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Abstract. Let A be an expansive dilation on Rn , and p(·) : Rn → (0, ∞) be a variable exponent

function satisfying the globally log-Hölder continuous condition. Let H
p(·)

A (Rn) be the variable
anisotropic Hardy space introduced by Liu [15]. In this paper, the authors obtain that the Fourier

transform of f ∈ H
p(·)

A (Rn) coincides with a continuous function F on Rn in the sense of
tempered distributions. As applications, the authors further conclude a higher order convergence
of the continuous function F at the origin and then give a variant of the Hardy-Littlewood
inequality in the setting of anisotropic Hardy spaces with variable exponents.

1. Introduction

As is known to all, the real-variable theory of Hardy space Hp(Rn) plays an im-
portant role in various fields of analysis and PDEs; see, for examples, [6, 12, 16, 20, 21,
22, 25]. A interesting and natural problem is the characterization of the Fourier trans-
form f̂ for f ∈Hp(Rn) . For examples, Coifman [5] characterized all f̂ via entire func-
tions of exponential type for n = 1, where f ∈Hp(R) with p∈ (0, 1] . Later, Taibleson
and Weiss [23] proved that, for p ∈ (0, 1] , the Fourier transform of f ∈ Hp(Rn) co-
incides with a continuous function F in the sense of tempered distributions, and there
exists a positive constant C , such that, for any x ∈ Rn ,

|F(x)| � C‖ f‖Hp(Rn)|x|n(1/p−1). (1.1)

In 2003, Bownik [2] introduced the anisotropic Hardy space Hp
A (Rn) with p ∈ (0, ∞)

and A being a general expansive matrix on Rn . In 2013, Bownik and Wang [3] further
extended inequalities (1.1) to the setting of Hardy space Hp

A(Rn) with p ∈ (0, 1] . In
2021, Huang et al. [13] established the inequalities (1.1) to the anisotropic mixed-norm
Hardy space H�p

�a (Rn) , where �p ∈ (0,1]n and �a ∈ [1, ∞)n .
On the other hand, variable exponent function spaces have their applications in

fluid dynamics [1], image processing [4], PDEs and variational calculus [9, 10, 11, 24,
25]. Let p(·) : Rn → (0, ∞) be a variable exponent function satisfying the globally
log-Hölder continuous condition (see Section 2 below for its definition). Recently,
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Cruz-Uribe et al. [9] and Nakai et al. [18] independently introduced the variable Hardy
space Hp(·)(Rn) and obtained their real-variable theory. Then Sawano [19], Yang et
al. [26] and Zhuo et al. [27] further contributed to the theory. Very recently, Liu et

al. [15] introduced the variable anisotropic Hardy space H
p(·)

A (Rn) associated with
a general expansive matrix A , and established its some real-variable characterizations

of H
p(·)

A (Rn) , respectively, in terms of the atomic, the maximal functions and the
Littlewood-Paley functions characterization.

Inspired by the previous works, it is a natural and interesting problem to ask
whether there is an extension to the variable exponents setting of the inequalities (1.1).
In this paper we shall answer this problem affirmatively. We obtain the characteriza-

tion of the Fourier transform on H
p(·)

A (Rn) . In addition, we also establish its some
applications.

Precisely, this article is organized as follows.
In Section 2, we first recall some notation and definitions concerning expansive

dilations, the variable Lebesgue space Lp(·)(Rn) and the variable anisotropic Hardy

space H
p(·)

A (Rn) , via the non-tangential grand maximal function.

In Section 3, we obtain that the Fourier transform of f ∈ H
p(·)

A (Rn) coincides
with a continuous function F on Rn in the sense of tempered distributions.

In Section 4, as applications, we further conclude a higher order convergence of
the continuous function F at the origin and then give a variant of the Hardy-Littlewood
inequality in the setting of anisotropic Hardy spaces with variable exponents.

Finally, we make some conventions on notation. Let N := {1, 2, . . .} and Z+ :=
{0}∪N . For any α := (α1, . . . ,αn) ∈ Zn

+ := (Z+)n , let |α| := α1 + · · ·+ αn and

∂ α :=
(

∂
∂x1

)α1

· · ·
(

∂
∂xn

)αn

.

Throughout the whole paper, we denote by C a positive constant which is independent
of the main parameters, but it may vary from line to line. For any q ∈ [1, ∞] , we
denote by q′ its conjugate index, namely, 1/q+1/q′ = 1. For any a ∈ R , �a	 denotes
the maximal integer not larger than a . The symbol D � F means that D � CF . If
D � F and F � D , we then write D ∼ F . If E is a subset of Rn , we denote by χE

its characteristic function. If there are no special instructions, any space X (Rn) is
denoted simply by X . Denote by S the space of all Schwartz functions and S ′ its
dual space (namely, the space of all tempered distributions).

REMARK 1.1. It is worth to pointing that this article was done totally indepen-
dently of the paper “Fourier transform of variable anisotropic Hardy spaces with ap-
plications to Hardy-Littlewood inequalities” by Jun Liu [14]. A month after this paper
was submitted the journal, we learned that Jun Liu also proved independently the same
results, see [14] or (arXiv:2112.08320). He also showed that the Fourier transform of
f ∈H

p(·)
A (Rn) coincides with a continuous function F on Rn in the sense of tempered

distributions, and also obtained some applications. Moreover, this article is mainly in-
spired by Bownik et al. [3] and Huang et al. [13].
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2. The definitions of variable anisotropic Hardy spaces

In this section, we recall the definition of variable anisotropic Hardy space

H
p(·)

A , via the non-tangential grand maximal function MN( f ) .
Firstly, we recall the definition of expansive dilations on Rn ; see [2, p. 5]. A real

n×n matrix A is called an expansive dilation, shortly a dilation, if minλ∈σ(A) |λ | > 1,
where σ(A) denotes the set of all eigenvalues of A . Let λ− and λ+ be two positive
numbers such that

1 < λ− < min{|λ | : λ ∈ σ(A)} � max{|λ | : λ ∈ σ(A)} < λ+.

If A is diagonalizable over C , we can even take λ− := min{|λ | : λ ∈ σ(A)} and
λ+ := max{|λ | : λ ∈ σ(A)} . Otherwise, we need to choose them sufficiently close to
these equalities according to what we need in our arguments.

By [2, Lemma 2.2], for a fixed dilation A , there exist a number r ∈ (1, ∞) and a
set Δ := {x ∈ Rn : |Px| < 1} , where P is some non-degenerate n×n matrix, such that

Δ ⊂ rΔ ⊂ AΔ,

and we can assume that |Δ| = 1, where |Δ| denotes the n-dimensional Lebesgue mea-
sure of the set Δ . Let Bk := AkΔ for k ∈ Z. Then Bk is open,

Bk ⊂ rBk ⊂ Bk+1 and |Bk| = bk.

In this paper, let b := |detA| . An ellipsoid x+Bk for some x ∈ Rn and k ∈ Z is called
a dilated ball. Denote by B the set of all such dilated balls, that is,

B := {x+Bk : x ∈ Rn, k ∈ Z}. (2.1)

Throughout the whole paper, let σ be the smallest integer such that 2B0 ⊂ AσB0 and,
for any subset E of Rn , let E� := Rn \E . Then, for all k, j ∈ Z with k � j , it holds
true that

Bk +Bj ⊂ Bj+σ , (2.2)

Bk +(Bk+σ )� ⊂ (Bk)�, (2.3)

where E +F denotes the algebraic sum {x+ y : x ∈ E, y ∈ F} of sets E, F ⊂ Rn .

DEFINITION 2.1. A quasi-norm, associated with dilation A , is a Borel measur-
able mapping ρA : Rn → [0,∞) , for simplicity, denoted by ρ , satisfying

(i) ρ(x) > 0 for all x ∈ Rn \ {�0n} , here and hereafter, �0n denotes the origin of Rn ;

(ii) ρ(Ax) = bρ(x) for all x ∈ Rn , where, as above, b := |detA| ;
(iii) ρ(x+ y) � CA [ρ(x)+ ρ(y)] for all x, y ∈ Rn , where CA ∈ [1, ∞) is a constant

independent of x and y .
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In the standard dyadic case A := 2In×n , ρ(x) := |x|n for all x ∈ Rn is an example
of homogeneous quasi-norms associated with A , here and hereafter, In×n denotes the
n×n unit matrix, | · | always denotes the Euclidean norm in Rn .

By [2, Lemma 2.4], we know that all homogeneous quasi-norms associated with a
fixed dilation A are equivalent. Therefore, for a fixed dilation A , in what follows, for
simplicity, we always use the step homogeneous quasi-norm ρA defined by setting, for
all x ∈ Rn ,

ρA(x) := ∑
k∈Z

bkχBk+1\Bk
(x) if x �=�0n, or else ρA(�0n) := 0.

By (2.2), we know that, for all x, y ∈ Rn ,

ρA(x+ y) � bσ [ρA(x)+ ρA(y)].

Moreover, (Rn, ρA, dx) is a space of homogeneous type in the sense of Coifman and
Weiss [6, 7], where dx denotes the n -dimensional Lebesgue measure. Suppose ρA is
a homogeneous quasi-norms associated with a fixed dilation A . Then there exists a
constant CA > 0 such that, for all x ∈ Rn ,

1
CA

[ρA(x)]λ−/ lnb � |x| � CA[ρA(x)]λ+/ lnb if ρA(x) � 1, (2.4)

1
CA

[ρA(x)]λ+/ lnb � |x| � CA[ρA(x)]λ−/ lnb if ρA(x) < 1, (2.5)

where CA depends only on the dilation A .
Now we recall that a measurable function p(·) : Rn → (0, ∞) is called a variable

exponent. For any variable exponent p(·) , let

p− := ess inf
x∈Rn

p(x) and p+ := esssup
x∈Rn

p(x). (2.6)

Denote by P the set of all variable exponents p(·) satisfying 0 < p− � p+ < ∞ .
Let f be a measurable function on Rn and p(·) ∈ P . Then the modular function

(or, for simplicity, the modular) ρp(·) , associated with p(·) , is defined by setting

ρp(·)( f ) :=
∫

Rn
| f (x)|p(x) dx

and the Luxemburg (also called Luxemburg-Nakano) quasi-norm ‖ f‖Lp(·) by

‖ f‖Lp(·) := inf
{

λ ∈ (0, ∞) : ρp(·)( f/λ ) � 1
}

.

Moreover, the variable Lebesgue space Lp(·) is defined to be the set of all measurable
functions f satisfying that ρp(·)( f ) < ∞ , equipped with the quasi-norm ‖ f‖Lp(·) .
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REMARK 2.2. Let p(·) ∈ P .

(i) For any r ∈ (0, ∞) and f ∈ Lp(·) ,

‖| f |r‖Lp(·) = ‖ f‖r
Lrp(·) .

Moreover, for any μ ∈ C and f ,g ∈ Lp(·) , ‖μ f‖Lp(·) = |μ |‖ f‖Lp(·) and

‖ f +g‖p

Lp(·) � ‖ f‖p

Lp(·) +‖g‖p

Lp(·) ,

here and hereafter,

p := min{p−, 1}. (2.7)

(ii) From [8], we know that, for any function f ∈ Lp(·) with ‖ f‖Lp(·) > 0,

ρp(·)( f/‖ f‖Lp(·) ) = 1

and, if ‖ f‖Lp(·) � 1, then ρp(·)( f ) � ‖ f‖Lp(·) .

A function p(·) ∈ P is said to satisfy the globally log-Hölder continuous condi-
tion, denoted by p(·) ∈Clog , if there exist two positive constants Clog(p) and C∞ , and
p∞ ∈ R such that, for any x,y ∈ Rn ,

|p(x)− p(y)|� Clog(p)
log(e+1/ρ(x− y))

and

|p(x)− p∞| � C∞

log(e+ ρ(x))
.

A C∞ function ϕ is said to belong to the Schwartz class S if, for every integer
� ∈ Z+ and multi-index α , ‖ϕ‖α ,� := sup

x∈Rn
[ρ(x)]�|∂ α ϕ(x)| < ∞ . The dual space of

S , namely, the space of all tempered distributions on Rn equipped with the weak-∗
topology, is denoted by S ′ . For any N ∈ Z+ , let

SN :=
{

ϕ ∈ S : ‖ϕ‖α ,� � 1, |α| � N, � � N
}

.

In what follows, for ϕ ∈ S , k ∈ Z and x ∈ Rn , let ϕk(x) := b−kϕ
(
A−kx

)
.

DEFINITION 2.3. Let ϕ ∈ S and f ∈ S ′ . The non-tangential maximal function
Mϕ( f ) with respect to ϕ is defined by setting, for any x ∈ Rn ,

Mϕ ( f )(x) := sup
y∈x+Bk,k∈Z

| f ∗ϕk(y)|.

Moreover, for any given N ∈ N , the non-tangential grand maximal function MN( f ) of
f ∈ S ′ is defined by setting, for any x ∈ Rn ,

MN( f )(x) := sup
ϕ∈SN

Mϕ( f )(x).
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The following variable anisotropic Hardy space H
p(·)

A was introduced in [15,
Definition 2.4].

DEFINITION 2.4. Let p(·) ∈Clog , A be a dilation and N ∈ [�(1/p−1)/ lnλ−	+

2, ∞) , where p is as in (2.7). The variable anisotropic Hardy space H
p(·)

A is defined
as

H
p(·)

A :=
{

f ∈ S ′ : MN( f ) ∈ Lp(·)
}

and, for any f ∈ H
p(·)

A , let ‖ f‖
H

p(·)
A

:= ‖MN( f )‖Lp(·) .

REMARK 2.5. Let p(·) ∈Clog .

(i) When p(·) := p with p ∈ (0, ∞) , the space H
p(·)

A is reduced to the anisotropic
Hardy Hp

A studied by Bownik [2].

(ii) When A := 2In×n , the space H
p(·)

A is reduced to the variable Hardy space Hp(·)
introduced by Nakai et al. [18] and also Cruz-Uribe et al. [9].

We begin with the following notion of anisotropic (p(·), q, s)-atoms introduced in
[17, Definition 4.1].

DEFINITION 2.6. Let p(·)∈P , q∈ (1, ∞] and s∈ [�(1/p−−1)lnb/ lnλ−	, ∞)∩
Z+ with p− as in (2.6). An anisotropic (p(·), q, s)-atom is a measurable function a
on Rn satisfying

(i) (support) suppa := {x ∈ Rn : a(x) �= 0} ⊂ B , where B ∈ B and B is as in (2.1);

(ii) (size) ‖a‖Lq � |B|1/q

‖χB‖Lp(·)
;

(iii) (vanishing moment)
∫
Rn a(x)xαdx = 0 for any α ∈ Zn

+ with |α| � s .

In what follows, for convenience, we call an anisotropic (p(·), q, s)-atom simply by
a (p(·), q, s)-atom. The following variable anisotropic atomic Hardy space was intro-
duced in [15, Definition 4.2]

DEFINITION 2.7. Let p(·) ∈Clog , q ∈ (1, ∞] , s ∈ [�(1/p−−1)lnb/ lnλ−	, ∞)∩
Z+ with p− as in (2.6), and A be a dilation. The variable anisotropic atomic Hardy

space H
p(·),q,s

A,atom is defined to be the set of all distributions f ∈ S ′ satisfying that there
exist {λ j} j∈N ⊂ C and a sequence of (p(·), q, s)-atoms, {a j} j∈N , supported, respec-
tively, on {B( j)} j∈N ⊂ B such that

f = ∑
j∈N

λ ja j in S ′.
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Moreover, for any f ∈ H
p(·),q,s

A,atom , let

‖ f‖
H

p(·),q, s
A,atom

:= inf

∥∥∥∥∥∥
{

∑
j∈N

[ |λ j|χB( j)

‖χB( j)‖Lp(·)

]p
}1/p

∥∥∥∥∥∥
Lp(·)

,

where the infimum is taken over all the decompositions of f as above.

3. Main result

In this section, we state the main result of the article as follow:

THEOREM 3.1. Let p(·) ∈Clog satisfying 0 < p− � p+ � 1 with p− , p+ as in

(2.6). Then for any f ∈ H
p(·)

A , there exists a continuous function F on Rn such that

f̂ = F in S ′ , and there exists a positive constant C such that for any x ∈ Rn ,

|F(x)| � C‖ f‖
H

p(·)
A

max
{
[ρA∗(x)]1/p−−1, [ρA∗(x)]1/p+−1

}
, (3.1)

where A∗ denotes the transposed matrix of A and f̂ is the Fourier transform of f .

REMARK 3.2. When p(·) := p with p ∈ (0, 1] , this result is reduced to [2, The-
orem 1].

To prove Theorem 3.1, we need some technical lemmas. The following lemma
reveals the atomic decompositions of the variable anisotropic Hardy spaces (see [15,
Theorem 4.8]).

LEMMA 3.3. Let p(·) ∈ Clog , q ∈ (max{p+, 1}, ∞] with p+ as in (2.6), s ∈
[�(1/p−−1)lnb/ lnλ−	, ∞)∩Z+ with p− as in (2.6) and N ∈N∩[�(1/p−1)lnb/ lnλ−	
+2, ∞) . Then

H
p(·)

A = H
p(·),q,s

A,atom

with equivalent quasi-norms.

To state following two lemmas, let us recall two basic definitions. We define the
dilation operator by DA( f )(x) = f (Ax) , then commute with Fourier transform by fol-
lowing identity for all j ∈ Z

b j
(

Dj
A∗D̂

j
A f

)
(ξ ) = f̂ (ξ ). (3.2)

LEMMA 3.4. Let p(·) ∈ Clog , q ∈ (1, ∞] , s ∈ [�(1/p−− 1)lnb/ lnλ−	, ∞)∩Z+
and a be a (p(·), q, s)-atom supported on x0 +Bk with some x0 ∈ Rn and k ∈ Z . Then
there exists a constant C such that, for any x ∈ Rn ,∣∣∣D̂k

A(a)(x)
∣∣∣� Cb−k/q‖a‖Lq min

{
1, |x|s+1} . (3.3)
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Proof. From the assumption that suppa ⊂ x0 +Bk with x0 ∈ Rn and k ∈ Z , we
obtain that

suppDk
A(a) ⊂ A−kx0 +B0.

Let T (ξ ) be the degree s Taylor polynomial of the function ξ → e−2π i〈x,ξ 〉 center at
A−kx0 . Using the vanishing of moments of the atom a and the Hölder inequality, we
have ∣∣∣D̂k

A(a)(x)
∣∣∣= ∣∣∣∣∫

Rn
Dk

A(a)(ξ )e−2π i〈x,ξ 〉dξ
∣∣∣∣

=
∣∣∣∣∫

A−kx0+B0

Dk
A(a)(ξ )

[
e−2π i〈x,ξ 〉 −T (ξ )

]
dξ
∣∣∣∣

�
∫

A−kx0+B0

∣∣∣a(Akξ )
∣∣∣ ∣∣∣ξ −A−kx0

∣∣∣s+1 |x|s+1dξ

� |x|s+1b−k
∫

x0+Bk

|a(ξ )|dξ

� |x|s+1b−k/q‖a‖Lq ,

where i :=
√−1. By the fact that suppDk

A(a)⊂ A−kx0 +B0 , and the Hölder inequality,
we conclude that ∣∣∣D̂k

A(a)(x)
∣∣∣= ∣∣∣∣∫

Rn
Dk

A(a)(ξ )e−2π i〈x,ξ 〉dξ
∣∣∣∣

� b−k
∫

x0+Bk

|a(ξ )|dξ

� b−k/q‖a‖Lq .

This finishes the proof of Lemma 3.4. �
To show Theorem 3.1, we also need the following essential lemma.

LEMMA 3.5. Let p(·) ∈ Clog satisfying 0 < p− � p+ � 1 with p− , p+ as in
(2.6), q∈ (1, ∞] and s∈ [�(1/p−−1)lnb/ lnλ−	, ∞)∩Z+ . Then there exists a positive
constant C such that, for any (p(·), q, s)-atom a supported on x0 +Bk with x0 ∈ Rn

and k ∈ Z , and for any x ∈ Rn ,

|â(x)| � Cmax
{
[ρA∗(x)]1/p−−1, [ρA∗(x)]1/p+−1

}
. (3.4)

Proof. Let a be a (p(·), q, s)-atom with suppa ⊂ x0 +Bk , where x0 ∈ Rn and
k ∈Z . Then it follows from (3.2), (3.3) and the size condition of a that, for any x∈Rn ,

|â(x)| =
∣∣∣bk
[
Dk

A∗D̂k
A(a)

]
(x)
∣∣∣ (3.5)

= bk
∣∣∣D̂k

A(a)
(
A∗kx

)∣∣∣
� b(1−1/q)k‖a‖Lq min

{
1,
∣∣∣A∗kx

∣∣∣s+1
}
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� bk

‖χx0+Bk‖Lp(·)
min

{
1,
∣∣∣A∗kx

∣∣∣s+1
}

� max
{

b(1−1/p+)k, b(1−1/p−)k
}

min

{
1,
∣∣∣A∗kx

∣∣∣s+1
}

.

If ρA∗(x) < b−k , from (2.6) and s > (1/p−−1) lnb/ lnλ−−1, we deduce that

|â(x)| � max
{

b(1−1/p+)k, b(1−1/p−)k
}

min

{
1,
∣∣∣A∗kx

∣∣∣s+1
}

� max
{

b(1−1/p+)k, b(1−1/p−)k
}

b(1/p−−1)k[ρA∗(x)]1/p−−1 (3.6)

∼ max
{

b(1−1/p+)k, b(1−1/p−)k
}

.

which implies that (3.4) holds true.
On the other hand, for any x ∈ Rn , if ρA∗(x) � b−k , then, by (3.2), we find that

(3.4) holds true in this case. The concrete details being omitted. This finishes the proof
of Lemma 3.4. �

LEMMA 3.6. Let p(·)∈P . Then we have, for any {λ j} j∈N ⊂C and {B( j)} j∈N ⊂
B ,

∑
j∈N

|λ j| �
∥∥∥∥∥∥
{

∑
j∈N

[ |λ j|χB( j)

‖χB( j)‖Lp(·)

]p
}1/p

∥∥∥∥∥∥
Lp(·)

where p is as in (2.7).

Proof. Since p(·) ∈ P and the well-known inequality that, ‖ · ‖�1 � ‖ · ‖�p with
p ∈ (0, 1] , then

∑
j∈N

|λ j| = ∑
j∈N

|λ j|
∥∥∥∥ χB( j)

‖χB( j)‖Lp(·)

∥∥∥∥
Lp(·)

�
∥∥∥∥∥∑

j∈N

|λ j|χB( j)

‖χB( j)‖Lp(·)

∥∥∥∥∥
Lp(·)

�

∥∥∥∥∥∥
{

∑
j∈N

[ |λ j|χB( j)

‖χB( j)‖Lp(·)

]p
}1/p

∥∥∥∥∥∥
Lp(·)

.

This finishes the proof of Lemma 3.6. �
Proof of Theorem 3.1. Let p(·) ∈ Clog satisfying 0 < p− � p+ � 1, q ∈ (1, ∞]

and s ∈ [�(1/p− − 1)lnb/ lnλ−	, ∞)∩Z+. For any f ∈ H
p(·)

A , from Definition 2.7
and Lemma 3.3, we know that there exist numbers {λ j} j∈N ⊂ C and a sequence of
(p(·), q, s)-atom, {a j} j∈N , supported, respectively, on {x j +B� j} j∈N ⊂ B such that

f = ∑
j∈N

λ ja j in S ′
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and

‖ f‖
H

p(·)
A

∼ inf

∥∥∥∥∥∥
{

∑
j∈N

[ |λ j|χx j+B� j

‖χx j+B� j
‖Lp(·)

]p}1/p
∥∥∥∥∥∥

Lp(·)

. (3.7)

By the continuity of the Fourier transform on S ′ , we have

f̂ = ∑
j∈N

λ j â j in S ′, (3.8)

In addition, by the fact that, for any j ∈N, a j ∈ L1 , and the Hausdorff Young inequality,
we know that â j ∈ L∞ . From this, Lemmas 3.4 and 3.6, and (3.7), we conclude that,
for any x ∈ Rn ,

∑
j∈N

|λ j â j(x)|

� C ∑
j∈N

|λ j|max
{
[ρA∗(x)]1/p−−1, [ρA∗(x)]1/p+−1

}

�

∥∥∥∥∥∥
{

∑
j∈N

[ |λ j|χx j+B� j

‖χx j+B� j
‖Lp(·)

]p}1/p
∥∥∥∥∥∥

Lp(·)

max
{
[ρA∗(x)]1/p−−1, [ρA∗(x)]1/p+−1

}
(3.9)

� ‖ f‖
H

p(·)
A

max
{

[ρA∗(x)]1/p−−1, [ρA∗(x)]1/p+−1
}

< ∞.

Thus, for any x ∈ Rn , the summation ∑ j∈N λ jâ j(x) converges absolutely on Rn . With-
out loss of generality, we may let, for any x ∈ Rn ,

F(x) := ∑
j∈N

λ jâ j(x)

pointwisely and hence, for any x ∈ Rn ,

|F(x)| � ‖ f‖
H

p(·)
A

max
{
[ρA∗(x)]1/p−−1, [ρA∗(x)]1/p+−1

}
. (3.10)

Next, we prove that f̂ = F in S ′ . By (3.8), it suffices to show that

F = ∑
j∈N

λ j â j in S ′,

that is, for any ϕ ∈ S ,

lim
N→∞

〈
N

∑
j=1

λ jâ j, ϕ

〉
= lim

N→∞

N

∑
j=1

λ j

∫
Rn

â j(x)ϕ(x)dx < ∞. (3.11)
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In fact, by Lemma 3.4, we know that there exists a positive constant C such that, for
any ϕ ∈ S , j ∈ N and N > 1/p− ,∣∣∣∣∫

Rn
â j(x)ϕ(x)dx

∣∣∣∣
�

∞

∑
k=1

∫
B∗

k+1\B∗
k

max
{
[ρA∗(x)]1/p−−1, [ρA∗(x)]1/p+−1

}
|ϕ(x)|dx+‖ϕ‖L1

�
∞

∑
k=1

b(1/p−−1)kbk 1
(1+bk)N +‖ϕ‖L1

� 1,

which, together with Lemma 3.6, (3.7) and (3.11), implies that

lim
N→∞

∞

∑
j=N+1

|λ j|
∣∣∣∣∫

Rn
â j(x)ϕ(x)dx

∣∣∣∣� lim
N→∞

∞

∑
j=N+1

|λ j| = 0,

and hence f̂ = F in S ′ . Furthermore, for any given compact set K , there exists a
positive constant C , depending only on K , such that, for any x ∈ K, ρA∗(x) � C . By
this and (3.10), we obtain that, for any x ∈ K ,

∑
j∈N

|λ j||â j(x)| � max
{
C1/p−−1, C1/p+−1

}
∑
j∈N

|λ j|.

Therefore, the absolute convergence of ∑ j∈N λ jâ j(x) is uniform on compact set K . By
this and the fact that, for any j ∈ N , â j is a continuous function, we conclude that,
for any compact set K , F is also a continuous function on K , and hence on Rn . This
completes the proof of Theorem 3.1. �

4. Some applications

In this section, as applications of Theorem 3.1, we obtain a higher order conver-
gence of the continuous function F in Theorem 3.1 at the origin, and establish a variant
of the Hardy-Littlewood inequality on the anisotropic Hardy spaces with variable ex-
ponents. The following conclusion is the first main result of this section.

THEOREM 4.1. Let p(·) ∈Clog satisfying 0 < p− � p+ � 1 with p− , p+ as in

(2.6), and f ∈H
p(·)

A . Then there exists a continuous function F on Rn such that f̂ = F
in S ′ and

lim
|x|→0+

F(x)
[ρA∗(x)]1/p−−1

= 0.

Proof. Let f ∈H
p(·)

A . By Lemma 3.3, we know that there exist numbers {λ j} j∈N

⊂ C and a sequence of (p(·), q, s)-atom, {a j} j∈N , supported, respectively, on {x j +
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B� j} j∈N ⊂ B such that

f = ∑
j∈N

λ ja j in S ′

and

‖ f‖
H

p(·)
A

∼ inf

∥∥∥∥∥∥
{

∑
j∈N

[ |λ j|χx j+B� j

‖χx j+B� j
‖Lp(·)

]p}1/p
∥∥∥∥∥∥

Lp(·)

,

which, together with Lemma 3.6, implies that

∑
j∈N

|λ j| < ∞.

By Theorem 3.1 , we obtain that there exists F such that f̂ = F in S ′ . Therefore, we
have

|F(x)|
[ρA∗(x)]1/p−−1

� ∑
j∈N

|λ j| |â j(x)|
[ρA∗(x)]1/p−−1

.

By (3.5) and the condition that 0 < p− � p+ � 1, it is easy to check that, for any j ∈N ,

lim
|x|→0+

|â j(x)|
[ρA∗(x)]1/p−−1

= 0.

Therefore, for any ε > 0, we know that there exists δ > 0 such that, for any |x| < δ ,

|â j(x)|
[ρA∗(x)]1/p−−1

<
ε

∑ j∈N |λ j|+1
.

By this, we have, for any |x| < δ ,

|F(x)|
[ρA∗(x)]1/p−−1

< ε.

Thus,

lim
|x|→0+

F(x)
[ρA∗(x)]1/p−−1

= 0.

This finishes the proof of Theorem 4.1. �
Now we state the second result of this section.

THEOREM 4.2. Let p(·) ∈Clog satisfying 0 < p− � p+ � 1 with p− , p+ as in

(2.6), and f ∈H
p(·)

A . Then there exists a continuous function F on Rn such that f̂ = F
in S ′ and[∫

Rn
|F(x)|p+ min

{
[ρA∗(x)]p+−1−(p+/p−), [ρA∗(x)]p+−2

}
dx

]1/p+

� C‖ f‖
H

p(·)
A

.
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Proof. Let p(·) ∈Clog satisfying 0 < p− � p+ � 1, and f ∈ H
p(·)

A . By Lemma
3.3, we obtain that there exist numbers {λ j} j∈N ⊂ C and a sequence of (p(·), ∞, s)-
atom, {a j} j∈N , supported, respectively, on {x j +B� j} j∈N ⊂ B such that

f = ∑
j∈N

λ ja j in S ′,

and

‖ f‖
H

p(·)
A

∼ inf

∥∥∥∥∥∥
{

∑
j∈N

[ |λ j|χx j+B� j

‖χx j+B� j
‖Lp(·)

]p}1/p
∥∥∥∥∥∥

Lp(·)

.

By Theorem 3.1, we know that there exists continuous F on Rn , such that

f̂ = F in S ′,

Therefore, we have

{∫
Rn

|F(x)|p+ min
{
[ρA∗(x)]p+−1−p+/p− , [ρA∗(x)]p+−2

}
dx

}1/p+

�
{

∑
j∈N

|λ j|p+

∫
Rn

[
|â j(x)|min

{
[ρA∗(x)]1−1/p+−1/p− , [ρA∗(x)]1−2/p+

}]p+
dx

}1/p+

By Lemma 3.6, we only need to show that, for any (p(·), ∞, s)-atom a with suppa ⊂
x0 +Bk , x0 ∈ Rn , k ∈ Z ,

{∫
Rn

|â(x)|p+
[
min

{
[ρA∗(x)]p+−1−1/p−, [ρA∗(x)]p+−2

}]p+
dx

}1/p+

� 1.

Now we can write

{∫
Rn

|â(x)|p+
[
min

{
[ρA∗(x)]p+−1−1/p−, [ρA∗(x)]p+−2

}]p+
dx

}1/p+

=

{∫
B∗
−k

|â(x)|p+
[
min

{
[ρA∗(x)]1−1/p+−1/p−, [ρA∗(x)]p+−2

}]p+
dx

}1/p+

+

{∫
(B∗

−k)
�
|â(x)|p+

[
min

{
[ρA∗(x)]1−1/p+−1/p− , [ρA∗(x)]1−2/p+

}]p+
dx

}1/p+

= I+ II.
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For the term I, by (3.6), we obtain

I � bk[1+lnλ−(s+1)/lnb] max
{

b−k/p− , b−k/p+
}

×
{∫

ρA∗ (x)<b−k

[
min

{
[ρA∗(x)]1−1/p+−1/p−+[(s+1) lnλ−/ lnb],

[ρA∗(x)]1−2/p+−(s+1) lnλ−/lnb
}]p+

dx

}1/p+

� bk[1+(s+1) lnλ−/lnb] max
{

b−k/p− , b−k/p+
}

×min
{

b−k[1−1/p−+(s+1) lnλ−/lnb], b−k[1−2/p++(s+1) lnλ−/lnb]
}

∼ 1.

For the term II , from the Hölder inequality, the Plancherel theorem, the fact that
0 < p−, p+ � 1, and the size condition of a , we deduce that

II =

{∫
(B∗

−k)
�
|â(x)|p+

[
min

{
[ρA∗(x)]1−1/p+−1/p−, [ρA∗(x)]1−2/p+

}]p+
dx

}1/p+

�
(∫

(B∗
−k)

�
|â(x)|2dx

)1/2

×
{∫

(B∗
−k)

�

[
min

{
[ρA∗(x)]1−1/p+−1/p− , [ρA∗(x)]1−2/p+

}]2p+/(2−p+)
dx

}(2−p+)/(2p+)

�
(∫

Rn
|a(x)|2

)1/2

min
{

b−k(1/2−1/p−), b−k(1/2−1/p+)
}

� |x0 +Bk|1/2∥∥χx0+Bk

∥∥
Lp(·)

min
{

b−k(1/2−1/p−), b−k(1/2−1/p+)
}

� max
{

bk(1/2−1/p−), bk(1/2−1/p+)
}

min
{

b−k(1/2−1/p−), b−k(1/2−1/p+)
}

∼ 1.

This completes the proof of Theorem 4.2. �

REMARK 4.3. It is worth pointing out that there is a difference with Liu’s paper
in the proof of Theorem 4.2. Indeed, we use the (p(·), ∞, s)-atom characterization of

the variable anisotropic Hardy space H
p(·)

A (Rn) , while Liu proves [14, Theorem 4.3]

by using the (p(·), q, s)-atom characterization of H
p(·)

A (Rn) .
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