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ON A STEVIC-SHARMA TYPE OPERATOR FROM
Ok (p,q) SPACES TO BLOCH-TYPE SPACES

ZHITAO GUO AND XIANFENG ZHAO*

(Communicated by E. Fricain)

Abstract. The aim of this paper is to investigate the boundedness and compactness of a Stevi¢-

Sharma type operator Ty, , , from Qk(p,q) and Qk,o(p,q) spaces to Bloch-type spaces and

little Bloch-type spaces.

1. Introduction

Let D be the open unit disk in the complex plane C, H(ID) the space of all analytic
functions on D, and S(ID) the family of all analytic self-maps of D. Denote by N the
set of positive integers and No = NU{0}.

A positive continuous function ¢ on [0,1) is called normal if there exist two posi-
tive numbers s and ¢ with 0 < s <¢, and § € [0, 1) such that (see [21])

% is decreasing on [J,1), }T} % -
% is increasing on 8, 1), }I—IH % -

Let i : D — (0,+<0) be a function that is normal and radial, i.e., (z) = u(|z).
An f € H(D) is said to belong to Bloch-type space, denoted by %, , if

£ 1|z, = 1£(O)] +sgﬂgu(z)lf’(z)l <o

%, is a Banach space under the above norm. When p(z) = (1 — [z)%, o > 0, the
induced space becomes the o -Bloch space % . In particular, if o = 1, then we get the
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classical Bloch space #. The little Bloch-type space %, o consists of those functions
fin &, satisfying

lim 1(2)|f(z)| =0,

lz]—1

and it can be shown that %, ( is a closed subspace of %, . Some results on the Bloch-
type spaces and operators on them can be found, for instance, in [1, 7, 8, 10, 11, 12, 15,
16, 19, 25,29, 31, 33, 34, 35, 37, 38].

Let dA denote the normalized Lebesgue area measure in D, K : [0,00) — [0,0) be
a nondecreasing continuous function and g(z,a) the Green function with logarithmic
singularity at a, i.e., g(z,a) = log‘%—l(z)l, where ¢,(z) = {= for a € D. For p >
0, g > —2, Ok(p,q) space consists of those f € H(DD) such that (see, for example,

[17,32])

11y gy = O+ 500 [ 7@ (1~ PR sz 0))aA () < o

Under the norm || - [|g.(p.q)» Qk(P,q) is a Banach space when p > 1. An f € H(D) is
said to belong to Qk o(p,q) space if

lim / 17/ @)P(1= 2K (g(z,a))dA(z) = 0.
D

lal—

Throughout the paper we assume that (see [32])
1
/ (1—r»)IK(—logr)rdr < oo,
0

since otherwise Qx(p,q) consists only of constant functions. Recently, many re-
searchers have studied various concrete operators from or to Qk(p,q) space. For in-
stance, Kotilainen in [6] characterized the boundedness and compactness of composi-
tion operator between #* and Qk(p,q) spaces. Pan in [19] studied the boundedness
and compactness of an integral-type operator from Qg (p,q) and Qxo(p,q) spaces to
% and %’8‘ . Some more related results can be found (see, e.g., [7, 8, 13, 20, 33, 34, 35]
and the references therein).

Let ¢ € S(D), y € H(D), then ¢ and y induce a composition operator Cy f =
fo @ and a multiplication operator My, f = y - f, respectively, where f € H(ID). The
product of these two operators is known as the weighted composition operator Wy, o f =
y- foo for f € H(D), which has been extensively studied. The differentiation operator
D, which is defined by (Df)(z) = f'(z), f € H(D), plays an important role in operator
theory and dynamical system. The first papers on product-type operators including the
differentiation operator dealt with the operators DCy, and CyD (see, for example, [5, 9,
12, 18, 23, 24, 26]). During recent years, there has been a great interest in studying the
operator-theoretic properties of their product-type operators between various analytic
function spaces (see, for instance, [1, 3, 4, 7, 10, 11, 12, 14, 15, 23, 25, 27, 28, 29, 34,
39D).
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In [29], Stevi€ et al. introduced the following operator:

(T 0 ) (@) = Wi (9(2) + w22 /" (9(2),  f€HD),

where n € Ng, y1,y, € HD) and ¢ € S(D). Note that when n = 0, the operator
Ty, .y, is called the Stevi¢-Sharma operator, which was introduced by Stevic et al.
in [27, 28] and has aroused great interest of experts recently (see, [3, 4, 14, 30, 36]
and also related references therein). Moreover, we can get the general product-type
operators by taking some specific choices of the involving symbols (see [29]). Quite
recently, Abbasi and Zhu in [1] studied the boundedness, compactness and essential
norm of Ty ., , from the (little) Bloch space into Zygmund-type spaces. In [15],
the boundedness and compactness of Ty, , , from the logarithmic Bloch spaces to
Zygmund-type spaces was investigated by Liu and Yu. In [39] Zhu et al. characterized
the boundedness, compactness and essential norm of Ty, , , on the Zygmund space.

Inspired by the above results, the purpose of the paper is to study the bounded-
ness and compactness of the Stevi¢-Sharma type operator Ty, , ,, from Ok(p,q) and
Ok 0(p,q) spaces to Bloch-type spaces and little Bloch-type spaces.

Throughout the paper we use the letter C to denote a positive constant whose
value may change at each occurrence. The notation abbreviation X <Y or Y > X for
nonnegative quantities X and Y means that there is a positive constant C such that

X < CY. Moreover, if both X <Y and Y < X hold, then one says that X ~ Y.

2. Auxiliary results

In this section, we state several auxiliary results which will be used in the proofs
of the main results.

LEMMA 1. [22] Let f € B%, 0 < ot < oo. Then

||fHe@a7 O<a<1’
ol Ilan s a1,
o fllee, o> 1

The following lemma is well-known (see [38]).

LEMMA 2. Suppose oo >0, n € N and f € B%*. Then

1f 1l 2 |F(O) [ +17(0)] +---+ [~ (0)] +sup(l = |2 ().
z€

LEMMA 3. [32] Let p >0, g > —2 and K be a nonnegative nondecreasing func-
+2
tion on [0,). For f € Qk(p,q), we have f € B and

||fH@q%2 < Hf“QK(P"I)'
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The following lemma can be deduced by the standard arguments in [2, Proposition
3.11], consequently we omit the details.

LEMMA 4. Let p >0, g > —2 and K be a nonnegative nondecreasing function
on [0,0). Then the operator Ty ., o : Qk(p,q)(or Qko(p,q)) — Py is compact
if and only if Ty \, » : Qk(p.q) (or Qko(p,q)) — Py is bounded and for each
sequence {fi}ren which is bounded in Qk(p,q) (or Qko(p,q)) and converges to
zero uniformly on compact subsets of D as k — oo, we have HT$171,/27(pfk 2z, — 0 as
k — oo,

By the same method as [16, Lemma 1], we can get the lemma below.

LEMMA 5. A closed set K in %), is compact if and only if it is bounded and
satisfies

lim sup u(z)[f"(z)] = 0.
lz|—=1 rekx

LEMMA 6. [37] Fix 0 < o0 < 1 and let {fi}ren be a bounded sequence in 5%
which converges to zero uniformly on compact subsets of D as k — oo. Then we have

lim sup | f¢(z)| = 0.

)

3. Main results

In this section, our main results are stated and proved. We first give some char-
acterizations of the boundedness and compactness of Ty, , , Ok (p,q) — By for
neN.

THEOREM 1. Let w1,y € HD), ¢ € S(D), p >0, g > —2 and K be a non-
negative nondecreasing function on [0,0) such that

1 - 1 \x-1(@)
/ K(—logr)(l—r)mm{*lvq}(log—l ) rdr < o, (1)
0 —r
where )o(x) denotes the characteristic function of the set O. Then for each n € N, the
following statements are equivalent.
(i) The operator Ty, \, o Ok (p,q) — By is bounded.
(ii) The operator Ty, \, o : Qk.0(P,q) — Py is bounded.

(iii)
M, = sup u(Z)Il//i(qi)zl @
<D (1-|p@)P) » !
My = su pu(Z)le(ZﬁP’(Z):ZlVé(Z)I o 3)
€ (=) 7
My = sup WD) @

D (1—|p()2) "5 !
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Proof. (1)=(ii). It is obvious.
(ii)=(iii). Suppose that Ty, , o : Ox.0(p,q) — Ay is bounded. Taking the func-

tions fi(z) = fq—’;, ) = (;"JF—T), and f3(z) = (;:),, which are all in Qg o(p,q), we
get

n Z"
Ly:= sup[,L( )W/l( )| ‘ Tl[/17l[/27(p < oo, (5)
z€eD By
sup(2)|y1(2)(2) + w1 (2)9'(2) + wa ()| < || Ty AL NG,
€ 1 PO ],
and
2
<
suph(2) W &) 25+ ( (') + V) 0(E) + vl (2
ze
w2 @)
ST vLY.e (n+2); 2, ’

respectively. Employing (5), (6), the triangle inequality and the fact that |@(z)| < 1, we
obtain

Lz i= sup i () Y ()9 (2) + Y (2)| < = ®)
€
By using (5), (7) and (8), in the same manner, we have

Ly := supp(2)|ys (2)9'(2)| <. ©)
€

For a fixed w € D, consider the function

q+2 _
92 L 201 2
q+2 lo(w)l
fl7 w(@) = £ j+1
=g () (55 ) e
LEAnt2d ged g2 ~ lo(w)P)?
~235 () (17 i) o2
—+n—|—1j:0 4 w)z)7+
q+2 o (a+2 (1— o) )
() (52 0) =
P (1—g@(w)z) 7

Using the condition (1), we see that flﬁq,(w) € Qk.o(p,q) (see [0]). By a direct calcula-
tion, we obtain

£ (@) = 12 (9(w)) =0,
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s (P ) (P ) (i)
) (42 +n) (42 +nr1) (1= [pw)R) T+

which along with the boundedness of Ty, , ,, implies that

o> | W17‘I/27<Pf17<P(W) PBu

> k)| (Ty, yapfrom) )| 2 Ry ()lle(w)]"

IS I
(1=[p(w)[) 7 ™!

(10)

From (5) and (10), we have
p(w)|yy(w)]

sup
veB (1 [p(w)P) 7 !
w(w) |y (w)] 1 (w)lyi(w)]
< sup 1M+n_1+ sup 1w+n_1
o<t (1= lo(w)?) 7 S<lommi<t (1= [g(w)[?) 7
4N 22401 . w) [y (w)||e(w)|"
<(3)” sup (i) +2 sup AL )Hi(ﬂf‘,l
lp(w)|< 4 s<lpwl<t (1 —[@(w)|?) 7
<oo,

where we used the fact 22 + 5 — 1 > 0, which follows from the assumptions g > —2
and n € N. From this it follows that (2) holds.
For a fixed w € D, take the function

q+2 -~
=4 n+2n-l B 5
f27‘P(W)(Z):qiz ( +]+1><_+]+2> ‘ ( )|+2
T+n+1j:0 p ( (W)Z) p
M 2 3"—1
Ty et (q+2+]><q+2Jr +2> (1—|ow)|?)?
M +n+1 N P p ( —(p(w)z)

2 2. (L-[ow)P)’*
L) () R

Again, condition (1) says that f5 () € Qk.0(p,q). We also have
n n+2
£ (@) = 12 (p(w)) =0,

and

—IT;= <f1+2 +j> (%}—l—j—i—l) <%+j+2> q)(w)nﬂ

q+2
» +n+1 (1—|p(w

fa(@(w) =

)
q+2 n

~—
)
\/
Jr
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which along with the boundedness of 7,

" L
1.y, implies that

o > H LV, (pf2(p ”ﬁu > pu(w )|( v, 14/2,<pf27(p(w))/(w)|
>u<»m<><>+%<mw>W%
(1—[p(w)[2) 7 *

By using (8) and (11), we get

(1)

Slmu(w)lun()() ¥ (2)]
weD (1= [p(w)[2) T+
< sup MMMU¢U+%UH sup MMM@W@+%M
i<t (1= o))" belpml<t  (1—[p(w)P)7
4y G , ,
<(3) S KON EYE) + )
o(w <
ot qup OM%@W@+%@WWW“
L<lgtmi<1 (1—[pw)2) 7"
<oo,
Thus (3) holds.
For a fixed w € D, set
= q+2 | . L—|ow)?
92 ) (422 4 42 —
Foa! 1%( D >U—¢Wkw’
LT (4F2 q+2. .., (I—WWMQ2
H( )( p J )(1 _ (W)Z)%Jrl

= 2 +2 1- 2
H(q+ )(q + +1> ( |(P(W)J,
=0 p

Then we have f3 () € Qk.0(p,q) in light of condition (1) and, moreover,

A (@) = 1) (p(w)) =0,

and
A (p(w)
A2 N (a2 (at2 ¢wf“
=2 —Fj) — ) —+j+2
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which along with the boundedness of 7,

" L
wi,yn,e implies that

o > [Ty, vy 03,000,
< HW)|y2(2)9' (2)[| @ (w )|"+2.

2 'u(w)|(T$17W27<Pf3’¢(w))/(w)| ~ q+2 12)
(1= o)) 7 !
From (9) and (12), we obtain
W 2)0'(z
p MOV
v<D (1 g(w)) " "
Lw) |y (2) @' (2)] Lw) [y (2)¢' (2)]
< Sup ﬁerrH’l + sup M+n+l
o)<t (1= |@(w)2) 7 S<loml<t (1—[@(w)[?) 7
4N B2 4ntt " w 2)0'(z w)|" 2
<H7T wp w2 s AIREPEIR0]
p(w)|< ) S<lotl<t  (1—|o(w)[?)™?
oo,

From this it follows that (4) holds.
(iii)=>(i). Suppose that conditions (2)—(4) hold. By using Lemmas 2 and 3, for
each f € QOk(p,q), we have

1@)I(Ty, y, q;f)’(Z)I
L@ @I (9)] + 1) v (29 () + wa @)L (9(2)]
( )|ll/2( ) @I (9(2))]

(1—\<P(Z)I2) 7 (1—\<P(Z)I2) 7
L _HEw(E)e '(2)] U] g
(= lpEP) 72T
(M1 + Mo+ M) fll o (p.g)- (13)
Furthermore,
(T, .0 O] < w1 (0) £ (9(0))] + w2(0) £ ((0))]

~ q+2 n— q+2
(1=lpO)) 7 ™" (1—|pO))» ™

In view of (13) and (14), we conclude that Ty, , , : Qk(p,q) — %y is bounded. [
THEOREM 2. Let y1,yr € HD), ¢ € S(D), p >0, g > —2 and K be a non-

negative nondecreasing function on [0,0) such that (1) holds. Then for each n € N,
the following statements are equivalent.
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(i) The operator Ty, \,, o : Qk(p,q) — By is compact.
(ii) The operator Tu'}hw@ 1 Qk0(p,q) — By is compact.
(iii) The operator Ty, \, o : Ok(p,q) — By is bounded and

12w (2)]

lim a2 =0 ()
PQI=1 (1~ |p(g)2) 7 !
u(2)|yi(z)e (2)+sz( N (16)
PO (1 e |
LEWEE (17)
|(p(z)\ﬂ1( ‘(p( )‘ )qZZ n+1 .

Proof. (1)=(ii). It is clear.

(ii) = (iii). Suppose that Ty \, o Ok.0(p,q) — Py is compact, and consequently
bounded. Then by Theorem 1 the boundedness of 7y, \, o : Qk(p,q) — Py follows.
Let {z}ren be a sequence in D satisfying |@(z;)| — 1 as k — eo. Set

.fl7k(Z) = fl7(p(zk)(z)7 l= 1,2,3,

where fj 4(;,) is defined in the proof of Theorem 1. Moreover, we have {fixtkeni=123
are norm bounded sequences in Qk o(p,q), and it is easily seen that f; ; converges to
zero uniformly on compact subsets of D as kK — co. By Lemma 4, it yields

gijr:c||T$17W27¢ﬁ7k||,%“ =0, [=1,2,3. (18)
On the other hand, from (10)—(12) it follows that
W (ze) [ (z) [l @ (i) " n
: o2 ST efikla, (19)
(L=lo(z)?) 7
1 (z) [ (z0) @' (2x) + w5 (z) || @ (=) [
24,
(1—|o())?) 7 "
1 (z) w2 (z0) @' (z0) @ (za) 2
q+2
(1= o)) 7 !
Letting k — oo in (19)—(21) and employing (18), we can see that (15)—(17) hold.
(iii)=(i). Suppose that Ty, ,, o : Ok (p,q) — Py is bounded and that (15)—(17)

hold. Then by Theorem 1 we have L;,L;,L3 < oo, where L;,L,,L3 are defined in (5),
(8) and (9), respectively. Moreover, for any € > 0, there exists d € (0, 1) such that

1)y (2)]

B (20)

STy
~ 17 y,y,

STy v, 0 f34ll 2, - (21)

q+2 <§, (22)
(1-lp@P) 7 ™!
u(@)|yi(z)e (Z) ()I e (23)
(1-]o(z )Iz)
1@z )204:2( A (24)
(1-lp@P) 7 !
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whenever 8 < |¢(z)| < 1.

Let {fi }ren be asequencein Qk(p,q) such that supen || fill g (p.g) S 1 and fi —
0 uniformly on compact subset of D as k — co. Applying Lemma 2 we have

1Ty, y.0 x|l 2,
=(Ty, .0 i) (O )|+Supli( )Ty, i) (2)]

<1 (001" (9(0))] + [y2(0) £ (9(0))]
+ sup p@IWVIEIA" (0@)+ sup u@IW A" (9(2))]

lp(2)|<d o<lo(z)|<1

+ sup au(Z)llVl(Z)(P’(Z)+1V2(Z)Hf;£n+l)(<P(Z))|
¢(z)|<

+ s L@@+ (0k)
o<|p(z)|<1

+ sup L@ @A (0R)]
lp(2)|<d

+ sup w@YREE @I (0w)]
o<|p(z)|<1

<y O™ (@0)+ w2 (0)] 1" (0(0))]
+L sup [f(0@) +L2 sup |fV(@@)+Ls sup £ (0(2)

lo(2)|<8 lp(2)|<o lo(2)|<8
. u(z)lwl(q)l
s<lp@l<1 (1—|p(z)[2) "7 ™!
z 2)0'(2) + (2 Z 2)0'(z
- u<>|wl<><p<>q+2w2<>|+ up u()l%():@z()ll
s<lo@l<l  (1—|p(2)) 7 ™  s<lo@l<l (1—|g(x)]) 7 *
<[y )17 (9(0))| + [y (0)] /" (9(0))]
Ly sup [ (0)]+ L sup [0 )]+ Ls sup 1" (w)]+ 3. (25)
lw|<6 lw|<d lw|<&

Since f; — O uniformly on compact subset of D as k — oo, we conclude that f,g"),

fk(nH) and f,gnﬂ) also do by Cauchy’s estimate. In particular, {¢@(0)} and {w: |w| <
0} are compact subsets of I, hence letting k — oo in (25) yields

115{115UPH viunofillz, < 3e.

By the arbitrariness of ¢ it follows that limy—e[|Ty;, , oftll#, = 0, from which by

Lemma 4 we deduce that Ty, \, o : Ok (p,q) — Py is compact. [

We next turn to investigating the case that target space is %, o. For the bounded-
ness, the following theorem includes the case n =0.
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THEOREM 3. Let w1,y € H(D), ¢ € S(D), p>0, g> —2 and K be a nonneg-
ative nondecreasing function on [O, o). Then for each n € Ny, Ty w0 QK0 (p,q) —
B0 is bounded if and only if Ty, \, o : Ok.0(p.q) — By is bounded and

ll‘igl 1 (2)|wi ()] =0, (26)
dim 1)y (2)9'(2) + ya(2)| =0, @7
lim p(2)]y2(2)9' (2)] = 0. (28)

[e|—1
Proof. Assume that Ty \, o : Ok.0(p,q) — Py is bounded, then it is evident
that 7y, v, o : Qk0(P,q) — Pu isnbounded and for every f € Qxo(p,q), we have
q/l,qu,(pf € '@[J 0- Taklng fl( ) - % € QK,O(paq) yields

n

z /
(T o) )] =
n+l n+2

That is, (26) holds. Instead of using the functions f>(z) = (n 777 and f(2) = (n+2)
Ok 0(p,q), we obtain

HpuOW&W@+%@W@+%@PQ

= lim 11(2)|wi(2)] = 0.

|2]—1

lim p(z)

|2]—1

/ (P(Z)z / / / _
v (2) > +(v1(2)9'(2) + ¥12(2))0(2) + v2(2) @' (z) | = 0,

lim p(z)

lz]—1

respectively. By using (26), the triangle inequality and the fact that |@(z)| < 1, we
deduce that (27) and (28) hold.

Conversely, suppose that T‘ﬁhWMP 1 Qk0(p,q) — Py is bounded and (26)—(28)
hold. Then for each polynomial p(z), we have

u( Ty, v, <pp)'( )|
@[ @)™ (9(2)|+ 1(2) |1 (D)) + w2 (2) [PV (0 (2))]
+u(@)va(z)e ( )||P "2 (p(2))]
@1 @)+ 1@y (2)¢' (@) + v2(2) | + 1(2) | ya(2)¢' (2)]-
Letting |z| — 1 in the above inequality and employing (26)—(28) gives

\lllm 2ol W17W27<pp)/(2)| =0,

which says that 7y, \, ,p € Py 0. Since the set of all polynomials is dense in Oko0(p.q)
(see [6]), and hence for each f € Qg o(p,q), there is a sequence of polynomials { pk}keN
such that limy ... | px — f|l g (p.q) = 0, which along with the boundedness of T,

V/l V2,9 °
Ok.0(p,q) — #, implies that

HTun/Ml/zJPpk - Tlln/hllfzﬁpf”'%u < ||T$17W27‘P”QK,O(F#I)‘)'%’H : ||pk—f||QK(P751) -0,

as k — co. Since Ay is a closed subspace of Ay, we have Ty, \, ,f € By, and
consequently Ty, , o : Qk0(P,q) — Py is bounded. [
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THEOREM 4. Let w1,y € HD), ¢ € S(D), p >0, g > —2 and K be a non-
negative nondecreasing function on [0,0) such that (1) holds. Then for each n € N,
the following statements are equivalent.

(i) The operator Ty, \,,  : Qk(P,q) — Pu,o is compact.

(ii) The operator Ylil1 7;2,27(%, Ok.0(p,q) — By is compact.

(iii)
WL, 00
=T (1= o)) 7
jm HEANEOO 0 _ 0
= (- o
jm LEPEICL_, o
=T (1= o)) 7

Proof. (1)=(ii). It is obvious.

(ii)=(iii). Suppose that Ty \, o : 1 0k0(p,q) — Buyp is compact, and the com-
pactness of 7y \, o : Ok 0(P,q) — %y follows. From Theorem 2, for any € > 0, there
exists § € (O 1) such that (22)—(24) hold whenever 6 < |qo( )| < 1. Moreover, the
compactness of Ty, \, o : Ok0(P,q) — Py, implies that Ty . o : Ok 0(P:q) — Buo
is bounded. Then (26)—(28) follow from Theorem 3, and for any & > 0, there exists
n € (0,1) such that

q+2

n@)wi ) <e(1—-8% 7 (32)
()| v (9 (2) + V(2 <e(1— 8% (33)
@) (z)e' (z)| <e(l 52)*”+1 (34)

whenever 1 < |z] < 1. From (22), when 1) < |z| < 1 and & < |@(z)| < 1, we have

MEITAS]
(1= lop)P) "7 !

<e. (33)

On the other hand, when 1 < |z] < 1 and |@(z)| < 8, using (32) yields

IS I E UAG]
(1-lp@PR) 7™ (1-8)% ™!

From (35) and (36) we deduce that (29) holds. Employing (23) and (33), (24) and (34),
with the similar arguments, we can get (30) and (31).

<e. (36)
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(iii) = (i). Assume that (29)-(31) hold. Let f € Qk(p,q), analysis similar to (13)
in the proof of Theorem 1 shows that

BAWE]L | 1@In 0@ + ()
(I-lp@P)T ™" (1-|pE@R)T
.LL(Z)|W2( ) ( )| )f”QK(p,q)'

M@W%M@ﬁkﬂs(

_|_

q+2

(L=lp@E)P)»

Taking the supremum in the above inequality overall f € Ok (p,q) such that || f{|o,(p.¢)
< 1 and letting |z| — 1, we have

lim  sup  pu(2)|(Ty) y,0f) (2)] =0.
=1 £l gg (pay<1

Therefore, the operator Ty, , o : Ok (p,q) — Py, is compact by Lemma 5. [J

We are now in a position to consider the case n = 0. For this purpose, we need to
break the problem into two different cases: g+2 > p and g+2 < p.

THEOREM 5. Let yi,yp, € HD), ¢ € S(D), p >0, g> —2 suchthat g+2 > p
and K be a nonnegative nondecreasing function on [0,) such that (1) holds. Then
the following statements are equivalent.

(i) The operator Ty, ys.¢ : Ok (P,q) — By is bounded.
(ii) The operator Ty, y,.¢ : Ok.0(P,q) — By is bounded.

(iii)
sup i (2) |y (z )|1n1 oGz )|2< g+2=p,
Ny =P
! sup%<‘xﬁ q+2>p,
€D (1-lp()P) 7 !
! /
Ny 1= sup HOW (9@ t:i/z(zﬂ o
€D (1-1e(z)]?) 7
!
N; 1= sup AV )

D (1—|p(g)[2) 7+

Proof. Ttis immediate that (i) = (ii) holds. For the implication (ii) =-(iii), suppose
that Ty, v».0 : Ok,0(p,q) — Py is bounded. By using the functions

242 1 |p(w)?
81, W(Z):p 52
AT oo X
L2 ol _(ilotw)’y
2L " " (1—gw) ' P

b
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q+2
T T2 1-lew))?

£, W(Z): - g+2
R e
CEEES (- lew)P)? (1—|o(w)[?)? |
%—’—1 (l—qo(w)z)q%2Jrl (1_WZ)¥+2
“lo(w)? Clo(w) P o))
83,0 (2) = ! ﬂ” _, (I=[ew)[") (1—|o( )‘\HZ

(1—ow))' 7  (l—pwR) 7 (1—gma)" 2

where w € D, with the similar arguments in the proof of Theorem 1, we get Nj < oo
when g+2 > p and N,,N3 < e. For the case g+ 2 = p, consider the function

e

L—@(w)z

)

where w € D. Then g4, € Ok0(p,q) (see [6]) and it is easy to calculate that

S (O00) =T E s gl (0) = 00
—
g (000) = )

which along with the boundedness of Ty, y, o and the triangle inequality implies that

o >||TW1~,V/2~,¢qu(W)H=@u
2.“("‘}) ’ (Tllll,ulz,(Pg(p(w))/(W)’

ZH00) W 00) I T
ROy (0@ 00) + 3w [@(w)| () Y2 (w)’ (w)] [ ()
T=Tp(w)? = lp0P?

From N,,N3 < e and the fact that [@(w)| < 1 it follows that Nj < oo.
(iii)=(i). Assume that Nj,N,,N3 < co. Using Lemmas 1, 2 and 3, similar to the
proof of Theorem 1, for each f € Qk(p,q), we have

1Ty, s of) (@) < (N1 + N2+ N3) 1 f ] 0 (p.g)-

Thus the implication follows. [J

THEOREM 6. Let w1,y € H(D), ¢ € S(D), p >0, g> —2 suchthat g+2 > p
and K be a nonnegative nondecreasing function on [0,0) such that (1) holds. Then
the following statements are equivalent.

(i) The operator Ty, yy.¢ : Ok (P,q) — By is compact.
(ii) The operator Ty, y,.¢ : Ok.0(P,q) — Py is compact.
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(iii) The operator Ty, v, .o : Qx(P,q) — Py is bounded and

lim @@t =0, a+2=p,

Ri= " e
T %:07 +2>p,
91 (1-jgP) 7! ! g
o u(2)|vi(2)e'(2) +ws(2)|
Ry = =0,

PO (1 Jp@)P) 7
/!

Ry= lim M(Z)IW(Z)ﬁDﬁ(i)I _o.

P (1- () T

Proof. Itis obvious that (i) = (ii) holds. To verify (ii) = (iii), suppose that Ty, y, ¢ :
Ok 0(p,q) — Py is compact, and consequently bounded. From Theorem 5 it follows
that Ty, y,.¢ : Ok (p,q) — Py is bounded. Let {zx}ren be a sequence in I such that
|@(zx)] — 1 as k — oo. Set

gl,k(z) - gl7(p(zk)(z)’ I=1,2,3,

where g; 4(;,) is defined in the proof of Theorem 5. Analysis similar to that in the
proof of Theorem 2 shows that R = 0 for g+ 2 > p and R, = R3 = 0. For the case
q+2 = p, take the function

i) = (Iny —;(Zk>z>2<1“ - \<;<zk>|2>_l’

then {g; }xen is a bounded sequences in Qg o(p,q) and converges to zero uniformly
on compact subsets of D as k — co. By Lemma 4, it yields

klgf}o HTWhWZKng”v%’u =0. (37
Then we have

HT‘I/17‘I/27‘ngH=@p
> (20) | (Tyy yn08k) (2)|

21 (@) |y (24) [ In T— \(;(zk)|2 _ 2u(zd) |y (Zkl)ﬁi Tf;()zzr) ‘éfz(ZkH(P(Zk)
. 2 1(z) [ wa (2) 9 (z0) || @ (z)
<1 o +2) (1—lo(z)?)? ' (38)

Letting k — oo in (38) and employing (37), the fact that R, = R3 =0, we get R} = 0.
The proof of implication (iii)=-(i) runs as that of Theorem 2 by using Lemma 1
and we omit the details. [J

Similar to the proof of Theorem 4, we have the following theorem.
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THEOREM 7. Let w1,y € H(D), ¢ € S(D), p >0, g > —2 suchthat g+2> p
and K be a nonnegative nondecreasing function on [0,) such that (1) holds. Then
the following statements are equivalent.

(i) The operator Ty, y.0 : Ox(P,q) — PBuo is compact.

(ii) The operator Ty, y,.¢ : Ok .0(P,q) — PBuo is compact.

(i)

lim () V(@) e =0, g+2=p,

|2[—
lim /J(Z)IWi (Z)I _ 07

A= (1-lop) 7 !

i B 0'C) + 1)
L (- fe@p)
jm LOC_
1 —JeP) 7

Finally, when g +2 < p, we give the following results, whose proofs run essen-
tially as before and we omit the details.

q+2>p,

:07

THEOREM 8. Let yi,yr € HD), ¢ € S(D), p >0, g> —2 suchthat g+2 < p
and K be a nonnegative nondecreasing function on [0,) such that (1) holds. Then
the following statements are equivalent.

(i) The operator Ty, ys.¢ : Ok (P,q) — By is bounded.
(ii) The operator Ty, y,.¢ : Ok.0(P,q) — By is bounded.
(iil) y1 € By and

1@y (2)e'(z )+1V’( )|

sup e < oo,
D (1 |pR)P)T
up LW )

D (- @R "

By using Lemma 6, the characterizations of compactness follows.

THEOREM 9. Let yi,yr € HD), ¢ € S(D), p >0, g> —2 suchthat g+2 < p
and K be a nonnegative nondecreasing function on [0,) such that (1) holds. Then
the following statements are equivalent.

(i) The operator Ty, vy, : Ok (P,q) — By is compact.
(ii) The operator Ty, y,.¢ : Ox.0(P,q) — Py is compact.
(iii) The operator Ty, y,.¢ : Qx(P,q) — By is bounded and y; € B,

(@) v1(2)e'(2) + vy (2)|

PR (1 o) T
im M@ E)]

P (1~ ()7 !

:O,
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THEOREM 10. Let i, yo € HD), o € S(D), p>0, g> —2 suchthat g+2<p

and K be a nonnegative nondecreasing function on [0,0) such that (1) holds. Then
the following statements are equivalent.

(i) The operator Ty, y,.0 : Ok (P,q) — PBuo is compact.

(ii) The operator Ty, y,.¢ : Ok .0(P,q) — PBuo is compact.

(iii) S @MO and
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