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Abstract. The matrix S = [1 + xiy j ]ni, j=1 , 0 < x1 < · · · < xn , 0 < y1 < · · · < yn , has gained
importance lately due to its role in powers preserving total nonnegativity. We give an explicit
decomposition of S in terms of elementary bidiagonal matrices, which is analogous to the Neville
decomposition. We give a bidiagonal decomposition of S◦m = [(1+ xiy j)m] for positive integers
1 � m � n− 1 . We also explore the total positivity of Hadamard powers of another important
class of matrices called mean matrices.

1. Introduction

A matrix is called totally nonnegative (respectively totally positive) if all its mi-
nors are nonnegative (respectively positive) (see [8]). Totally nonnegative (respectively
totally positive) matrices have also been called totally positive (respectively strictly to-
tally positive), as can be seen in [12, 21, 27]. Let A be an n×n matrix with nonnegative
entries. The matrix AT denotes the transpose of A . We assume 1 � i, j � n, unless
otherwise stated. The (i, j) th entry of A is denoted by Ai j . Let 1 � k � n . A matrix
is called TNk (respectively TPk ) if all its minors upto order k are nonnegative (respec-
tively positive). If r > 0, then the r th Hadamard power of A is given by Aor = [Ar

i j].
The matrix A is said to be infinitely divisible if Aor is positive semidefinite for every
r > 0. We refer the reader to [2, 4, 14, 26] for many examples and results on infinitely
divisible matrices.

It was shown in [11] that if A is positive semidefinite, then for r � n− 2, A◦r
is also positive semidefinite. The sharpness of the lower bound n− 2 was given by
considering the positive semidefinite matrix Aε = [1+εi j] , where ε > 0. It was shown
that if r < n− 2 is any positive non integer, then A◦r

ε fails to be positive semidefinite
for sufficiently small ε > 0.

A Lebesgue measurable function f : R → R is called TNk if given any increasing
sequences {xm}m�1 and {ym}m�1 of real numbers, the matrix [ f (xi − y j)] is TNk . Let
W : R → R be defined as

W (x) =

{
cosx if x ∈ (−π/2,π/2),
0 otherwise.

Mathematics subject classification (2020): 15B05, 15A23, 15B48.
Keywords and phrases: Totally positive matrices, totally nonnegative matrices, Hadamard powers, in-

finitely divisible matrices, bidiagonal decomposition, mean matrices.
The research of first author is supported by a Early Career Research Award ECR/2018/001784 of SERB, India.

c© � � , Zagreb
Paper OaM-16-41

545

http://dx.doi.org/10.7153/oam-2022-16-41


546 P. GROVER AND V. S. PANWAR

Schoenberg [30] showed that if r � 0 and k is an integer greater than or equal to 2,
then W (x)r is TNk if and only if r � k−2. (See also [23, Remark 6.2].)

A function f : R → R is called a Pólya frequency function if f is Lebesgue in-
tegrable on R , does not vanish at at least two points, and for n ∈ N and real numbers
x1 < · · · < xn,y1 < · · · < yn , the matrix [ f (xi − y j)] is totally nonnegative. Consider the
Pólya frequency function Ω : R → R defined as

Ω(x) :=

{
xe−x if x > 0,

0 otherwise.

Karlin [21] proved that for any integer k � 2 and any real number r � 0, the function
Ω(x)r is TNk if r is a non negative integer or r � k−2, see also [22, p. 211]. Recently,
Khare [23] showed its converse by proving that for any integer k � 2 and r ∈ (0,k−
2)\Z , Ω(x)r is not TNk .

The characterizations of total nonnegativity of Hadamard powers of a matrix have
also recently appeared in [7, 9]. Let x1, . . . ,xn be distinct positive real numbers. Let
X = [1+ xix j] . Jain [17, Theorem 1.1] proved that the matrix X◦r is positive semidef-
inite if and only if r is a nonnegative integer or r > n− 2. So the matrix X serves as
a stronger example than the matrix Aε for proving the sharpness of the lower bound
n− 2, in the sense that it works for every positive non integer r < n− 2. She also
proved that if 0 < x1 < · · · < xn , then the matrix X◦r is totally positive for r > n− 2
(see [17, Theorem 2.4]). For any real numbers x1 < · · · < xn and y1 < · · · < yn such
that 1+ xiy j > 0, let

S = [1+ xiy j].

Recently, Khare [23, Theorem C] showed that the matrix S◦r is totally positive if r >
n− 2, and totally nonnegative if and only if r = 0,1, . . . ,n− 2. Jain [18, Corollary
5] showed that for r = 0,1, . . . ,n− 2, rank(S◦r) = r + 1, and therefore, S◦r is not
totally positive. Thus S◦r is totally positive if and only if r > n− 2 and S◦r is totally
nonnegative if and only if either r > n−2 or r = 0,1, . . . ,n−2. The matrix S was used
to prove the converse of Karlin’s result, see [23, Theorem 1.7].

A matrix A is called lower (respectively upper) bidiagonal if Ai j = 0 for i−
j �= 0,1 (respectively for i− j �= 0,−1). For any real number s and positive integer
2 � i � n , let Li(s) (respectively Ui(s)) be the matrix whose diagonal entries are one,
(i, i−1) th (respectively (i−1, i) th) entry is s and the remaining entries are zero. These
particular bidiagonal matrices are called elementary bidiagonal matrices. Cryer [5]
showed that any n×n totally nonnegative matrix A can be written as

A = ∏
k

L(k) ∏
�

U (�), (1)

where L(k) and U (�) are, respectively, lower and upper elementary bidiagonal matri-
ces (see also [6]). Careful analyses of the relationships between totally nonnegative
matrices and bidiagonal decompositions have been done in [10, 12]. For more results
on bidiagonal decompositions of matrices, see [1, 15, 16, 19]. In particular, in the
case of invertible totally nonnegative matrices, the unicity of the bidiagonal decompo-
sition under certain conditions was assured in [12]. Finding explicit decompositions



BIDIAGONAL DECOMPOSITIONS AND TOTAL POSITIVITY OF SOME SPECIAL MATRICES 547

like (1) is a non trivial task as there may not be obvious patterns to guess the factors.
One of the main aims of this paper is to give the decomposition (1) for the matrix S ,
which is similar to what appears in the successive elementary bidiagonal decomposi-
tion (also called Neville decomposition) for invertible totally nonnegative matrices, see
[8, Theorem 2.2.2]. However, the matrix S is not invertible for n � 3. To find this de-
composition, we also give an LU decomposition of S . We also give another interesting
decomposition for S in terms of bidiagonal matrices. The difference with the earlier
one is that here the lower and upper bidiagonal matrices appear in a mixed pattern;
however, a major advantage is that this decomposition can be generalized to Hadamard
integer powers of S .

Another important class of matrices is that of the mean matrices. For a discus-
sion on infinite divisibility of these matrices, see [4]. Some important examples of

means on positive real numbers are the arithmetic mean A (a,b)=
a+b

2
, the harmonic

mean H(a,b) =
2ab
a+b

, the Heinz mean Hν(a,b) =
avb1−v +a1−vbv

2
for 0 � ν � 1

and the binomial mean Bα(a,b) =
(

aα +bα

2

)1/α
for −∞ � α � ∞ , where it is un-

derstood that B0(a,b) =
√

ab , B∞(a,b) = max(a,b) and B−∞(a,b) = min(a,b) . Let

0 < λ1 < · · ·< λn. In [4], it is shown that

[
1

A (λi,λ j)

]
, [H(λi,λ j)] ,

[
1

Hν(λi,λ j)

]
and[

1
Bα (λi,λ j)

]
(α � 0) are infinitely divisible. Since the Cauchy matrix C =

[
1

λi + λ j

]

is totally positive (see [27]), so are

[
1

A (λi,λ j)

]
, [H(λi,λ j)] and

[
1

Hν (λi,λ j)

] (
ν �= 1

2

)
.

In particular, they are TP3 . By [20, Theorem 4.2] (or [9, Theorem 5.2]), we have that
for r � 1, their r th Hadamard powers are also TP3 . We give a simple proof to show
that the Hadamard powers of these matrices are in fact totally positive.

In Section 2, we state and prove our results for the decompositions of S . In Section
3, we give the results for mean matrices.

2. Bidiagonal decompositions for S = [1+ xiy j] and its Hadamard powers

We begin by giving an LU decomposition for S .

PROPOSITION 2.1. Let 0 < x1 < · · · < xn and 0 < y1 < · · ·< yn . Then the matrix
S = [1+xiy j] can be written as LU , where L and U are the lower and upper triangular
matrices, respectively, given by

Li j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1+ y1xi√
1+ x1y1

if j = 1,

(xi − x1)
√

y2− y1√
x2 − x1

√
1+ x1y1

if j = 2,

0 otherwise
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and

Ui j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1+ x1y j√
1+ x1y1

if i = 1,

(y j − y1)
√

x2− x1√
y2− y1

√
1+ x1y1

if i = 2,

0 otherwise.

Proof. This can be proved by checking the (i, j) th entry of LU :

(LU)i j =
2

∑
k=1

LikUk j

=
(

1+ y1xi√
1+ x1y1

)(
1+ x1y j√
1+ x1y1

)
+(

(xi − x1)
√

y2 − y1√
x2− x1

√
1+ x1y1

)(
(y j − y1)

√
x2− x1√

y2− y1
√

1+ x1y1

)

=
1

(1+ x1y1)
[(1+ y1xi)(1+ x1y j)+ (xi− x1)(y j − y1)]

= 1+ xiy j. �

Let diag[di] denote the diagonal matrix with diagonal entries d1, . . . ,dn. Now, we
give the decomposition (1) for S .

THEOREM 2.2. Let n � 2 . Let 0 < x1 < · · · < xn and 0 < y1 < · · · < yn . For

2 � i � n, let αi =
1+ y1xi

1+ y1xi−1
and α ′

i =
1+ x1yi

1+ x1yi−1
. For 3 � j � n, let

β j =
(x j − x j−1)(1+ y1x j−2)

(x j−1− x j−2)(1+ y1x j−1)

and

β
′
j =

(y j − y j−1)(1+ x1y j−2)
(y j−1− y j−2)(1+ x1y j−1)

.

Let

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1+ x1y1 0 0 · · · 0

0
(x2− x1)(y2 − y1)

1+ x1y1
0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.
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Then

S = (Ln(αn) · · ·L2(α2)) (Ln(βn) · · ·L3(β3))D
(
U3(β

′
3) · · ·Un(β

′
n)
)

(
U2(α

′
2) · · ·Un(α

′
n)
)

. (2)

Proof. Let the lower triangular matrices M = [Mij],M
′
= [M

′
i j],N = [Ni j],N

′
=

[N
′
i j],Y1 = [(Y1)i j] and Y2 = [(Y2)i j] be defined as follows:

Mij =

⎧⎪⎨
⎪⎩

1+ y1xi

1+ y1x j
if i � j,

0 otherwise,

M
′
i j =

⎧⎪⎨
⎪⎩

1+ x1yi

1+ x1y j
if i � j,

0 otherwise,

Ni j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if i = j = 1,
(xi − xi−1)(1+ y1x j−1)
(x j − x j−1)(1+ y1xi−1)

if i � j � 2,

0 otherwise,

N
′
i j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if i = j = 1,
(yi − yi−1)(1+ x1y j−1)
(y j − y j−1)(1+ x1yi−1)

if i � j � 2,

0 otherwise,

(Y1)i j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1+ y1xi

1+ y1x1
if j = 1,

xi− x j−1

x j − x j−1
if i � j � 2,

0 otherwise

and

(Y2)i j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1+ x1yi

1+ x1y1
if j = 1,

yi− y j−1

y j − y j−1
if i � j � 2,

0 otherwise.

Let Pi = Li (αi) ,P
′
i = Li(α

′
i ),Qj = Lj(β j) and Q

′
j = Lj(β

′
j) for 2 � i � n and

3 � j � n . To prove the theorem, we show the following:
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(a) PnPn−1 · · ·P2 = M and P
′
nP

′
n−1 · · ·P

′
2 = M

′
.

(b) QnQn−1 · · ·Q3 = N and Q
′
nQ

′
n−1 · · ·Q

′
3 = N

′
.

(c) MN = Y1 and M
′
N

′
= Y2 .

(d) S = Y1DYT
2 .

We shall give a proof for the first part of each of (a), (b) and (c). The proofs of
their second parts are analogous. So we omit them.

Note that for i � 2, multiplying any matrix by Li(s) on the left is equivalent to
changing its i th row to the one obtained by adding s times the (i−1) th row to it. Let
δi j = 1 for i = j , and 0 otherwise. To prove (a), we show that for 2 � k � n ,

(Pk · · · P2)i j =

{
Mij if i � k,

δi j if i > k.
(3)

Let I be the identity matrix of order n . Then for i �= 2,

(P2)i j = (P2I)i j = δi j.

Note that M1 j = δ1 j . We also have

(P2)2 j = (P2I)2 j

= I2 j +
(

1+ y1x2

1+ y1x1

)
I1 j

= δ2 j +
(

1+ y1x2

1+ y1x1

)
δ1 j

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1+ y1x2

1+ y1x1
if j = 1,

1 if j = 2,

0 otherwise

= M2 j.

Hence (3) holds for k = 2. Let it hold for k = m , where 2 � m � n−1. Then

(Pm · · ·P2)i j =

{
Mij if i � m,

δi j if i > m.

So for i � m, (Pm+1 · · ·P2)i j = (Pm · · ·P2)i j = Mij. For i > m+1,

(Pm+1 · · ·P2)i j = (Pm · · ·P2)i j = δi j.

Also,

(Pm+1 · · ·P2)m+1, j = (Pm · · ·P2)m+1, j +
(

1+ y1xm+1

1+ y1xm

)
(Pm · · ·P2)mj



BIDIAGONAL DECOMPOSITIONS AND TOTAL POSITIVITY OF SOME SPECIAL MATRICES 551

= δm+1, j +
(

1+ y1xm+1

1+ y1xm

)
Mmj

= Mm+1, j.

Hence

(Pm+1 · · ·P2)i j =

{
Mij if i � m+1,

δi j if i > m+1.

Thus (3) holds for k = m+1. Hence (3) is true for every 2 � k � n. Putting k = n
proves the first part of (a). To prove (b), we show that for 3 � k � n ,

(Qk · · · Q3)i j =

{
Ni j if i � k,

δi j if i > k.
(4)

We prove this in a similar manner as above. Since Q3 = Q3I, (Q3)i j = (Q3I)i j =
δi j for i �= 3. Note that for i = 1 and i = 2, Ni j = δi j . Now

(Q3)3 j = I3 j +
(

(x3 − x2)(1+ y1x1)
(x2 − x1)(1+ y1x2)

)
I2 j

= δ3 j +
(

(x3− x2)(1+ y1x1)
(x2− x1)(1+ y1x2)

)
δ2 j

= N3 j.

Suppose (4) holds for k = m , where 3 � m � n−1. Then

(Qm · · ·Q3)i j =

{
Ni j if i � m,

δi j if i > m.

So for i � m ,
(Qm+1 · · ·Q3)i j = (Qm · · ·Q3)i j = Ni j.

For i > m+1,
(Qm+1 · · ·Q3)i j = (Qm · · ·Q3)i j = δi j.

Also,

(Qm+1 · · ·Q3)m+1, j = (Qm · · ·Q3)m+1, j

+
(

(xm+1 − xm)(1+ y1xm−1)
(xm − xm−1)(1+ y1xm)

)
(Qm · · ·Q3)mj

= δm+1, j +
(

(xm+1− xm)(1+ y1xm−1)
(xm − xm−1)(1+ y1xm)

)
Nmj

= Nm+1, j.

Therefore

(Qm+1 · · ·Q3)i j =

{
Ni j if i � m+1,

δi j if i > m+1.



552 P. GROVER AND V. S. PANWAR

So (4) is true for every 3 � k � n . Putting k = n proves the first part of (b). Now for
each i ,

(MN)i1 = Mi1N11 =
(

1+ y1xi

1+ y1x1

)
= (Y1)i1.

For i < j ,

(MN)i j = 0 = (Y1)i j.

For 1 < j � i,

(MN)i j =
n

∑
k=1

MikNk j

= ∑
i�k� j

(
1+ y1xi

1+ y1xk

)(
(xk − xk−1)(1+ y1x j−1)
(x j − x j−1)(1+ y1xk−1)

)

=
(1+ y1xi)(1+ y1x j−1)

y1(x j − x j−1)
∑

i�k� j

[
1

(1+ y1xk−1)
− 1

(1+ y1xk)

]

=
(1+ y1xi)(1+ y1x j−1)

y1(x j − x j−1)

[
1

(1+ y1x j−1)
− 1

(1+ y1xi)

]

=
xi − x j−1

x j − x j−1

= (Y1)i j.

This proves the first part of (c).
Let

√
D = diag[

√
Dii]. Let L and U be the lower and upper triangular matrices,

respectively, in Proposition 2.1. To prove (d), we note that Y1
√

D = L and
√

DYT
2 =U .

Since LU = S , we have Y1DYT
2 = (Y1

√
D)(

√
DYT

2 ) = S . This completes our proof. �
In particular, if xi = yi = i for 1 � i � n , then we have the following corollary.

COROLLARY 2.3. We have

X = [1+ i j] = ZDZT , (5)

where

Z =
[
Ln

(
n+1

n

)
Ln−1

(
n

n−1

)
· · ·L2

(
3
2

)][
Ln

(
n−1

n

)
Ln−1

(
n−2
n−1

)
· · ·L3

(
2
3

)]

and

D =

⎡
⎢⎢⎢⎣

2 0 0 . . . 0
0 1

2 0 . . . 0
. . .

0 0 . . . . . . 0

⎤
⎥⎥⎥⎦ .
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In the next theorem, we give a bidiagonal decomposition of the m th Hadamard
powers of S for m ∈ {1,2, . . . ,n−1} . For distinct real numbers x1, . . . ,xn and 1 � k �
n− 1, let the lower bidiagonal matrices Lx(k) and upper bidiagonal matrices Ux(k) be
defined as

(Lx(k))i j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if i = j,

1 if i = j +1, i = n− k+1,
k−n+i−2

∏
t=0

xi − xi−1−t

xi−1− xi−2−t
if i = j +1, i > n− k+1,

0 otherwise,

and

(Ux(k))i j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 if i = j, i � n− k,

xi − xn−k if i = j, i > n− k,

x1 if i = j−1, i = n− k,

xk−n+i+1

k−n+i
∏
t=1

xi− xi−t

xi+1− xi+1−t
if i = j−1, i > n− k,

0 otherwise.

THEOREM 2.4. Let n � 2 . Let m ∈ {1, . . . ,n− 1} . Let x1, . . . ,xn and y1, . . . ,yn

be distinct real numbers. Let

Dm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 (m
1

) (m
2

)
. . . ( m

m−1

)
1

00000n−m−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where
(m

i

)
denotes the binomial coefficient and 00000n−m−1 is the zero matrix of order

n−m−1 . Then

S◦m =
(
Lx(1) · · ·Lx(n−1)Ux(n−1) · · ·Ux(1)

)
Dm

(
Ly(1) · · ·Ly(n−1)Uy(n−1) · · ·Uy(1)

)T
.

Proof. Let Vx be the Vandermonde matrix given by

Vx =
[
x j−1
i

]
=

⎡
⎢⎢⎢⎣

1 x1 · · · xn−1
1

1 x2 · · · xn−1
2

...
...

. . .
...

1 xn · · · xn−1
n

⎤
⎥⎥⎥⎦
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and let Vy be defined analogously. We note that

(VxDmVT
y )i j =

n

∑
k=1

(Vx)ik(DmVT
y )k j

=
n

∑
k=1

xk−1
i

(
m

k−1

)
yk−1

j

=
m

∑
k=0

(
m
k

)
xk
i y

k
j

= (1+ xiy j)m.

Thus
S◦m = VxDmVT

y . (6)

Further, by [25, Theorem 3.1], the Vandermonde matrices Vx and Vy can be factorized
as follows:

Vx = Lx(1)Lx(2) · · ·Lx(n−1)Ux(n−1)Ux(n−2) · · ·Ux(1) (7)

and
Vy = Ly(1)Ly(2) · · ·Ly(n−1)Uy(n−1)Uy(n−2) · · ·Uy(1). (8)

Substituting (7) and (8) in (6), we get the desired result. �

3. Mean matrices

We first note the below easy proposition about the Cauchy matrix C =
[

1
λi + λ j

]
,

where 0 < λ1 < · · · < λn are positive real numbers. The matrix C is known to be
infinitely divisible (see [2]).

PROPOSITION 3.1. For r > 0 , C◦r is totally positive.

Proof. Let r > 0. Every minor of C◦r is of the form det

([
1

(pi +q j)r

])
, where

0 < p1 < · · · < pn and 0 < q1 < · · · < qn . We have
1

(pi +q j)
r =

1
pr

i

1(
1+(q j/pi)

)r .

Since

[
1(

1+(q j/pi)
)r
]

is nonsingular (see [18, Corollary 5]), so is

[
1

(pi +q j)r

]
.

Therefore, det

([
1

(pi +q j)r

])
�= 0 for every r > 0 and for every 0 < p1 < · · · <

pn,0 < q1 < · · · < qn . The map (p1, . . . , pn,q1, . . . ,qn,r) �→ det

([
1

(pi +q j)r

])
is a

continuous function of its variables. So by the intermediate value theorem, it retains its
sign for all choices of 0 < p1 < · · ·< pn,0 < q1 < · · · < qn and r > 0. For r = 1, pi = i
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and q j = j, we have, det

([
1

i+ j

])
> 0 (see [27, p. 92]). Thus det

([
1

(pi +q j)r

])
>

0. So C◦r is totally positive. �
We remark that the total positivity of Hadamard powers of Pascal matrices is

shown in [13, Remark 2.2].
The main theorem of this section is as below. The proof is similar to [4], where

their infinite divisibility is discussed.

THEOREM 3.2. Let r > 0 . The matrices

[
1

A (λi,λ j)r

]
, [H(λi,λ j)r] ,

[
1

Hν (λi,λ j)r

]

(ν �= 1
2 ) and

[
1

Bα(λi,λ j)r

]
(0 < α < ∞) are totally positive. The matrices

[
1

H 1
2
(λi,λ j)r

]
(

=
[

1
B0(λi,λ j)r

])
and

[
1

B∞(λi,λ j)r

]
are totally nonnegative.

Proof. Since

[
1

A (λi,λ j)

]
is a Cauchy matrix, the total positivity of its Hadamard

powers follows from Proposition 3.1. The total positivity and total nonnegativity of a
matrix are preserved under multiplication by a diagonal matrix with positive diagonal
entries. Note that

[H(λi,λ j)] = diag
[√

2λi

][ 1
λi + λ j

]
diag

[√
2λi

]

and

[
1

Bα(λi,λ j)

]
= diag

[
21/α

][ 1

(λ α
i + λ α

j )1/α

]
.

Thus by Proposition 3.1, [H(λi,λ j)r] is totally positive and so is

[
1

Bα(λi,λ j)r

]
for

0 < α < ∞ . Similarly, since we have

[
1

Hν (λi,λ j)

]
= diag

[
1

λ ν
i

][
2

λ 1−2ν
i + λ 1−2ν

j

]
diag

[
1

λ ν
i

]
,

we get that

[
1

Hν (λi,λ j)r

]
is totally positive for 0 � ν <

1
2

. Since Hν is symmetric

about ν =
1
2

, the Hadamard powers of

[
1

Hν(λi,λ j)

]
are also totally positive for

1
2

<

ν � 1. Also,[
1

H 1
2
(λi,λ j)r

]
=
[

1
B0(λi,λ j)r

]
= diag

[
1

(
√

λi)r

]
F diag

[
1

(
√

λi)r

]
,
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where F is the flat matrix with all its entries equal to 1. Thus it is totally nonnegative.
The matrix

[
1

B∞(λi,λ j)r

]
=

[
1

max(λ r
i ,λ r

j )

]
=

[
min

(
1

λ r
i
,

1
λ r

j

)]
.

So the (i, j) th entry of

[
1

B∞(λi,λ j)r

]
is the (n + 1− i,n + 1− j) th entry of[

min

(
1

λ r
n+1−i

,
1

λ r
n+1− j

)]
. In view of Proposition 1.3 of [27], it is enough to show

that if 0 < μ1 < · · · < μn , then [min(μi,μ j)] is totally nonnegative. To see this, let
L
′
= [L

′
i j] and U

′
= [U

′
i j] be defined as

L
′
i j =

⎧⎪⎨
⎪⎩

μ1 if i � j = 1,

(μ j − μ j−1) if i � j � 2,

0 otherwise

and

U
′
i j =

{
1 if i � j,

0 otherwise.

Then L
′

and U
′

are totally nonnegative lower and upper triangular matrices, respec-
tively, and

[min(μi,μ j)] = L
′
U

′
.

(For μi = i , this decomposition is given in [2].) Thus, [min(μi,μ j)] is totally nonnega-
tive. �

4. Remarks

1. Note that for 0 < α < ∞ , B−α(a,b) =
ab

Bα(a,b)
. Thus [B−α(λi,λ j)r] is to-

tally positive for 0 < α < ∞ . Also, [B−∞(λi,λ j)r] = [min(λ r
i ,λ r

j )] is totally
nonnegative.

2. In Theorem 2.2, the decomposition holds for all real numbers x1, . . . ,xn and
y1, . . . ,yn such that 1 + x1y j,1 + xiy1 are nonzero for 1 � i, j � n , and xi −
xi−1,yi − yi−1 are nonzero for 2 � i � n . In particular, it holds for all distinct
positive real numbers.
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