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MINIMAL FAMILIES OF LIMIT OPERATORS

MARKO LINDNER

(Communicated by M. Zinchenko)

Abstract. We study two abstract scenarios, where an operator family has a certain minimality
property. In both scenarios, it is shown that norm, spectrum and resolvent are the same for all
family members. Both abstract settings are illustrated by practically relevant examples, includ-
ing discrete Schrödinger operators with periodic, quasiperiodic, almost-periodic, Sturmian and
pseudo-ergodic potential. The main tool is the method of limit operators, known from studies of
Fredholm operators and convergence of projection methods. We close by connecting this tool to
the study of subwords of the operator potential.

1. Introduction

We look at bounded linear operators A on sequence spaces with local action in
the sense that the corresponding bi-infinite matrix (ai j) is a band matrix. We will often
identify the operator and the matrix. We demonstrate everything in the simple situation
of �2(Z) but show in Section 5 how to extend the setting to, e.g., vector-valued �p(Zd) .

A tool that has been established for the study of Fredholm properties, including
the essential spectrum, of A is the method of limit operators. Roughly speaking, a
(possibly large) family, Lim(A) , of operators, so-called limit operators, is capturing the
behaviour of A (or likewise, the asymptotics of the matrix (ai j)) at infinity.

In applications ranging from periodic to aperiodic operators [15, 9, 8, 23], it turns
out that all members of the family M := Lim(A) are not only limit operators of A
but also of each other, including themselves. Moreover, they all share the same spectral
quantities like the spectrum itself, the norm, resolvent and pseudospectrum. This obser-
vation is not new for the particular classes, although sometimes a bit tedious to derive,
but we think it deserves a systematic study in a setting that is based on properties that
all classes have in common and that is still strong enough to derive spectral results. The
paper is clearly in the spirit of [1, 2] but maybe a bit more concrete, constructive in
parts and therefore with more specific results.

By one further step of generalization, we also include so-called pseudo-ergodic
operators, first studied by Davies in order to study the spectral theory of random oper-
ators while largely eliminating stochastic details.
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2. The tools

Let us write our band operator A on �2 := �2(Z) as a finite sum

A =
w

∑
j=−w

Mb( j)S j (1)

of products of multiplication operators (Mb( j)x)n = b( j)
n xn with b( j) ∈ �∞ := �∞(Z) and

powers of the shift operator, (Sx)n = xn−1 . Each coefficient b( j) of S j represents
the j -th diagonal of the bi-infinite band matrix behind A . By the boundedness of the
coefficients, the operator A acts as a bounded linear operator on �2 ; we write A∈ L(�2) .

Recall that a bounded linear operator A on a Banach space X is a Fredholm opera-
tor if its coset, A+K(X) , modulo compact operators K(X) is invertible in the so-called
Calkin algebra L(X)/K(X) . This holds if and only if the nullspace of A has finite di-
mension and the range of A has finite codimension in X . The essential spectrum,
specess A , of A is then the spectrum of A + K(X) in L(X)/K(X) , i.e. the set of all
λ ∈ C for which A−λ I is not a Fredholm operator.

Since the coset A + K(X) cannot be affected by changing finitely many matrix
entries, its study takes place “at infinity”. This is where limit operators [20, 21, 16]
enter the scene:

DEFINITION 2.1. For a band operator A , we look at all its translates S−kASk with
k ∈Z and speak of a limit operator, Ah , if, for a particular sequence h = (hn) in Z with
|hn| → ∞ , the corresponding sequence of translates, S−hnAShn , converges strongly to
Ah .

Here we say that a sequence An converges strongly to A if Anx→Ax for all x∈ �2 .

From the matrix perspective, this can be visualized as follows: B = (bi j)i, j∈Z is
the limit operator of A = (ai j)i, j∈Z with respect to the sequence h = (hn) in Z if, for
all i, j ∈ Z ,

ai+hn, j+hn → bi j as n → ∞. (2)

We write Ah instead of B . Here is the announced connection to Fredholm operators.

LEMMA 2.2. For a band operator A on �2 , it holds that the following are equiv-
alent:

(a) A is a Fredholm operator on �2 ,
(b) all limit operators of A are invertible on �2 [20, 18],
(c) all limit operators of A are injective on �∞ [3, 4].

Not only because of this result, it is useful to denote the set of all limit operators
of A by Lim(A) . Sometimes it is also important to distinguish with respect to the
direction: If h = (hn) with hn →±∞ , we write Ah ∈ Lim±(A) , respectively.

As a consequence of Lemma 2.2,

specess A =
⋃

Ah∈Lim(A)

specAh =
⋃

Ah∈Lim(A)

spec∞
pt Ah. (3)
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One important spectral quantity that we use a lot “under the hood” is the so-called lower
norm of an operator A . By this, we mean

ν(A) := inf
‖x‖=1

‖Ax‖.

Note that the name “lower norm” is used, as in [21, 16], meaning a counterpart of the
operator norm. (It is not a norm!) ν(A) turns out to be a fairly accessible quantity to
study ‖A−1‖ . Indeed,

1
‖A−1‖ = min

(
ν(A),ν(A∗)

)
. (4)

We also use that ν(A) can be conveniently approximated / localized via

νn(A) ↘ ν(A) as n → ∞, (5)

where νn(A) = inf{‖Ax‖ : ‖x‖ = 1,diam(supp(x)) � n} . For the proof see [18, Prop.
6] (and [14, Prop. 3.4] for the corresponding result about the norm).

In this way we study resolvent norms, ‖(A−λ I)−1‖ , and their superlevel sets, the
so-called ε -pseudospectra specεA = {λ ∈ C : ‖(A−λ I)−1‖ > 1

ε } , see [24].

3. Minimal sets of limit operators

A limit operator of a limit operator of A is a limit operator of A , see [16, Cor.
3.97]. Precisely,

LEMMA 3.1. For all band operators A,B it holds that

B ∈ Lim(A) =⇒ Lim(B) ⊂ Lim(A).

Proof. First, B ∈ Lim(A) implies S−kBSk ∈ Lim(A) for all k ∈ Z . Now let k =
k1,k2, . . . , pass to the strong limit and note that Lim(A) is closed in the strong topology.
For details, see [16, Cor. 3.97] or [3, Lem 3.3]. �

REMARK 3.2. a) The limit operators of B are even in the same local part, Lim±(A) ,
of Lim(A) as B is. This also generalizes to Zd , where one has many more directions
than left and right.

b) Lemma 3.1 shows that the relation

B ≺ A : ⇐⇒ B ∈ Lim(A)

is transitive. By (3), B ≺ A implies specB ⊂ specess A ⊂ specA , so that one is also
interested in the symmetric (and transitive, but not reflexive) relation

A ∼ B : ⇐⇒ A ≺ B and B ≺ A,

which yields equality of (essential) spectra and other spectral quantities. We follow
this line of thought (on the level of sets Lim(A) rather than operators A) and arrive at
operator sets M where any two elements A,B∈M have A∼ B and hence equal spectra.
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3.1. Two concepts of minimality

Now fix a band operator A and look at the family M of all sets M = Lim(B)
with B ∈ M0 := Lim(A) . By Lemma 3.1, all these M are subsets of M0 and, starting
from M0 = Lim(A) , form a partially ordered set with respect to reversed set inclusion
”⊃”. By Zorn’s lemma (the conditions have been verified in [3, Prop 3.7]), there is a
maximal element M = Lim(B) 
= /0 in this poset (M ,⊃) – let us call it minimal here
since the sets get smaller, not bigger.

As a consequence, for this particular operator set M ,

∀C ∈ M : Lim(C) = M. (M1)

Our poset construction shows that every set Lim(A) has a subset M with (M1). In
some applications, Lim(A) itself is a set M with (M1). This is the case, for example,
if just one diagonal of A is varying, and that sequence is

• periodic,
• almost-periodic, incl. quasiperiodic, or
• Sturmian.

In other situations, e.g. a pseudo-ergodic diagonal (we will explain all these classes in
Section 3.3 below), we have the following generalization of (M1): There is an operator
set M such that

∀C ∈ M : Lim(C) ⊃ M. (M2)

Let us call an operator set M with property (M2) a minimal family of limit operators.
Note that (M1) is a special case of (M2).

In our derivation of (M1), the word “minimal”
refers to the role of M in (M ,⊃) . For complete-
ness, here is the dynamical systems perspective on
minimality (also see [1, 2]): For a band operator
B , call the set of all its translates, that is

orb(B) := {S−nBSn : n ∈ Z}, (6)

the orbit of B . For a set M with (M1), resp. (M2),
the orbit of every B ∈ M is dense in M , resp. M′
(defined in Proposition 3.7 b): There are no
smaller orbits.

M (M1)

M (M2)

Before we prove results about minimal families (and their members) with property
(M1) or (M2), let us introduce two more notions that are closely related to (M1) and
(M2).

3.2. Recurrent and self-similar operators

In accordance with [3], and generalizing [19], we call an operator A recurrent
if, for every B ∈ Lim(A) , one has Lim(B) = Lim(A) , i.e. M := Lim(A) has property
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(M1). Moreover, we say that an operator A is self-similar if A ∈ Lim(A) , i.e. if A ∼ A .
Some simple interrelations:

• Every limit operator of a recurrent operator clearly is self-similar.

• Every B ∈ M with property (M1) is both recurrent and self-similar.

• Every B ∈ M with property (M2) is self-similar but might not be recurrent.
(e.g. B pseudo-ergodic, C ∈ Lim(B) constant, so that Lim(C) 
� B)

• In particular, self-similar operators need not be recurrent.

• But also recurrent operators need not be self-similar. (e.g. periodic plus compact)

In the simplest case, a minimal set M with (M1) is a singleton with one translation
invariant operator C . Here C is called translation invariant if orb(C) = {C} ; from the
matrix perspective, this means that all diagonals of C are constant. But M0 = Lim(A)
need not even contain such simple operators and still, a minimal set M exists, by [3,
Prop 3.7].

LEMMA 3.3. A minimal set M with (M1) is a singleton, M = {C} , if and only if
it contains a translation invariant element.

Proof. If M has just one element, C , then C is translation invariant: Otherwise,
its translation, D := S−1CS1 , were different from C but also in M = Lim(B) . Hence,
M had a second element.

If M has more than one element then none is translation invariant: A transla-
tion invariant element C would form a “more minimal” subset M̃ := {C} = orb(C) =
Lim(C) � M . �

The next two lemmas follow immediately from Lemma 2.2.

LEMMA 3.4. For a set M with property (M1), the following conditions are equiv-
alent:

(i) one C ∈ M is a Fredholm operator on �2 ,

(ii) one C ∈ M is invertible on �2 ,

(iii) all C ∈ M are invertible on �2 ,

(iv) all C ∈ M are injective on �∞ .

(i) ⇔ (ii) holds on the level of individual self-similar operators, by Lemma 2.2
and (3):

LEMMA 3.5. If A is self-similar, e.g. if A ∈ M with (M2), then

a) A is invertible if and only if A is Fredholm,

b) specA = specess A.
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Note that, similar to (iii) ⇔ (iv) in Lemma 3.4, equivalence between invertibility
on �2 and injectivity on �∞ can be shown – even for individual operators and under
much weaker conditions. However, in that weaker setting, also injectivity of A∗ is
required (which is of course redundant if A is self-adjoint):

LEMMA 3.6. a) For a band operator A with closed range (e.g. a Fredholm oper-
ator), one has:

A is invertible on �2 ⇐⇒ A and A∗ are injective on �∞ .

b) Similarly, the following equivalence holds for the half-line compression A+ of A:

A+ is invertible on �2(Z+) ⇐⇒ A+ and A∗
+ are injective on �∞(Z+) .

Here A+ denotes the half-line compression of A, that is PAP, as an operator �2(Z+)→
�2(Z+) , where P : �2 → �2 is the operator of multiplication by the characteristic func-
tion of Z+ .

Proof. a) ⇒ If A is invertible on �2 , then so is its adjoint, A∗ . As band op-
erators, A and A∗ act as bounded operators on every �p with p ∈ [1,∞] , where, by
[21, 17], their invertibility and spectrum are independent of p ∈ [1,∞] . So both are
invertible and hence injective on �∞ .

⇐ If A and A∗ are injective on �∞ , then they are also injective on �2 ⊂ �∞ .
Moreover, the range of A in �2 is closed, by assumption.

b) The proof of b) works exactly like a). The range of A+ in �2(Z+) is closed, too,
since im(A+)= im(PAP)= im(P)∩im(AP) with im(AP)= im(PA)+ im(χ{−w,...,−1}·) ,
where w is the band-width of A and im(PA) = im(P)∩ im(A) . �

Note that statements a) and b) of Lemma 3.6 also hold with injectivity on any �p

with p � 2. But of course, technically, p = ∞ is the simplest case to check. (A+x = 0
yields a componentwise recurrence for a vector x in the kernel; now test for bounded-
ness).

PROPOSITION 3.7. Let an operator set M be subject to (M2).Then

a) all elements of M are limit operators of each other – including themselves,
b) all sets Lim(C) in (M2) are the same; denote that set by M′ (= M if even
(M1) applies),

c) all elements of M have the same norm, lower norm, spectrum (that is entirely
essential spectrum), resolvent norms and pseudospectra,

d) for all C ∈ M, one has Lim−(C) = Lim(C) = Lim+(C) .
e) for all C ∈M, one has specessC− = specessC+ = specessC = specC, where C±
denotes the compression of C to the positive resp. negative half-line, �2(Z±) .

Proof.

a) If A,B ∈ M then, by (M2), A ∈ M ⊂ Lim(B) and B ∈ M ⊂ Lim(A) .
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b) If A,B ∈ M then, by a) and Lemma 3.1, Lim(A) ⊂ Lim(B) and Lim(B) ⊂
Lim(A) .

c) B ∈ Lim(A) implies ‖B‖ � ‖A‖ by [20, Prop 1.a], ν(B) � ν(A) , by [14, Prop
3.9] and specB ⊂ specess A ⊂ specA by (3). By a), all A,B ∈ M are limit opera-
tors of each other.

Moreover, if A,B∈M , so that B =Ah for some h , by a), then B−λ I =Ah−λ I =
(A−λ I)h for all λ ∈ C , so that A−λ I and B−λ I are limit operators of each
other. Hence, also ν(A− λ I) and ν(B− λ I) coincide – as well as their level
sets.

d) Let C ∈ M and B ∈ Lim+(C) . Then, by Remark 3.2 a), and recalling M′ from
b),

M′ = Lim(B) ⊂ Lim+(C) ⊂ Lim(C) = M′,

so that both “⊂” are “=”, whence Lim+(C) = Lim(C) . It is the same with
Lim−(C) .

e) One defines limit operators of one-sided infinite matrices C± = (Ci j)i, j∈Z± (in the
direction where the matrix is infinite) by the same definition and gets Lim(C±) =
Lim±(C) . By d), both sets are equal to Lim(C) , and by (3) and its one-sided
analogue, it follows specessC± = specessC . Equality with specC is already in
c). �

Let SM ⊂ C denote the (essential) spectrum of one (and all) operator(s) C ∈ M .
The sets specC+ and SM differ by eigenvalues of C+ or its adjoint – so-called Dirichlet
eigenvalues. Note that this difference set, and hence specC+ (or specC− ), can be
different or the same for all C ∈ M – depending on the family M , e.g.

• For a family M of periodic discrete Schrödinger operators (i.e. the orbit of one
q -periodic discrete Schrödinger operator containing q elements), there is at most
one Dirichlet eigenvalue per gap between the (at most) q intervals (spectral
bands) of SM ⊂ R . But these eigenvalues typically differ for every C ∈ M .

• For tridiagonal pseudoergodic operators, the difference between specC+ and SM

is the same for all C ∈ M , see [5] for a proof and the explicit computation of that
difference.

In particular, it is in general impossible to make uniform statements for the whole family
M about the invertibility of C± or about more involved constructions like the finite
section method.

3.3. Concrete operator classes and examples

Let us look at classes of recurrent operators A , so that already the set M := Lim(A)
is minimal in the sense (M1).

Periodic and almost-periodic operators. A band operator A is called a peri-
odic, resp. almost-periodic, operator if orb(A) is finite, resp. relatively compact in the
uniform (meaning operator norm) topology.
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One can show, see [6] or [17, Lem. 5.43], that A is a periodic, resp. almost-
periodic, operator if and only if every coefficient b( j) in (1) is periodic, resp. almost-
periodic. Here, a sequence b is called periodic, resp. almost-periodic, if its orbit

orb(b) := {Snb : n ∈ Z} (7)

is finite, resp. relatively compact in �∞(Z) .

• For a q -periodic operator A with q ∈ N , we have

Lim(A) = {S−nASn : n = 0, . . . ,q−1} = orb(A).

So the set M := Lim(A) is minimal in the sense (M1), hence (M2), so that M is
subject to Proposition 3.7. Of course, none of the statements of Proposition 3.7
is a surprise in this setting, as every C ∈ M is related to A by a unitary similarity
transform, C = S−kASk .

• The situation is slightly different for almost-periodic operators A : If B ∈ Lim(A)
then the convergence S−hnAShn → B is, unlike in the periodic case, not by being
eventually constant but, still remarkably, in the operator norm topology! Indeed,
the sequence (S−hnAShn) has, by the relative compactness of orb(A) , a uniformly
convergent subsequence, clearly with limit B .

Put M := Lim(A) and let us check (M1). If C ∈M then C = Ah with a sequence
h = (hn) in Z , where |hn| → ∞ . As the convergence S−hnAShn → C is even
uniform, we get,

‖A−ShnCS−hn‖ = ‖S−hnAShn −C‖ → 0,

so that A =C−h ∈ Lim(C) , whence M = Lim(A)⊂ Lim(C) , by Lemma 3.1. The
opposite inclusion, Lim(C) ⊂ M holds by C ∈ M and Lemma 3.1. So indeed,
(M1) holds.

Also in the almost-periodic setting, one can conclude ‖A‖= ‖S−hnAShn‖→ ‖B‖
and ν(A) = ν(S−hnAShn)→ ν(B) , hence equality, directly from the uniform con-
vergence S−hnAShn → B . The statements for spectra, resolvents, etc. follow eas-
ily also from here.

EXAMPLE 3.8. Prominent examples are so-called discrete Schrödinger operators

A = S−1 +Mb(0) +S, (8)

where b := b(0) is called the potential of A . Such operators appear, for example, in con-
densed matter physics, describing the electrical conductivity of materials with regular
(periodic, i.e. crystal) or less regular structure.

A typical construction of potentials b is as follows. For n ∈ Z , let

b(n) = g( f (n)) with f (x) = e2π i(θ+αx) and g(t) = Re(t). (9)
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If α is rational, p
q , then f , and hence b , is q -periodic (assuming the fraction p

q cannot
be reduced). For irrational α , however, f (n) never repeats a value, and b = g◦ f is not
periodic. But, due to the compactness of the unit circle T := f (R) and the continuity of
g , it is easy to see that every sequence of elements of orb(b) has a uniformly convergent
subsequence.

The discrete Schrödinger operator with potential b from (9) (or a multiple of b )
is the well-studied Almost-Mathieu operator. The particular construction b = g ◦ f in
(9) with a continuous g is also referred to as a quasi-periodic potential.

Let A be the Almost-Mathieu operator. We know from above that M := Lim(A)
has property (M1). For this particular construction, it is known that M is the set of all
Schrödinger operators with potential b of the form (9) and θ ∈ [0,1) – regardless of
the θ used in A .

Sturmian models. This is a class, where the limit operators and the fact (M1)
are well-known [15, 9, 8, 23] and where it is much more tedious than in the periodic or
almost-periodic case to conclude the claims of Proposition 3.7 by bare hands.

For simplicity, again look at a band operator with just one varying diagonal, e.g. a
discrete Schrödinger operator, and copy the construction from (9) but, in contrast, re-
place g by a discontinuous function, e.g. the characteristic function g = χI of the cir-
cular interval I = f ([1−β ,1)) .

The model then has three parameters: the step size1 α in f , the interval length β
in g and the initial position θ in f . Another degree of freedom is to replace the interval
I = f ([1−β ,1)) by J = f ((1−β ,1]) . Let us denote the corresponding operator A by
Aθ ,I

α ,β resp. Aθ ,J
α ,β .

All these configurations produce so-called Sturmian sequences, and in all cases,

Lim(Aθ ,I
α ,β ) = Lim(Aθ ,J

α ,β ) =
{

Aφ ,I
α ,β , Aφ ,J

α ,β : φ ∈ [0,1)
}

=: M,

independently of θ . So obviously, (M1) holds, whence Proposition 3.7 is in force.
The standard model, the so-called Fibonacci Hamiltonian, has θ = 0, g = χI , and

α = β =
√

5−1
2

=
1

1+ 1
1+ 1

1+···

. (10)

Pseudo-ergodic models. Now we turn to a case where (M1) does not apply – but
(M2).

For simplicity, again look at a band operator A with just one varying diagonal b ,
e.g. a discrete Schrödinger operator. Denote this A by Ab . Also note our construction
in Section 5 below how to extend this to finitely many varying diagonals.

For the entries of b , fix a compact set Σ ⊂ C – the so-called alphabet. We say that
both b ∈ ΣZ and Ab are pseudo-ergodic, and write Ab ∈ ΨE, if every Ac with c ∈ ΣZ

is a limit operator of Ab . Abbreviating the set {Ac : c ∈ ΣZ} by AΣZ , we get that

∀A ∈ ΨE : Lim(A) = AΣZ ⊃ ΨE, (11)

1Again, a rational α leads to periodicity, whence α is typically chosen irrational.
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so that M := ΨE is subject to (M2) and Proposition 3.7 is in force. In particular, M′ is
AΣZ , the set of all operators Ac that are possible with a sequence c over the alphabet
Σ .

It is also possible to construct minimal families M with (M2), where M � M′ �

AΣZ . To this end, assume |Σ| � 2, say 0,1 ∈ Σ , and limit the basic building blocks of
the bi-infinite word b to a set T of finite words, e.g. T = {00,1} , meaning that we only
consider b ∈ ΣZ that arise from bi-infinite concatenations of “allowed” words t ∈ T .

Denote the corresponding set of operators Ab by Op(T ) . In particular, Op(Σ) =
AΣZ . If Op(T ) � Op(Σ) then, by limiting ourselves to pseudo-ergodic operators in
Op(T ) , (11) generalizes as follows:

∀A ∈ ΨE∩Op(T )︸ ︷︷ ︸
M

: AΣZ � Lim(A) = AΣZ ∩Op(T )︸ ︷︷ ︸
M′

� ΨE∩Op(T )︸ ︷︷ ︸
M

. (12)

Pseudo-ergodicitywas introduced by Davies [11] to study spectral properties of random
operators while eliminating probabilistic arguments. Indeed, if the b(n) are random
variables then, for a large class of probability distributions, in particular if each b(n) is
iid with range Σ , then Ab ∈ ΨE almost surely.

4. Subwords a.k.a. factors

The concept of pseudo-ergodicity (and some others) is much more user-friendly
when defined in terms of subwords rather than limit operators: b ∈ ΣZ is pseudo-
ergodic if and only if

every finite word over Σ can be found, up to arbitrary precision, as a subword of b.

If Σ is a discrete alphabet, meaning that

inf
s,t∈Σ, s 
=t

|s− t| > 0,

then the “up to arbitrary precision” bit can even be dropped in the previous sentence.
Of course:

LEMMA 4.1. a) If Σ is discrete then a sequence in Σ is convergent iff it is even-
tually constant.

b) A bounded alphabet Σ ⊂ C is discrete if and only if it is finite. (Bolzano-
Weierstrass)

We should now define the notion of a subword and some related notations prop-
erly:

• Let Σ∗ := ∪∞
n=0 Σn denote the set of all finite words over Σ .

• Let [a1 . . .an] denote the word w ∈ Σn with w(k) = ak ∈ Σ for k = 1, . . . ,n ∈ N .
• Let |w| be the length of the word w ∈ Σ∗ ; so |[a1 . . .an]| = n .
• For w ∈ Σ∗ , b ∈ ΣZ and ε > 0, put

◦ pos(w,b) := {k ∈ Z : [b(k) . . .b(k+ |w|−1)] = w} ,
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◦ posε(w,b) := {k ∈ Z : ‖ [b(k) . . .b(k+ |w|−1)]−w‖∞ < ε} ,
◦ #(w,b) := |pos(w,b)| , meaning the number of elements,
◦ #ε(w,b) := |posε(w,b)| ,
◦ W (b) := {w ∈ Σ∗ : #(w,b) � 1} , the set of all finite subwords of b , and
◦ Wn(b) := {w ∈ W (b) : |w| = n} .

The two concepts of limit operators and subwords (a.k.a. factors) go hand in hand
very nicely in the case of pseudo-ergodicity. Also: both concepts yield neat and clean
sufficient conditions for inequalities and equalities between norms, lower norms, spec-
tra, pseudospectra, etc. – see Proposition 3.7 above and Proposition 4.2 below. So let
us also have a look at how they are related to each other in general.

4.1. Subwords and spectra

First, here is how subwords indicate spectral inclusions: Let Ab , again, be a band
operator with one distinguished diagonal carrying the sequence b ∈ ΣZ and all other
diagonals constant. (And note our construction in Section 5 on how to extend this to
finitely many varying diagonals.)

PROPOSITION 4.2. If b,c ∈ ΣZ with W (b) ⊂ W (c) then

a) ν(Ab) � ν(Ac) ,
b) specAb ⊂ specAc and
c) specεAb ⊂ specεAc for all ε > 0 .

Proof. Our attention was drawn to observation a) by [12]. It will also be part of
[13]. Let’s give the simple proof here, for the reader’s convenience:

a) Take any x ∈ �2 with ‖x‖ = 1 and finite support, say of size n ∈ N . As W (b) ⊂
W (c) , there exists k ∈ Z such that ‖Abx‖ = ‖AcSkx‖ , which implies νn(Ab) �
νn(Ac) for all n . Now use (5) to conclude ν(Ab) � ν(Ac) .

b) W (b)⊂W (c) and λ ∈ C imply W (b−λ )⊂ W (c−λ ) . Whether it is the main
diagonal that is varying or not, ν(Ab − λ I) � ν(Ac − λ I) , by part a). By the
same arguments, ν((Ab−λ I)∗) � ν((Ac−λ I)∗) holds, so that ‖(Ab−λ I)−1‖�
‖(Ac −λ I)−1‖ , by (4).

c) This follows immediately from ‖(Ab−λ I)−1‖ � ‖(Ac −λ I)−1‖ . �

4.2. Subwords and limit operators

Now we connect the concepts of subwords and limit operators, as good as we can.
A perfect match is not to be expected, though, since the limit operator relation, Ab ∈
Lim(Ac) , is connected with infinite repetition (or approximation) of all finite patterns
of b in c . We begin by making this observation explicit.

LEMMA 4.3. Let b,c ∈ ΣZ . Then the following are equivalent
(i) Ab ∈ Lim(Ac) ,
(ii) for every w ∈ W (b) , it holds that #ε(w,c) = ∞ for all ε > 0 ; that is, either
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(a) #(w,c) = ∞ or

(b) w ∈ clos
(
Wn(c)\ {w}

)
with n = |w| .

If Σ is discrete then (b) is impossible, so that (ii) is always (a) then.

Proof. ⇓ Let Ab ∈ Lim(Ac) , w ∈ W (b) and k ∈ pos(w,b) , so that w = [b(k) . . .
b(k + |w| − 1)] . By Ab ∈ Lim(Ac) , Ab = (Ac)h for a sequence h = (hn) in Z with
|hn| → ∞ . In particular,

w = lim
n→∞

[c(k+hn) . . .c(k+ |w|−1+hn)].

Now we have two cases: The sequence (wn) of words wn = [c(k + hn) . . .c(k + |w|−
1+hn)] ∈ Σn

(a) . . . contains w infinitely often (i.e. it has a constant subsequence). Then #(w,c) =
∞ .

(b) . . . contains w only finitely often. Then we can remove those finitely many w
from (wn) , still have wn → w and conclude that w ∈ clos(W|w|(c)\ {w}) .

⇑ For n ∈ N , choose hn ∈ pos1/n([b(−n) . . .b(n)],c) . By (ii) , the choice is

infinite; so let |hn| > n . Then |hn| → ∞ and S−hnAcShn → Ab strongly, whence Ab =
(Ac)h ∈ Lim(Ac) . �

As a consequence, we immediately get that for two members Ab and Ac of a
minimal family M with (M2), in the case of a discrete alphabet Σ for b and c , we have
W (b) = W (c) and that every w ∈ W (b) appears infinitely often in b – in the left and
in the right half of b .

REMARK 4.4. With Lemma 4.3, we can go and compare the two conditions
(i) Ab ∈ Lim(Ac) ,
(ii) W (b) ⊂ W (c) .

Both are sufficient for specAb ⊂ specAc , etc., by Propositions 3.7 and 4.2. The rela-
tion to each other is more shaky. In fact, we cannot expect an immediate connection
since Lim(Ab) determines the essential spectrum of Ab , by (3), while w ∈ W (b) with
#ε(w,b) < ∞ does not.

(i) ⇒ (ii) : This holds if Σ is discrete (even with #(w,c) = ∞). Otherwise, (i)
implies at least W (b) ⊂ closW (c) := ∪∞

n=0closWn(c) .
(ii)⇒ (i) : Let w ∈W (b)⊂W (c) . For Ab ∈ Lim(Ac) we even need #ε(w,c) = ∞

for all ε > 0, by Lemma 4.3. So this direction needs further strong conditions. Let us
assume Σ is discrete. For the conclusion #(w,c) = ∞ , it helps, for example, when Ab

or Ac is self-similar:

#(w,b) � 1
Ab∈Lim(Ab)=⇒ #(w,b) = ∞

W (b)⊂W (c)
=⇒ #(w,c) = ∞,

#(w,b) � 1
W (b)⊂W (c)

=⇒ #(w,c) � 1
Ac∈Lim(Ac)=⇒ #(w,c) = ∞.
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REMARK 4.5. (Bounded gaps and linear repetitivity) Damanik and Lenz [10]
study minimal families M = Lim(Ab) over a finite (hence discrete) alphabet. We know
that then every Ac ∈M is self-similar, i.e. every subword w∈W (c) occurs #(w,c) = ∞
often. It is shown that
(i) M is minimal in the sense that the orbits of all Ac ∈ M are dense in M , if and

only if
(ii) the gap length between any two occurrences of w in c is bounded (the bound

dependent on w but not on Ac ∈ M ), which obviously follows from
(iii) the gap between any two occurrences of w in c is bounded by L|w| for all Ac ∈M

with a constant L independent of w and c .

Property (iii) is called linear repetitivity of M and is shown to be also necessary for
(i) and (ii) if the infinite word b is generated by substitution rules, like the Fibonacci
potential (10) is recursively generated by application of the two rules 0 �→ 1, 1 �→ 10.

Clearly, minimality (i) here means that clos(orb(Ac)) equals M for all Ac ∈ M
but cannot be larger than M ; in our notations, that is (M1) but not its generalization
(M2). Indeed:

• boundedness of the gap between two occurrences of w in c implies that w also
occurs in every d with Ad ∈ Lim(Ac) – infinitely often and with the same bound
on the gaps; limit operators Ad without or with just finitely many w in d are
impossible,

• in particular, pseudo-ergodic cases are not covered: every w ∈ Σ∗ occurs in-
finitely often in every pseudo-ergodic c ∈ ΣZ but we have no control over the
locations and hence no bound on the gap size. Unbounded gaps lead to limit
operators Ad of Ac with #(w,d) = 0.

4.3. Factor complexity and operator classes

Finally, note that some of our classes of operators Ab and sequences b ∈ ΣZ can
be characterized purely by the size of the set Wn(b) – the so-called factor complexity
– that is the number of different subwords of b of length n . Here are the basics (see
e.g. [7]):

• The function Cb(n) := |Wn(b)| is only non-trivial for |Σ| > 1.

• The function Cb(n) is monotonic non-decreasing.

• Once the function stops growing, Cb(n) = Cb(n+1) , it is constant from there.

• So if Cb is unbounded then Cb(n) � n+1.

• If b is periodic, say with period q , then Cb(n) � q , with “=” if n � q .

• In fact, Cb is bounded if and only if b is periodic. (bi-infinite Morse-Hedlund
theorem, [7])

• A one-sided infinite word a , e.g. the left half, b− , or the right half, b+ , of a
bi-infinite word b , is Sturmian if and only if Ca(n) = n+1 (minimal unbounded
growth).
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• For bi-infinite words, the situation is more complicated, see [7], and note that
Cb(n)= n+1 still allows bi-infinite words like b = . . .000111 . . . or . . .0001000 . . .

• For Sturmian words b , one has |Σ| = Cb±(1) = 2, so that the choice Σ = {0,1}
is not as arbitrary as it first seems.

• b is pseudo-ergodic if and only if Cb(n) = |Σ|n .

5. Possible directions of extension

• We can clearly pass from �2 to �p , even with p ∈ [1,∞] . Instead of the strong
convergence of S−hnAShn , one then looks at the so-called P -convergence [22].
In particular, none of our results has anything to do with self-adjointness.

• Our sequence spaces could also have values in a Banach space X . The matrix
entries of A (and hence the elements of Σ) will then have to be operators X →X .
Also this setting is covered by the P -convergence and corresponding results.
One should however be aware that then, unlike for dimX < ∞ , not for every
bounded band operator A and every prescribed sequence h = (hn) in Z with
|hn| → ∞ , there is a subsequence g of h for which the limit operator Ag exists.

• For simplicity, we restricted consideration to band operators with just one varying
diagonal. One can also study finitely many, say m , varying diagonals: Therefore
write A = Ab with a sequence b ∈ TZ , where T = Σm and b(k) is the vector
containing the m interesting entries in the k -th column of A .

• In Sections 3.1 and 3.2, we can pass from �p(Z) to �p(Zd) . Of course, even
2D quasicrystals, the generalization of Sturmian sequences, the most famous one
being the Penrose tiling, are and remain a discipline of its own. Also for simpler
classes, one has to adapt the notion of a 2D or 3D subword accordingly, of course.

• Speaking about Sturmian sequences, there exist generalizations to alphabets Σ
with k � 2 elements. The condition is then a factor complexity of n+ k−1.

• One can also pass from band operators to uniform limits of band operators –
so-called band-dominated operators, [17].
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