpha_{y}^{h a} & -\alpha_{z}^{h a} & -2 \alpha_{h}^{h v} \\
\alpha_{y^{\prime}}^{h a} & 0 & -\beta_{z^{\prime}}^{h a} & -\beta_{x}^{h a}-\beta_{y}^{h a} & -\beta_{z}^{h a} & -2 \beta_{h}^{h v} \\
\alpha_{z^{\prime}}^{h a} & \beta_{z^{\prime}}^{h a} & 0 & -\gamma_{x}^{h a} & -\gamma_{y}^{h a} & \alpha_{x}^{h a}+\beta_{y}^{h a} & -2 \gamma_{h}^{h \nu} \\
\alpha_{h}^{h \nu} & \beta_{h}^{h v} & \gamma_{h}^{h v} & -\beta_{z^{\prime}}^{h v} & \alpha_{z^{\prime}}^{h v} & -\alpha_{y^{\prime}}^{h v} & 0
\end{array}\right) .
$$

Hence,

$$
\begin{aligned}
& \triangle(a)=D_{h, a}(a)=\mu_{x}^{h a} x+\mu_{y}^{h a} y+\mu_{z}^{h a} z+\mu_{x^{\prime}}^{h a} x^{\prime}+\mu_{y^{\prime}}^{h a} y^{\prime} \mu_{z^{\prime}}^{h a} z^{\prime} \\
& \quad+\left(\alpha_{h}^{h v} \lambda_{x}+\beta_{h}^{h v} \lambda_{y}+\gamma_{h}^{h v} \lambda_{z}-\beta_{z^{\prime}}^{h v} \lambda_{x^{\prime}}+\alpha_{z^{\prime}}^{h v} \lambda_{y^{\prime}}-\alpha_{y^{\prime}}^{h v} \lambda_{z^{\prime}}\right) h,
\end{aligned}
$$

for some elements $\mu_{x}^{h a}, \mu_{y}^{h a}, \mu_{z}^{h a}, \mu_{x^{\prime}}^{h a}, \mu_{y^{\prime}}^{h a}, \mu_{z^{\prime}}^{h a} \in \mathbb{C}$. Similarly, from

$$
D_{x, v}(x)=D_{x, a}(x), v \in \mathbb{M}_{7}
$$

it follows that

$$
\begin{array}{lll}
\alpha_{x}^{x v}=\alpha_{x}^{x a}, & \alpha_{y}^{x v}=\alpha_{y}^{x a}, & \alpha_{z}^{x v}=\alpha_{z}^{x a}, \\
\alpha_{y^{\prime}}^{x v}=\alpha_{y^{\prime}}^{x a}, & \alpha_{z^{\prime}}^{x v}=\alpha_{z^{\prime}}^{x a}, & \alpha_{h}^{x v}=\alpha_{h}^{x a} .
\end{array}
$$

Then we can write

$$
\begin{gathered}
\triangle(a)=D_{x a}(a)=\mu_{x}^{x a} x+\mu_{y}^{x a} y+\mu_{z}^{x a} z \\
+\left(-\alpha_{y^{\prime}}^{x v} \lambda_{y}-\alpha_{z^{\prime}}^{x v} \lambda_{z}-\alpha_{x}^{x v} \lambda_{x^{\prime}}-\alpha_{y}^{x v} \lambda_{y^{\prime}}-\alpha_{z}^{x v} \lambda_{z^{\prime}}-2 \alpha_{h}^{x v} \lambda_{h}\right) x^{\prime} \\
+\mu_{y^{\prime}}^{x a} y^{\prime}+\mu_{z^{\prime}}^{x a} z^{\prime}+\mu_{h}^{x a} h
\end{gathered}
$$

for some elements $\mu_{x}^{x a}, \mu_{y}^{x a}, \mu_{z}^{x a}, \mu_{y^{\prime}}^{x a}, \mu_{z^{\prime}}^{x a}, \mu_{h}^{x a} \in \mathbb{C}$.
From

$$
D_{y, v}(y)=D_{y, a}(y), v \in \mathbb{M}_{7}
$$

it follows that

$$
\begin{array}{ll}
\beta_{x}^{y v}=\beta_{x}^{y a}, & \beta_{y}^{y v}=\beta_{y}^{y a}, \quad \beta_{z}^{y v}=\beta_{z}^{y a}, \\
\alpha_{y^{\prime}}^{y v}=\alpha_{y^{\prime}}^{y a}, \quad \beta_{z^{\prime}}^{y v}=\beta_{z^{\prime}}^{y a}, \quad \beta_{h}^{y v}=\beta_{h}^{y a} .
\end{array}
$$

Then we can write

$$
\begin{gathered}
\triangle(a)=D_{y a}(a)=\mu_{x}^{y a} x+\mu_{y}^{y a} y+\mu_{z}^{y a} z+\mu_{x^{\prime}}^{y a} x^{\prime} \\
+\left(\alpha_{y^{\prime}}^{y v} \lambda_{x}-\beta_{z^{\prime}}^{y v} \lambda_{z}-\beta_{x}^{y v} \lambda_{x^{\prime}}-\beta_{y}^{y v} \lambda_{y^{\prime}}-\beta_{z}^{y v} \lambda_{z^{\prime}}-2 \beta_{h}^{y v} \lambda_{h}\right) y^{\prime} \\
+\mu_{z^{\prime}}^{y a} z^{\prime}+\mu_{h}^{y a} h
\end{gathered}
$$

for some elements $\mu_{x}^{y a}, \mu_{y}^{y a}, \mu_{z}^{y a}, \mu_{x^{\prime}}^{y a}, \mu_{z^{\prime}}^{y a}, \mu_{h}^{y a} \in \mathbb{C}$.
From

$$
D_{z, v}(z)=D_{z, a}(z), v \in \mathbb{M}_{7}
$$

it follows that

$$
\begin{gathered}
\gamma_{x}^{z v}=\gamma_{x}^{z a}, \quad \gamma_{y}^{z y}=\gamma_{y}^{z a}, \quad \alpha_{x}^{z v}+\beta_{y}^{z v}=\alpha_{x}^{z a}+\beta_{y}^{z a}, \\
\alpha_{z^{\prime}}^{z y}=\alpha_{z^{\prime}}^{z a}, \quad \beta_{z^{\prime}}^{z v}=\beta_{z^{\prime}}^{z a}, \quad \gamma_{h}^{z y}=\gamma_{h}^{z a} .
\end{gathered}
$$

Then we can write

$$
\begin{gathered}
\triangle(a)=D_{z a}(a)=\mu_{x}^{z a} x+\mu_{y}^{z a} y+\mu_{z}^{z a} z+\mu_{x^{\prime}}^{z a} x^{\prime}+\mu_{y^{\prime}}^{z a} y^{\prime} \\
+\left(\alpha_{z^{\prime}}^{z \nu} \lambda_{x}+\beta_{z^{\prime}}^{z y} \lambda_{y}-\gamma_{x}^{z \nu} \lambda_{x^{\prime}}-\gamma_{y}^{z y} \lambda_{y^{\prime}}+\left(\alpha_{x}^{z v}+\beta_{y}^{z v}\right) \lambda_{z^{\prime}}-2 \gamma_{h}^{z \nu} \lambda_{h}\right) z^{\prime} \\
+\mu_{h}^{z a} h
\end{gathered}
$$

for some elements $\mu_{x}^{z a}, \mu_{y}^{z a}, \mu_{z}^{z a}, \mu_{x^{\prime}}^{z a}, \mu_{y^{\prime}}^{z a}, \mu_{h}^{z a} \in \mathbb{C}$.
From

$$
D_{x^{\prime}, v}\left(x^{\prime}\right)=D_{x^{\prime}, a}\left(x^{\prime}\right), v \in \mathbb{M}_{7}
$$

it follows that

$$
\begin{array}{lll}
\gamma_{h}^{\gamma^{\prime} v}=\gamma_{h}^{\gamma^{\prime} a}, & \beta_{h}^{\gamma^{\prime} v}=\beta_{h}^{\gamma^{\prime} a}, & \alpha_{x}^{\gamma^{\prime} v}=\alpha_{x}^{\gamma^{\prime} a}, \\
\beta_{x}^{\alpha^{\prime} v}=\beta_{x}^{\gamma^{\gamma^{\prime}},} \quad \gamma_{x}^{\gamma^{\prime} v}=\gamma_{x}^{\gamma^{\prime} a}, & \beta_{z^{\prime}}^{\gamma^{\prime} v}=\beta_{z^{\prime}}^{\gamma^{\prime} a} .
\end{array}
$$

Then we can write

$$
\begin{gathered}
\Delta(a)=D_{x^{\prime} a}(a)=\left(\alpha_{x}^{\gamma^{\prime} v} \lambda_{x}+\beta_{x}^{\left.\gamma^{\gamma^{\prime}} \lambda_{y}-\gamma_{x}^{\gamma^{\prime} v} \lambda_{z}+\gamma_{h}^{\gamma^{\prime} \nu} \lambda_{y^{\prime}}-\beta_{h}^{\gamma^{\prime} v} \lambda_{z^{\prime}}+2 \beta_{z^{\prime}}^{\gamma^{\prime} \nu} \lambda_{h}\right) x}\right. \\
+\mu_{y}^{\gamma^{\prime} a} y+\mu_{z}^{\gamma^{\prime}} a_{z}++\mu_{x^{\prime}}^{\gamma^{\prime} a} x^{\prime}+\mu_{y^{\prime}}^{\gamma^{\prime}} y^{\prime}+\mu_{z^{\prime}}^{\gamma^{\prime} a} z^{\prime}+\mu_{h}^{\gamma^{\prime} a} h
\end{gathered}
$$

for some elements $\mu_{y}^{\gamma^{\gamma^{\prime}}, ~} \mu_{z}^{x^{\prime} a}, \mu_{x^{x^{\prime}},}^{x^{\prime}}, \mu_{y^{\prime}}^{x^{\prime} a}, \mu_{z^{\prime}}^{\gamma^{\prime} a}, \mu_{h}^{\gamma^{\prime} a} \in \mathbb{C}$.
From

$$
D_{y^{\prime}, v}\left(y^{\prime}\right)=D_{y^{\prime}, a}\left(y^{\prime}\right), v \in \mathbb{M}_{7}
$$

it follows that

$$
\begin{array}{lll}
\gamma_{h}^{y^{\prime} v}=\gamma_{h}^{y^{\prime} a}, & \alpha_{h}^{y^{\prime} v}=\alpha_{h}^{y^{\prime} a}, & \alpha_{y}^{y^{\prime} v}=\alpha_{y}^{y^{\prime} a}, \\
\beta_{y}^{y^{\prime} v}=\beta_{y}^{y^{\prime} a}, & \gamma_{y}^{y^{\prime} v}=\gamma_{y}^{y^{\prime} a}, & \alpha_{z^{\prime}}^{y^{\prime} v}=\alpha_{z^{\prime}}^{y^{\prime} a} .
\end{array}
$$

Then we can write

$$
\begin{aligned}
\triangle(a)=D_{y^{\prime} a}(a)= & \mu_{x}^{y^{\prime} a} x+\left(\alpha_{y}^{y^{\prime} v} \lambda_{x}+\beta_{y}^{y^{\prime} v} \lambda_{y}+\gamma_{y}^{y^{\prime} v} \lambda_{z}-\gamma_{h}^{y^{\prime} v} \lambda_{x^{\prime}}+\alpha_{h}^{y^{\prime} v} \lambda_{z^{\prime}}-2 \alpha_{z^{\prime}}^{y^{\prime} v} \lambda_{h}\right) y \\
& +\mu_{z}^{y^{\prime} a} z++\mu_{x^{\prime}}^{y^{\prime} a} x^{\prime}+\mu_{y^{\prime}}^{y^{\prime} a} y^{\prime}+\mu_{z^{\prime}}^{y^{\prime}} z^{\prime}+\mu_{h}^{y^{\prime} a} h
\end{aligned}
$$

for some elements $\mu_{x}^{y^{\prime} a}, \mu_{z}^{y^{\prime} a}, \mu_{x^{\prime}}^{y^{\prime} a}, \mu_{y^{\prime}}^{y^{\prime} a}, \mu_{z^{\prime}}^{y^{\prime} a}, \mu_{h}^{y^{\prime} a} \in \mathbb{C}$.
From

$$
D_{z^{\prime}, v}\left(z^{\prime}\right)=D_{z^{\prime}, a}\left(z^{\prime}\right), v \in \mathbb{M}_{7}
$$

it follows that

$$
\begin{gathered}
\beta_{h}^{z^{\prime} v}=\beta_{h}^{z^{\prime} a}, \quad \alpha_{h}^{z^{z^{\prime} v}}=\alpha_{h}^{z^{\prime} a}, \quad \alpha_{z}^{z^{\prime} v}=\alpha_{z}^{z^{\prime} a}, \\
\beta_{z}^{z^{\prime} v}=\beta_{z}^{z^{\prime} a}, \quad \alpha_{x}^{z^{\prime} v}+\beta_{y}^{z^{\prime} v}=\alpha_{x}^{z^{\prime} a}+\beta_{y}^{z^{\prime} a}, \quad \alpha_{y^{\prime}}^{z^{\prime} v}=\alpha_{y^{\prime}}^{z^{\prime} a} .
\end{gathered}
$$

Then we can write

$$
\begin{gathered}
\triangle(a)=D_{z^{\prime} a}(a)=\mu_{x}^{z^{\prime} a} x+\mu_{y}^{z^{\prime} a} y \\
+\left(\alpha_{z}^{z^{\prime} v} \lambda_{x}+\beta_{z}^{z^{\prime} v} \lambda_{y}-\left(\alpha_{x}^{z^{\prime} v}+\beta_{y}^{z^{\prime} v}\right) \lambda_{z}-\beta_{h}^{z^{\prime} v} \lambda_{x^{\prime}}-\alpha_{h}^{z^{\prime} v} \lambda_{y^{\prime}}+2 \alpha_{y^{\prime}}^{z^{\prime} v} \lambda_{h}\right) z \\
+\mu_{x^{\prime}}^{z^{\prime} a} x^{\prime}+\mu_{y^{\prime}}^{z^{\prime} a} y^{\prime}+\mu_{z^{\prime}}^{z^{\prime} a} z^{\prime}+\mu_{h}^{z^{\prime} a} h
\end{gathered}
$$

for some elements $\mu_{x}^{z^{\prime} a}, \mu_{y}^{z^{\prime} a}, \mu_{x^{\prime}}^{z^{\prime} a}, \mu_{y^{\prime}}^{z^{\prime} a}, \mu_{z^{\prime}}^{z^{\prime} a}, \mu_{h}^{z^{\prime} a} \in \mathbb{C}$. Hence,

$$
\begin{align*}
& \triangle(a)= D_{h, a}(a)=D_{x, a}(a)=D_{y, a}(a)=D_{z, a}(a)=D_{x^{\prime} a}(a)=D_{y^{\prime}, a}(a)=D_{z^{\prime}, a}(a) \\
&=\left(\alpha_{x}^{x^{\prime} v_{1}} \lambda_{x}+\beta_{x}^{x^{\prime} v_{1}} \lambda_{y}-\gamma_{x}^{x^{\prime} v_{1}} \lambda_{z}+\gamma_{h}^{x^{\prime} v_{1}} \lambda_{y^{\prime}}-\beta_{h}^{x^{\prime} v_{1}} \lambda_{z^{\prime}}+2 \beta_{z^{\prime}}^{x^{\prime} v_{1}} \lambda_{h}\right) x \\
&+\left(\alpha_{y}^{y^{y^{\prime} v_{2}}} \lambda_{x}+\beta_{y}^{y^{\prime} v_{2}} \lambda_{y}+\gamma_{y}^{y^{\prime} v_{2}} \lambda_{z}-\gamma_{h}^{y^{\prime} v_{2}} \lambda_{x^{\prime}}+\alpha_{h}^{y^{\prime} v_{2}} \lambda_{z^{\prime}}-2 \alpha_{z^{\prime}}^{y^{\prime} v_{2}} \lambda_{h}\right) y \\
&+\left(\alpha_{z}^{z^{\prime} v_{3}} \lambda_{x}+\beta_{z}^{z^{\prime} v_{3}} \lambda_{y}-\left(\alpha_{x}^{z^{\prime} v_{3}}+\beta_{y}^{z^{\prime} v_{3}}\right) \lambda_{z}-\beta_{h}^{z^{\prime} v_{3}} \lambda_{x^{\prime}}-\alpha_{h}^{z^{\prime} v_{3}} \lambda_{y^{\prime}}+2 \alpha_{y^{\prime}}^{z^{\prime} v_{3}} \lambda_{h}\right) z \\
&+\left(-\alpha_{y^{\prime}}^{v_{4} v_{4}} \lambda_{y}-\alpha_{z^{\prime}}^{x v_{4}} \lambda_{z}-\alpha_{x}^{x v_{4}} \lambda_{x^{\prime}}-\alpha_{y}^{x v_{4}} \lambda_{y^{\prime}}-\alpha_{z}^{x v_{4}} \lambda_{z^{\prime}}-2 \alpha_{h}^{x v_{4}} \lambda_{h}\right) x^{\prime} \\
&+\left(\alpha_{y^{\prime}}^{y v_{5}} \lambda_{x}-\beta_{z^{\prime}}^{y v_{5}} \lambda_{z}-\beta_{x}^{y v_{5}} \lambda_{x^{\prime}}-\beta_{y}^{y_{5}} \lambda_{y^{\prime}}-\beta_{z}^{y v_{5}} \lambda_{z^{\prime}}-2 \beta_{h}^{y v_{5}} \lambda_{h}\right) y^{\prime} \\
&+\left(\alpha_{z^{\prime}}^{z v_{6}} \lambda_{x}+\beta_{z^{\prime}}^{z v_{6}} \lambda_{y}-\gamma_{x}^{z v_{6}} \lambda_{x^{\prime}}-\gamma_{y}^{z v_{6}} \lambda_{y^{\prime}}+\left(\alpha_{x}^{z v_{6}}+\beta_{y}^{z v}\right) \lambda_{z^{\prime}}-2 \gamma_{h}^{z v_{6}} \lambda_{h}\right) z^{\prime} \\
&+\left(\alpha_{h}^{h v_{7}} \lambda_{x}+\beta_{h}^{h v_{7}} \lambda_{y}+\gamma_{h}^{h v_{7}} \lambda_{z}-\beta_{z^{\prime}}^{h v_{7}} \lambda_{x^{\prime}}+\alpha_{z^{\prime}}^{h v_{7}} \lambda_{y^{\prime}}-\alpha_{y^{\prime}}^{h v_{7}} \lambda_{z^{\prime}}\right) h \tag{1.1}
\end{align*}
$$

for any $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7} \in \mathbb{M}_{7}$. Note that the components in this last sum do not depend on the element a. Therefore the map \triangle is linear and it is a local derivation.

Now, by Theorem 2.1, the linear map \triangle has the following matrix

$$
A=\left(\begin{array}{ccccccc}
\alpha_{x} & \beta_{x} & \gamma_{x} & 0 & \bar{\gamma}_{h} & -\bar{\beta}_{h} & 2 \bar{\beta}_{z^{\prime}} \\
\alpha_{y} & \beta_{y} & \gamma_{y} & -\bar{\gamma}_{h} & 0 & \bar{\alpha}_{h} & -2 \bar{\alpha}_{z^{\prime}} \\
\alpha_{z} & \beta_{z} & -\Lambda & \bar{\beta}_{h} & -\bar{\alpha}_{h} & 0 & 2 \bar{\alpha}_{y^{\prime}} \\
0 & -\alpha_{y^{\prime}} & -\alpha_{z^{\prime}} & -\alpha_{x} & -\alpha_{y} & -\alpha_{z} & -2 \alpha_{h} \\
\alpha_{y^{\prime}} & 0 & -\beta_{z^{\prime}} & -\beta_{x} & -\beta_{y} & -\beta_{z} & -2 \beta_{h} \\
\alpha_{z^{\prime}} & \beta_{z^{\prime}} & 0 & -\gamma_{x} & -\gamma_{y} & \Lambda & -2 \gamma_{h} \\
\alpha_{h} & \beta_{h} & \gamma_{h} & -\bar{\beta}_{z^{\prime}} & \bar{\alpha}_{z^{\prime}} & -\bar{\alpha}_{y^{\prime}} & 0
\end{array}\right) .
$$

From

$$
A^{z, x^{\prime}} \bar{z}=A \bar{z}, \quad A^{z, x^{\prime}} \overline{x^{\prime}}=A \overline{x^{\prime}}
$$

it follows that

$$
\gamma_{h}=\gamma_{h}^{z, x^{\prime}}=\bar{\gamma}_{h},
$$

i.e.,

$$
\gamma_{h}=\bar{\gamma}_{h} .
$$

Similarly, from

$$
A^{y, x^{\prime}} \bar{y}=A \bar{y}, \quad A^{y, x^{\prime}} \bar{x}^{\prime}=A \overline{x^{\prime}}
$$

it follows that

$$
\beta_{h}=\beta_{h}^{y, x^{\prime}}=\bar{\beta}_{h}
$$

i.e.,

$$
\beta_{h}=\bar{\beta}_{h} .
$$

and so on. Thus, we get

$$
\begin{gathered}
\bar{\alpha}_{h}=\alpha_{h}, \quad \bar{\alpha}_{y^{\prime}}=\alpha_{y^{\prime}}, \quad \bar{\alpha}_{z^{\prime}}=\alpha_{z^{\prime}} \\
\bar{\beta}_{z^{\prime}}=\beta_{z^{\prime}}, \quad \bar{\beta}_{h}=\beta_{h}, \quad \bar{\gamma}_{h}=\gamma_{h} .
\end{gathered}
$$

Hence, the linear map \triangle has the following matrix

$$
A=\left(\begin{array}{ccccccc}
\alpha_{x} & \beta_{x} & \gamma_{x} & 0 & \gamma_{h} & -\beta_{h} & 2 \beta_{z^{\prime}} \\
\alpha_{y} & \beta_{y} & \gamma_{y} & -\gamma_{h} & 0 & \alpha_{h} & -2 \alpha_{z^{\prime}} \\
\alpha_{z} & \beta_{z} & -\Lambda & \beta_{h} & -\alpha_{h} & 0 & 2 \alpha_{y^{\prime}} \\
0 & -\alpha_{y^{\prime}} & -\alpha_{z^{\prime}}-\alpha_{x}-\alpha_{y} & -\alpha_{z} & -2 \alpha_{h} \\
\alpha_{y^{\prime}} & 0 & -\beta_{z^{\prime}} & -\beta_{x} & -\beta_{y} & -\beta_{z} & -2 \beta_{h} \\
\alpha_{z^{\prime}} & \beta_{z^{\prime}} & 0 & -\gamma_{x} & -\gamma_{y} & \Lambda & -2 \gamma_{h} \\
\alpha_{h} & \beta_{h} & \gamma_{h} & -\beta_{z^{\prime}} & \alpha_{z^{\prime}} & -\alpha_{y^{\prime}} & 0
\end{array}\right) .
$$

Let

$$
A_{1}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -\Lambda^{\prime} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \Lambda^{\prime} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),
$$

where $\Lambda^{\prime}=\Lambda-\left(\alpha_{x}+\beta_{y}\right)$. Let D_{1} be the linear operator defined by the matrix $A-A_{1}$. By Proposition 1.2, D_{1} is a derivation. From this it follows that $\triangle^{\prime}=\triangle-D_{1}$ is a new local derivation with the matrix A_{1}.

We take

$$
\begin{gathered}
\Delta(z)=A_{1} \bar{z}=A^{z, x} \bar{z}=A^{z, y} \bar{z} \\
\Delta(x)=A_{1} \bar{x}=A^{z, x} \bar{x}, \quad \Delta(y)=A_{1} \bar{y}=A^{z, y} \bar{y}
\end{gathered}
$$

From this it follows that

$$
\Lambda=\alpha_{x}^{x, z}+\beta_{y}^{x, z}=\alpha_{x}^{y, z}+\beta_{y}^{y, z}
$$

and

$$
\alpha_{x}^{x, z}=0, \beta_{y}^{y, z}=0
$$

Hence,

$$
\begin{equation*}
\Lambda=\beta_{y}^{x, z}=\alpha_{x}^{y, z} \tag{1}
\end{equation*}
$$

Now, take

$$
\Delta(x+y)=\Delta(x)+\Delta(y)
$$

Then

$$
\begin{gathered}
\alpha_{y}^{x+y, x}+\beta_{y}^{x+y, x}=\alpha_{y}^{x, z}+\beta_{y}^{x, z}, \quad \alpha_{y}^{x, z}=\alpha_{y}^{x+y, x}=0, \quad \beta_{y}^{x+y, x}=\beta_{y}^{x, z} \\
\alpha_{y}^{x+y, x}+\beta_{y}^{x+y, x}=\alpha_{y}^{x, y}+\beta_{y}^{x, y}, \quad \alpha_{y}^{x, y}=\alpha_{y}^{x+y, x}=0, \quad \beta_{y}^{x+y, x}=\beta_{y}^{x, y}=0 .
\end{gathered}
$$

Hence,

$$
\beta_{y}^{x, z}=\beta_{y}^{x+y, x}=\beta_{y}^{x, y}=0
$$

By (1) we get

$$
\Lambda=0
$$

Therefore, $\Lambda=\alpha_{x}+\beta_{y}$ and \triangle is a derivation. This completes the proof.

4. Local and 2-local derivations of binary Lie algebras

The variety of binary Lie algebras was introduced in [21] and it is defined by the following property: each 2-generated subalgebra of a binary Lie algebra is a Lie algebra. It is known that the variety of Malcev and the variety of anticommutative $\mathfrak{C D}$-algebras are proper subvarieties of the variety of binary Lie algebras. On the other hand, it was proved that each complex finite-dimensional semisimple binary Lie algebra is Malcev [12] and each complex finite-dimensional semisimple Malcev algebra is a direct sum of some simple Lie algebras and some copies of \mathbb{M}_{7} [19]. It was proved that every 2 -local derivation of a complex finite-dimensional Lie algebra or \mathbb{M}_{7} is a derivation (see, [10] and Theorem 2.1). Hence, we have the following result.

COROLLARY 4.1. Let Ξ be a 2 -local derivation of a complex finite-dimensional semisimple binary Lie algebra. Then Ξ is a derivation.

REFERENCES

[1] Sh. Ayupov, F. Arzikulov, 2-Local derivations on semi-finite von Neumann algebras, Glasgow Mathematical Journal, 56 (2014), 9-12.
[2] Sh. Ayupov, F. Arzikulov, 2-Local derivations on associative and Jordan matrix rings over commutative rings, Linear Algebra and its Applications, 522 (2017), 28-50.
[3] Sh. Ayupov, F. Arzikulov, N. Umrzaqov, O. Nuriddinov, Description of 2-local derivations and automorphisms on finite-dimensional Jordan algebras, Linear and Multilinear Algebra (2020), doi:10.1080/03081087.2020.1845595.
[4] Sh. Ayupov, A. Elduque, K. Kudaybergenov, Local and 2-local derivations of Cayley algebras, arXiv:2105.08423 math.RA.
[5] Sh. Ayupov, K. Kudaybergenov, 2-Local derivations and automorphisms on B(H), Journal of Mathematical Analysis and Applications, 395 (2012), 15-18.
[6] Sh. Ayupov, K. Kudaybergenov, 2-Local derivations on von Neumann algebras, Positivity, 19 (2015), 445-455.
[7] Sh. Ayupov, K. Kudaybergenov, 2-Local automorphisms on finite-dimensional Lie algebras, Linear Algebra and its Applications, 507 (2016), 121-131.
[8] Sh. Ayupov, K. Kudaybergenov, Local derivations on finite-dimensional Lie algebras, Linear Algebra and its Applications, 493 (2016), 381-398.
[9] Sh. Ayupov, K. Kudaybergenov, B. Omirov, Local and 2-local derivations and automorphisms on simple Leibniz algebras, Bulletin of the Malaysian Mathematical Sciences Society, 43 (2020), 3, 2199-2234.
[10] Sh. Ayupov, K. Kudaybergenov, I. Rakhimov, 2-Local derivations on finite-dimensional Lie algebras, Linear Algebra and its Applications, 474 (2015) 1-11.
[11] M. Costantini, Local automorphisms of finite dimensional simple Lie algebras, Linear Algebra and its Applications, 562 (2019), 123-134.
[12] A. Grishkov, Structure and representations of binary-Lie algebras, Izvestiya: Mathematics, 44 (1980), 5, 999-1030.
[13] V. Filippov, On δ-derivations of prime alternative and Malcev algebras, Algebra and Logic, 39 (2000), 5, 354-358.
[14] R. KADISON, Local derivations, Journal of Algebra, 130 (1990), 2, 494-509.
[15] I. KAYGorodov, On $(n+1)$-ary derivations of simple n-ary Malcev algebras, St. Petersburg Mathematical Journal, 25 (2014), 4, 575-585.
[16] I. KAYGORODOV, YU. Popov, A characterization of nilpotent nonassociative algebras by invertible Leibniz-derivations, Journal of Algebra, 456 (2016), 323-347.
[17] M. Khrypchenko, Local derivations of finitary incidence algebras, Acta Mathematica Hungarica, 154 (2018), 1, 48-55.
[18] S. Kim, J. Kim, Local automorphisms and derivations on M_{n}, Proceedings of the American Mathematical Society, 132 (2004), 1389-1392.
[19] E. Kuzmin, Structure and representations of finite dimensional Malcev algebras, Quasigroups and Related Systems, 22 (2014) 97-132.
[20] Y. Lin, T. Wong, A note on 2-local maps, Proceedings of the Edinburgh Mathematical Society, 49 (2006), 701-708.
[21] A. MaL'CEV, Analytic loops, Matematicheskii Sbornik (in Russian), 36 (78) (1955), 569-576.
[22] P. ŠEMRL, Local automorphisms and derivations on $B(H)$, Proceedings of the American Mathematical Society, 125 (1997), 2677-2680.

F. Arzikulov
V. I. Romanovskiy Institute of Mathematics Uzbekistan Academy of Sciences Univesity Street, 9, Olmazor district, Tashkent, 100174, Uzbekistan

Department of Mathematics
Andijan State University
129, Universitet Street, Andijan, 170100, Uzbekistan
e-mail: arzikulovfn@rambler.ru
I. A. Karimjanov
V. I. Romanovskiy Institute of Mathematics
Uzbekistan Academy of Sciences
Univesity Street, 9, Olmazor district, Tashkent, 100174, Uzbekistan
and
Department of Mathematics
Andijan State University
129, Universitet Street, Andijan, 170100, Uzbekistan
e-mail: iqboli@gmail.com

[^0]: Mathematics subject classification (2020): 16W25, 46L57, 47B47, 17 C 65.
 Keywords and phrases: Jordan algebra, derivation, inner derivation, local inner derivation, Jordan algebra of matrices.

