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A CLASS OF INTEGRO–MULTIPLICATION OPERATORS

GREGORY T. ADAMS, NATHAN S. FELDMAN AND PAUL J. MCGUIRE ∗

(Communicated by R. Curto)

Abstract. This paper introduces a class of Integro-multiplication operators on Hilbert spaces of
analytic functions with reproducing kernels of the form

Kϕ (z,w) =
∞

∑
n=0

f (z) f (w) with f (z) = (n+1)zn +ϕ(z)zn+1,

where ϕ ∈ H∞(D) . Hyponormality and subnormality of the operators is explored in some
special cases, particularly the case where ϕ(z) = 1 . Additionally the idea of M -dominating
matrices is introduced as a means of establishing the norms of these operators.

1. Introduction and preliminaries

The primary focus of this paper is the study of multiplication operators defined
on some special types of reproducing kernel Hilbert spaces of analytic functions. The
reproducing kernels are of the form

Kϕ (z,w) =
∞

∑
n=0

f (z) f (w) with f (z) = (n+1)zn + ϕ(z)zn+1,

where ϕ ∈ H∞(D) . The appeal of these multiplication operators is that they can be
realized as the perturbation by a nice integral operator of a multiplication operator on
the Hardy space. This allows for an elegant Integro-Multiplicative realization of the
functional calculus.

A special focus is placed on the space where φ(z) = 1. In this case multiplication
by z is a hyponormal operator which, while not subnormal, is so close to being sub-
normal that a subtle proof of non-subnormality is required that makes use of Lambert’s
requirement. The operator is shown to have unit norm, spectrum the closed unit disk,
and an infinite rank self-commutator. In addition to the interesting behavior described
above, the appeal of this particular operator, as well as the general class of operators,
is that they all arise quite naturally on function spaces, they do not appear to have been
looked at previously, and they have a rich functional calculus.
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The remainder of this section will be devoted to some general preliminaries re-
garding reproducing kernel Hilbert spaces. The next section will focus on the kernel
Kϕ where ϕ ∈ H∞(D) . Some specific properties of the associated reproducing ker-
nel Hilbert space H(Kϕ ) together with it’s multiplication operators will be explored.
Section 3 focuses on the case where ϕ(z) = 1, in which case H(Kϕ) is an analytic
tridiagonal reproducing kernel Hilbert space. Section 4 establishes the hyponormality
of the operator Mz of multiplication by z . Section 5 introduces M -dominating matri-
ces and establishes a method of estimating the norm of such matrices. This is used to
show that the operator Mz has norm equal to it’s spectral radius. Section 6 is devoted
to a subtle proof that the operator Mz is not subnormal. The final section addresses
how our techniques would extend to a broader class of spaces as well as some open
questions.

The function K(z,w) is positive definite (denoted K � 0) on the set E ×E if for
any finite collection z1,z2, · · · ,zn in E and any complex numbers α1,α2, · · · ,αn the
sum

n

∑
i, j=1

α iα jK(zi,z j) � 0

with strict inequality unless all the αi ’s are zero. It is well known that if K � 0 on E ,
then the set of functions in z given by{

n

∑
j=1

α jK(z,wj) : α1, · · · ,αn ∈ C,w1, · · · ,wn ∈ E

}

has dense span in a Hilbert space H(K) of functions on E with∣∣∣∣∣
∣∣∣∣∣ n

∑
j=1

α jK(z,wj)

∣∣∣∣∣
∣∣∣∣∣
2

=
n

∑
i, j=1

α iα jK(wi,wj).

A fundamental property of H(K) is the Reproducing Property which states that
for every w in E and f in H(K) , f (w) = 〈 f (z),K(z,w)〉 . Thus evaluation at w is a
bounded linear functional for each w in E .

Conversely, it is well known that if F is a Hilbert space of functions defined on
E such that evaluation at w is a bounded linear functional for each w in E , then there
is a unique K defined on E ×E such that F = H(K) . It follows from the reproducing
property that K(z,w) = K(w,z) . Hence if K is analytic in the first variable, then K is
coanalytic in the second variable. In this case K is an analytic kernel. In later sections
of this paper, E will always be the unit disk D and K will be an analytic kernel.

It is also well known, see N. Aronszajn [3], that if { fn(z)} is an orthonormal basis

for a reproducing kernel Hilbert space of functions on E , then K(z,w) =
∞

∑
n=0

fn(z) fn(w)

for all z,w in E . Moreover if the largest common domain E ′ of the functions { fn(z)} is
larger than E , then the largest natural domain of H(K) is given by Dom(K) = {z∈ E ′ :

∞

∑
n=0

| fn(z)|2 < ∞} . When K is analytic and E contains the open unit disk, K(z,w) =
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∞

∑
i, j=0

ai, jz
iw j has a Taylor series expansion about (0,0) with coefficient matrix A =

[ai, j] . The matrix A is positive and if A = BB∗ is any factorization of A , then H(K)
is naturally isomorphic to the range space R(B) = {B�x : �x ∈ l2+} via the map which
identifies B�x with the analytic function f whose Taylor coefficients are the components
of B�x . Thus, when B has no kernel, the columns of B correspond to an orthonormal
basis for H(K) . It should be noted that the matrices are not necessarily bounded, but
this is not a problem for the general theory. The interested reader is referred to Adams,
McGuire, and Paulsen [2] for more details.

An analytic kernel is tridiagonal if there exists an orthonormal basis of polynomi-
als for H(K) of the form { fn(z) = (an +bnz)zn : n � 0} and diagonal if bn = 0 for all
n . In this case the coefficient matrix A has bandwidth 3, hence the name tridiagonal,
and A can be factored as LL∗ where

L =

⎛⎜⎜⎜⎜⎜⎝
a0 0 0 · · ·
b0 a1 0

. . .

0 b1 a2
. . .

...
... b2

. . .

⎞⎟⎟⎟⎟⎟⎠ .

The natural domain Dom(K) of a tridiagonal kernel is either an open or closed
disk about the origin together with at most one point not in the disk. This was shown
in Adams, McGuire [1] in which the properties of Mz were considered. In particular, it
was shown that if Mz , the operator of multiplication by z , is bounded, then H(K) must
contain the polynomials. For an > 0, this is equivalent to the sequence{

1,
bn

an+1
,

bnbn+1

an+1an+2
,

bnbn+1bn+2

an+1an+2an+3
, . . .

}
being absolutely square summable for each n .

2. The space H(Kϕ)

For ϕ = ∑∞
n=0 ϕnzn ∈H∞ and n � 0, let fn(z) = (n+1)zn+ϕ(z)zn+1 . With Kϕ (z,w) =

∑∞
n=0 fn(z) fn(w) , the set of functions { fn} forms an orthonormal basis for H(Kϕ ) and

L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · ·
ϕ0 2 0 0

. . .

ϕ1 ϕ0 3 0
. . .

ϕ2 ϕ1 ϕ0 4
. . .

...
. . .

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Since ϕ is bounded, it is straightforward to determine that the natural domain Dom(Kϕ)
is the unit disk. Let H(D) denote the space of holomorphic functions on D and H0(D)
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the subset of H(D) consisting of the functions which vanish at the origin. Consider
the linear map U : H0(D) → H(D) defined by U( f ) = ϕ f + f ′ . First, note that U is
injective since U( f ) = ϕ f + f ′ = 0 implies that f ′ = −ϕ f with f (0) = 0. This equa-
tion has the unique solution f = ce−

∫ z
0 ϕ(w) dw where the constant c must satisfy c = 0.

The map U is also onto, for if g ∈ H(D) , then we can uniquely solve the differential
equation g = U( f ) = ϕ f + f ′ with f (0) = 0 to obtain f (z) = 1

ψ(z)
∫ z
0 ψ(w)g(w) dw

where ψ(z) = e
∫ z
0 φ(w) dw . Thus U is invertible with inverse given by

(U−1g)(z) = f (z) =
1

ψ(z)

∫ z

0
ψ(w)g(w) dw.

If ϕ(z) = 1, then Kϕ is a tridiagonal kernel. This special case will be thoroughly
explored in the next section. If ϕ is a polynomial of degree m , then Kϕ is a kernel of
bandwidth 2m+3.

THEOREM 1. Let H2 denote the usual Hardy space on the unit disk, H2
0 the

subspace spanned by {zn : n � 1} , and H(Kϕ ) the space with reproducing kernel
Kϕ(z,w) = ∑∞

n=0 fn(z) fn(w) where fn(z) = (n+1)zn + ϕ(z)zn+1 .

1. U : H2
0 → H(Kϕ) given by U( f ) = ϕ f + f ′ is an isomorphism. In this case

U∗g = U−1g =
1

ψ(z)

∫ z

0
ψ(w)g(w)dw

where ψ(z) =
∫ z
0 φ(w) dw.

2. H(Kϕ) consists of the functions { 1
ψ(z) f ′(z) : f ∈ H2

0} ;

3. H(Kϕ) contains the polynomials;

4. M̂z : H(Kϕ) → H(Kϕ ) is a bounded linear operator where M̂z( f ) = z f ;

5. the spectrum of M̂z is the closed unit disk;

6. M̂z : H(Kϕ) → H(Kϕ ) is unitarily equivalent to T : H2
0 → H2

0 where

(T f )(z) = z f (z)− 1
ψ(z)

∫ z

0
ψ(w) f (w) dw.

7. the multiplier algebra of H(Kϕ ) is a subalgebra of H∞ which includes all func-
tions analytic in a neighborhood of the closed unit disk D .

8. If φ is a bounded multiplier of H(Kϕ ) and Tφ : H2
0 → H2

0 by Tφ = U∗M̂φU

where M̂φ is multiplication by φ on H(Kϕ ) , then

(Tφ h)(z) =
1

ψ(z)

∫ z

0
φ(w)ψ(w)(h(w)+h′(w))dw

or

(Tφ h)(z) = φ(z)h(z)− 1
ψ(z)

∫ z

0
ψ(w)φ ′(w)h(w)dw.
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Proof. Since U(zn+1) = fn(z) for n � 0, U sends an orthonormal basis to an or-
thonormal basis. Hence the restriction of U to H2

0 is an isomorphism onto H(Kϕ ) .
Consequently U∗ = U−1 is given by (U∗g)(z) = f (z) = 1

ψ(z)
∫ z
0 ψ(w)g(w) dw as be-

fore. Also, H2
0 is functionally equal to the set of functions { 1

ψ(z) f (z) : f ∈ H2
0} as

both 1
ψ(z) and ψ(z) are bounded invertible functions on ∂D . Since U( 1

ψ(z) f (z)) =
ϕ(z)
ψ(z) f (z)− ϕ(z)

ψ(z) f (z)+ 1
ψ(z) f ′(z) = 1

ψ(z) f ′(z) , it follows that H(Kϕ ) is a renorming of

the functions { 1
ψ(z) f ′(z) : f ∈ H2

0} .

Let Mz denote multiplication by z on H2
0 and M̂z multiplication by z on H(Kϕ ) .

Applying integration by parts we see that

U−1
( 1

ψ(z)
z f ′(z)

)
=

1
ψ(z)

∫ z

0
ψ(w)

1
ψ(w)

wf ′(w)dw =
1

ψ(z)
z f (z)− 1

ψ(z)

∫ z

0
f (w)dw

is in H2
0 whenever f is in H2

0 since Mz is bounded on H2
0 and the antiderivative of a

function in H2
0 is in H2

0 . Thus H(Kϕ ) is invariant under multiplication by z and hence
M̂z is bounded on H(Kϕ ) by the Closed Graph Theorem. To see that the polynomials
are in H(Kϕ ) , note that U−1(1) = 1

ψ(z)
∫ z
0 ψ(w) dw is in H2

0 . Hence 1 is in H(Kϕ ) .
Since Mz is bounded, Mn

z (1) = zn is in H(Kϕ ) for all n � 1.

Since U(Mz f )= ϕ(z)z f (z)+ f (z)+z f ′(z)= M̂zU( f (z))+ f (z) and M̂z is bounded,
f is in H(Kϕ ) and we can write f = UU−1 f . Hence U(Mz −U−1) f = M̂zU f which
implies M̂z on H(Kϕ ) is unitarily equivalent to T = Mz −U−1 on H2

0 . Recall U−1 is
defined on all holomorphic functions on D and hence is a well defined operator on H2

0 .
Note that if f is in H2

0 , then

(T f )(z) = z f (z)− 1
ψ(z)

∫ z

0
ψ(w) f (w) dw.

It remains to show that the spectrum of M̂z is the closed unit disk and the multi-
pliers of H(Kϕ ) are in H∞ . A standard argument shows〈

(M̂z −λ I) f (z),Kϕ (z,λ )
〉

=
〈
(z−λ ) f (z),Kϕ (z,λ )

〉
= 0

for each λ ∈ D and f ∈ H(Kϕ ) ; thus every point in the open unit disk is in the point
spectrum of M̂∗

z . Hence the spectrum contains the closed unit disk.
Notice that if ϕ is analytic on an open set containing the closed unit disk, then

ϕ is a uniform limit of polynomials on a neighborhood of the closed unit disk and so
the continuity of the Reisz functional calculus implies that ϕ is a multiplier. Thus,
in particular ez , e−z , and other such (entire) functions are multipliers of H(Kϕ) . In
particular, if λ /∈ D , then 1

z−λ is a multiplier and hence σ(M̂z) ⊂ D . The fact that the
multiplier algebra is a subalgebra of H∞ is a well known result regarding multipliers
in functional Hilbert spaces going back to unpublished work of A. L. Shields, L. J.
Wallen, and H.S. Shapiro in 1960 (see Lemma 2 and the subsequent remarks in Shields
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and Wallen [7]). The proof is short and is included for completeness. Simply note that
if φ is a multiplier, then M̂φ is bounded by the Closed Graph Theorem and hence

|φ(w)K(w,w)| =
∣∣∣〈M̂φ K(·,w),K(·,w)

〉∣∣∣� ‖M̂φ‖‖K(·,w)‖2 = ‖M̂φ‖K(w,w). �

PROPOSITION 1. Let U : H2
0 → H(Kϕ ) be given by U(h) = ϕh + h′ , then the

following hold.

1. U( 1
ψ(z) f ) = 1

ψ(z) f ′ , for every f ∈ H2
0 .

2. For every f ,g ∈ H2
0 ,〈

1
ψ(z)

f ′,
1

ψ(z)
g′
〉

H(Kϕ )
=
〈

1
ψ(z)

f ,
1

ψ(z)
g

〉
H2

0

=
∫

∂D
f g

∣∣∣∣ 1
ψ(z)

∣∣∣∣2 dm.

3. For every f ∈ H2
0 ,∥∥∥∥ 1

ψ(z)
f ′
∥∥∥∥2

H(Kϕ )
=
∥∥∥∥ 1

ψ(z)
f

∥∥∥∥2

H2
0

=
∫

∂D
| f |2

∣∣∣∣ 1
ψ(z)

∣∣∣∣2 dm.

4. H2 ⊆ H(Kϕ) .

Proof. The first three items are all consequences of the proof of the above theorem.
To see that H2 ⊆ H(Kϕ ) , let f ∈ H2 . Then h(z) = 1

ψ(z)
∫ z
0 ψ(w) f (w)dw is in H2

0

since multiplication by either 1
ψ(z) or ψ(z) leaves H2 invariant as both are in H∞

and the antiderivative of an H2 function is also in H2 (consider its power series).
Thus the function h defined above is in H2

0 . Now a simple computation shows that
f = ϕh+h′ = U(h) ∈ H(Kϕ ) . �

COROLLARY 1. The operator M̂ 1
ψ(z)

on H(Kϕ ) is unitarily equivalent to the op-

erator T 1
ψ(z)

on H2
0 given by

T 1
ψ(z)

(h) =
1

ψ(z)

∫ z

0
ϕ(w)h(w)+h′(w)dw =

1
ψ(z)

∫ z

0
ϕ(w)h(w)dw+

1
ψ(z)

h

Proof. If h ∈ H2
0 , then

U∗M̂ 1
ψ(z)

U(h) = U∗M̂ 1
ψ(z)

(ϕh+h′) = U∗ 1
ψ(z)

(ϕh+h′)

=
1

ψ(z)

∫ z

0
ψ(w)

1
ψ(w)

(ϕ(w)h(w)+h′(w))dw

=
1

ψ(z)

∫ z

0
ϕ(w)h(w)+h′(w)dw. �
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PROPOSITION 2. Assuming that ψ is one-to-one on the closed unit disk, then the
operator M̂z on H(Kϕ ) is subnormal if and only if M̂ 1

ψ(z)
on H(Kϕ ) is subnormal.

Proof. If Mz is subnormal on H(Kϕ ) , then M 1
ψ(z)

is an analytic function of Mz

and thus will also be subnormal. Conversely, assume that M 1
ψ(z)

is subnormal. Since

1
ψ(z) is analytic on the closed unit disk and one-to-one on the closed unit disk, it is a
weak∗ generator for H∞ . Thus Mz is an analytic function of M 1

ψ(z)
and as such Mz

must be subnormal. �
Consider the space H2

ad of all analytic functions on the unit disk whose antideriva-
tives belong to H2 . The norm on H2

ad is ‖ f‖2
H2

ad
= ‖∫ z

0 f (w)dw‖2
H2 . So,

H2
ad =

{
f (z) =

∞

∑
n=0

anz
n :

∞

∑
n=0

|an|2
(n+1)2 < ∞

}
.

The astute reader will note that the reproducing kernel and associated matrix L for the
space H2

ad are given by

Kad(z,w) =
∞

∑
n=0

(n+1)2(wz)n and Lad =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · ·
0 2 0 0

. . .

0 0 3 0
. . .

0 0 0 4
. . .

...
. . .

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

So Lad consists of the diagonal entries of the matrix L for H(Kϕ) . It is also worth
noting that Mz on H2

ad is the unilateral shift with matrix representation given by⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 · · ·
1
2 0 0 0

. . .

0 2
3 0 0

. . .

0 0 3
4 0

. . .
...

. . .
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Among other things, the next proposition shows that H2
ad = P2(μ) for an appropriate

measure μ on the open unit disk. The following propositions and results illustrate that
various multiplication, integral operators, and combinations are subnormal on P2(μ) .
Our goal in introducing this space is to make an additional connection to the space
H(Kϕ) and establish the plausibility that some choices of φ can lead to M̂z being a
subnormal operator. Even when this is not the case, it will be seen that M̂z is “close” to
being a subnormal operator.
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PROPOSITION 3. If h ∈ H(D) , then

∫
∂D

∣∣∣∣∫ z

0
h(w)dw

∣∣∣∣2 dm =
∫

D
|h|2dμ

where dμ = −4r ln(r)dr dθ
2π = −2ln |z| dA

π . Thus, the map V : L2
a(D,μ) → H2

0 given by
V (h) =

∫ z
0 h(w)dw is an onto isometry and V−1( f ) = f ′ .

Proof. First note that integration by parts shows that
∫ 1
0 r2n(−4r ln(r))dr = 1

(n+1)2

for all n � 0. Thus, ‖zn‖2
L2(μ) =

∫ |zn|2dμ = 1
(n+1)2 for all n � 0. Also one easily

checks that the functions {zn}∞
n=0 are orthogonal in L2(μ) .

So, if h(z) = ∑∞
n=0 anzn is in H(D) , then

F(z) :=
∫ z

0
h(w)dw =

∞

∑
n=0

an

n+1
zn+1.

Using the orthogonality of the functions {zn}∞
n=0 we get

∫
∂D

∣∣∣∣∫ z

0
h(w)dw

∣∣∣∣2 dm = ‖F‖2
H2 =

∞

∑
n=0

|an|2
(n+1)2 =

∞

∑
n=0

|an|2‖zn‖2
L2(μ)

=

∥∥∥∥∥ ∞

∑
n=0

anz
n

∥∥∥∥∥
2

L2(μ)

=
∫

D
|h|2dμ . �

COROLLARY 2. (a) The operator of multiplication by a bounded analytic function
φ(z) on H2

ad is subnormal.
(b) If φ ∈ H∞(D) , then the operator Rφ : H2

0 → H2
0 given by

(Rφ h)(z) =
∫ z

0
φ(w)h′(w)dw

is subnormal.
(c) If φ ∈ H∞(D) , then the operator, Qφ : L2

a(D,μ) → L2
a(D,μ) given by

(Qφ h)(z) = φ(z)h(z)+ φ ′(z)
∫ z

0
h(w)dw

is subnormal.

Proof. (a) Notice that the identity map H2
ad → L2

a(D,μ) is an onto isometry. Since
Mφ on L2

a(D,μ) is subnormal, then Mφ on H2
ad is also subnormal, since the identity

map intertwines the two operators.
Now let V : L2

a(D,μ)→H2
0 be the operator given in Proposition 3, that is, V (h) =∫ z

0 h(w)dw . For (b) notice that Rφ = VMφV−1 holds where Mφ acts on L2
a(D,μ) and

for (c), notice that Q = V−1MzV holds where Mz acts on H2
0 . �
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PROPOSITION 4. If f ∈ H(Kϕ) , then

‖ f‖2
H(Kϕ ) =

∫
∂D

∣∣∣∣∫ z

0
ψ(w) f (w)

∣∣∣∣2 · ∣∣∣∣ 1
ψ(z)

∣∣∣∣2 dm(z) .

Proof. Let f ∈ H(Kϕ) and let h = U−1( f ) where U is the unitary U : H2
0 →

H(Kϕ) given by U(h) = ϕh+h′ . Recall that U−1 is given by

U−1( f ) =
1

ψ(z)

∫ z

0
ψ(w) f (w)dw ,

so

‖ f‖2
H(Kϕ ) = ‖U−1( f )‖2

H2
0

=
∥∥∥∥ 1

ψ(z)

∫ z

0
ψ(w) f (w)dw

∥∥∥∥2

H2
0

=
∫

∂D

∣∣∣∣∫ z

0
ψ(w) f (w)dw

∣∣∣∣2 · ∣∣∣∣ 1
ψ(z)

∣∣∣∣2 dm(z). �

PROPOSITION 5. For n � 0 , let fn(z) = (n + 1)zn + φ(z)zn+1 , let Kϕ (z,w) =
∑∞

n=0 fn(z) fn(w) and let dμ = −4r ln(r)dr dθ
2π . Then the following hold:

1. As sets of functions, H(Kϕ ) = L2
a(D,μ) .

2. The identity map from L2
a(D,μ) to H(Kϕ ) is a bounded invertible linear opera-

tor.

3. Mz on H(Kϕ) is similar to the subnormal operator Mz on L2
a(D,μ) . Since

{ fn}∞
n=0 is an orthonormal basis for H(Kϕ ) , then U is a unitary map from

L2
a(D,μ) onto H(Kϕ) .

4. If M̂z is multiplication by z on H(Kϕ ) , then M̂z is unitarily equivalent to the
operator T on L2

a(D,μ) given by

(T f )(z) = z f (z)+
ϕ(z)
ψ(z)

∫ z

0
ψ(w)

(∫ w

0
f (t)dt

)
dw

via the unitary map Ũ : L2
a(D,μ) → H(Kϕ ) given by

(U f )(z) = f (z)+ ϕ(z)
∫ z

0
f (w)dw.

Proof. Define Ũ : Hol(D) → Hol(D) by (Ũ f )(z) = f (z)+ ϕ(z)
∫ z
0 f (w)dw . No-

tice that {(n+1)zn}∞
n=0 is an orthonormal basis for L2

a(D,μ) and, for all n � 0,

Ũ((n+1)zn) = (n+1)zn + ϕ(z)zn+1 = fn(z).
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Thus Ũ : L2
a(D,μ)→H(Kϕ ) is an onto unitary map, since it maps an orthonormal basis

for one space onto an orthonormal basis for the other space. So,

Ũ(L2
a(D,μ)) = H(Kϕ). (i)

We will now show that Ũ(L2
a(D,μ)) = L2

a(D,μ) and thus we will have that L2
a(D,μ) =

H(Kϕ) as spaces of functions.
One can check that Ũ : Hol(D)→Hol(D) is a bijection, in fact its inverse is given

by

(Ũ−1g)(z) = g(z)− ϕ(z)
ψ(z)

∫ z

0
ψ(w)g(w)dw.

To see this write f (z) = (Ũ−1g)(z) and note (Ũ f )(z) = f (z)+ϕ(z)
∫ z
0 f (w) dw = g(z) .

Letting h(z) =
∫ z
0 f (w) dw gives h′(z) = f (z) and hence h′(z)+ϕ(z)h(z) = g(z) . Solv-

ing the differential equation we obtain h(z) = 1
ψ(z)

∫ z
0 ψ(w)g(w) dw . Differentiating

with the product rule and recalling that ( 1
ψ(z) )

′ = − ϕ(z)
ψ(z) , we obtain the desired formula

(Ũ−1g)(z) = f (z) = g(z)− ϕ(z)
ψ(z)

∫ z

0
ψ(z)g(w) dw.

Notice that if f (z) = ∑∞
n=0 anzn , then

‖ f‖2
L2

a(D,μ) =
∞

∑
n=0

|an|2
(n+1)2 . (ii)

Thus f ∈ L2
a(D,dμ) if and only if ∑∞

n=0
|an|2

(n+1)2 < ∞ . Equation (ii) and the fact that ϕ ,

ψ , and 1
ψ are H∞ functions can then be used to show that if g∈ L2

a(D,μ) , then U(g)∈
L2

a(D,μ) and U−1(g)∈ L2
a(D,μ) . Hence Ũ(L2

a(D,μ))⊆ L2
a(D,μ) and U−1(L2

a(D,μ))
⊆ L2

a(D,μ) , which implies that U(L2
a(D,μ)) = L2

a(D,μ) . This together with (i) gives
that L2

a(D,μ) = H(Kϕ) . Thus (1) holds. Item (2) follows from the closed graph
theorem, and (3) follows from (2) .

To verify (4) requires computing

Ũ−1M̂zŨ f (z)

= z f (z)+ zϕ(z)
∫ z

0
f (w)dw− ϕ(z)

ψ(z)

∫ z

0
ψ(w)

[
wf (w)+wϕ(w)

∫ w

0
f (t)dt

]
dw

= z f (z)+ zϕ(z)
∫ z

0
f (w)dw− ϕ(z)

ψ(z)

∫ z

0
ψ(w)wf (w)dw

−ϕ(z)
ψ(z)

∫ z

0
ψ(w)wϕ(w)

(∫ w

0
f (t)dt

)
dw.

The integral ∫ z

0
ψ(w)wϕ(w)

(∫ w

0
f (t)dt

)
dw
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is equal to

zψ(z)
∫ z

0
f (t)dt −

∫ z

0
wψ(w) f (w)dw−

∫ z

0
ψ(w)

(∫ w

0
f (t)dt

)
dw.

One can see this by either interchanging the order of integration or using integration
by parts with u = w(

∫ w
0 f (t)dt) and dv = ψ(w)ϕ(w)dw . Replacing this integral in the

above and cancelling like terms results in

Ũ−1M̂zŨ = z f (z)+
ϕ(z)
ψ(z)

∫ z

0
ψ(w)

(∫ w

0
f (t)dt

)
dw. �

3. The space H(Kϕ) with ϕ(z) = 1

We now consider the case when ϕ(z) = 1. In this case, ψ(z) = ez , and, for n � 0,
fn(z) = (n+ 1)zn + zn+1 . It is clear from the introductory section that { fn} forms an
orthonormal basis for the tridiagonal reproducing kernel Hilbert space H(K) with

L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · ·
1 2 0 0

. . .

0 1 3 0
. . .

0 0 1 4
. . .

...
. . .

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

It is also easy to determine that the natural domain Dom(K) is the unit disk and that K
has the closed form expression of

K(z,w) =
∞

∑
n=0

fn(z) fn(w) =
1+wz

(1−wz)3 +(w+ z)
1

(1−wz)2 +
wz

1−wz
.

We now interpret Theorem 1 and our previous results in this special case.
First note the linear map U : H0(D)→H(D) defined by U( f ) = f + f ′ has inverse

given by

(U−1g)(z) = f (z) = e−z
∫ z

0
ewg(w) dw.

THEOREM 2. With H2 denote the usual Hardy space on the unit disk, H2
0 the sub-

space spanned by {zn : n � 1} , and H(K) the space with reproducing kernel K(z,w) =
Kw(z) = ∑∞

n=0 fn(z) fn(w) where fn(z) = (n + 1)zn + zn+1 , we have the following re-
sults:.

1. U : H2
0 → H(K) given by U( f ) = f + f ′ is an isomorphism. In this case

U∗g = U−1g = e−z
∫ z

0
ewg(w)dw;
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2. H(K) consists of the functions {e−z f ′(z) : f ∈ H2
0} ;

3. H(K) contains the polynomials;

4. M̂z : H(K) → H(K) is a bounded operator where M̂z( f ) = z f ;

5. the spectrum of M̂z is the closed unit disk;

6. M̂z : H(K) → H(K) is unitarily equivalent to T : H2
0 → H2

0 where

(T f )(z) = z f (z)− e−z
∫ z

0
ew f (w) dw.

7. the multiplier algebra of H(K) is a subalgebra of H∞ which includes all func-
tions analytic in a neighborhood of the closed unit disk D .

8. If φ is a bounded multiplier of H(K) and Tφ : H2
0 →H2

0 by Tφ =U∗M̂φU where

M̂φ is multiplication by φ on H(K) , then

(Tφ h)(z) = e−z
∫ z

0
φ(w)ew(h(w)+h′(w))dw

or

(Tφ h)(z) = ϕ(z)h(z)− e−z
∫ z

0
φ ′(w)ewh(w)dw.

Proof. Interpret Theorem 1 with ϕ(z) = 1. �

COROLLARY 3. With U : H2
0 →H(K) given by U(h) = h+h′ , then the following

hold:

1. For every f ,g ∈ H2
0 ,

〈e−z f ′,e−zg′〉H(K) = 〈e−z f ,e−zg〉H2
0

=
∫

∂D
f g|e−z|2dm.

2. For every f ∈ H2
0 ,

‖e−z f ′‖2
H(K) = ‖e−z f‖2

H2
0

=
∫

∂D
| f |2|e−z|2dm

3. H2 ⊂ H(K)

The above formula for T is amenable to calculating T (zn) for n � 1 and hence a
matrix representation for T on H2

0 . A short calculation shows that for n � 1,

T (zn) = zn+1 +(−1)nn!

[
e−z +

n

∑
k=0

(−1)k+1 zk

k!

]

= zn+1 +(−1)nn!
∞

∑
k=n+1

(−1)k zk

k!
= (1− 1

n+1
)zn+1 +(−1)nn!

∞

∑
k=n+2

(−1)k zk

k!
.
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Thus, for n � 1,

||T (zn)||2 =
(
1− 1

n+1

)2
+

∞

∑
k=n+2

(
n!
k!

)2

.

The matrix form for T relative to the basis {zn}∞
n=1 or M̂z relative to the basis { fn(z)}∞

n=1
is now seen to be

M̂z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 · · ·
1
2 0 0 0 0 0 0 0 0

. . .

1!
3!

2
3 0 0 0 0 0 0 0

. . .

− 1!
4!

2!
4!

3
4 0 0 0 0 0 0

. . .

1!
5! − 2!

5!
3!
5!

4
5 0 0 0 0 0

. . .

− 1!
6!

2!
6! − 3!

6!
4!
6!

5
6 0 0 0 0

. . .

1!
7! − 2!

7!
3!
7! − 4!

7!
5!
7!

6
7 0 0 0

. . .

− 1!
8!

2!
8! − 3!

8!
4!
8! − 5!

8!
6!
8!

7
8 0 0

. . .

1!
9! − 2!

9!
3!
9! − 4!

9!
5!
9! − 6!

9!
7!
9!

8
9 0

. . .
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that the subdiagonal entries of this matrix form of M̂z are the shift elements of the
subnormal unilateral shift of multiplication by z on the space L2(D,μ) where dμ =
−4r ln(r)dr dθ

2π .
Also, we can see that for n � 0,

U∗(zn) = e−z
∫ z

0
ewwn dw

which gives

U∗(zn) = (−1)n+1n!

[
e−z−

n

∑
k=0

(−1)k zk

k!

]
= n!

∞

∑
k=n+1

(−1)n+k+1 zk

k!
.

Thus

||U∗(zn)||2 = n!
(
e−z−Pn(z)

)
=

∞

∑
k=n+1

(
n!
k!

)2

where Pn(z) is the nth Taylor polynomial of e−z expanded about the origin. It is now
easy to calculate the Grammian matrix as, for n � m ,

〈zn,zm〉H(K) = 〈U∗(zn),U∗(zm)〉H2
0

=

〈
n!

∞

∑
k=n+1

(−1)n+k+1 zk

k!
, m!

∞

∑
k=m+1

(−1)m+k+1 zk

k!

〉
H2

0

= n!m!
∞

∑
k=n+1

(−1)n+m

(k!)2 .
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From this formula, we can easily express

〈zn,zm〉 = (−1)n−m m!
n!

〈zn,zn〉

in terms of the diagonal elements 〈zn,zn〉 = ∑∞
k=n+1

(n!)2

(k!)2 as indicated in the following
matrix form of the Grammian:

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈1,1〉 −0!
1! 〈z,z〉 0!

2!〈z2,z2〉 −0!
3! 〈z3,z3〉 · · ·

−0!
1! 〈z,z〉 〈z,z〉 −1!

2! 〈z2,z2〉 1!
3!〈z3,z3〉 . . .

0!
2!〈z2,z2〉 −1!

2! 〈z2,z2〉 〈z2,z2〉 −2!
3! 〈z3,z3〉 . . .

−0!
3! 〈z3,z3〉 1!

3!〈z3,z3〉 −2!
3! 〈z3,z3〉 〈z3,z3〉 . . .

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

4. M̂z is hyponormal

First we compute the matrix
(
mj,k

)∞
j,k=0 of the self-commutator

[M̂∗
z ,M̂z] = M̂∗

z M̂z− M̂zM̂
∗
z .

The diagonal entries mn,n will be denoted by dn . By virtue of being self adjoint, we
only compute the entries mj,k where j � k .

To begin, let B denote the matrix

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1!
2! 0 0 0 · · ·

− 1!
3!

2!
3! 0 0

. . .

1!
4! − 2!

4!
3!
4! 0

. . .

− 1!
5!

2!
5! − 3!

5!
4!
5!

. . .
...

. . .
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and let S denote the matrix of the usual unilateral shift. Then M̂z = S(I−B) . Showing
M̂z is hyponormal is equivalent to showing that Q(�x) = ||M̂z�x||2 − ||M̂∗

z�x||2 is positive
definite. Notice that

Q(�x) = ||�x||2−||S∗�x||2 + ||B�x||2−||B∗S∗�x||2−2〈B�x,�x〉+2〈B∗S∗�x,S∗�x〉
Since all entries of the matrix B are real valued, we can limit consideration to vectors
�x where all entries are real valued as well. With that assumption,

B�x =

⎛⎜⎜⎜⎜⎜⎝
+ 1!

2!x0

− 1!
3!x0 + 2!

3!x1

+ 1!
4!x0 − 2!

4!x1 + 3!
4!x2

− 1!
5!x0 + 2!

5!x1 − 3!
5!x2 + 4!

5!x3
...

⎞⎟⎟⎟⎟⎟⎠
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and

B∗S∗�x =

⎛⎜⎜⎜⎜⎜⎝
1!
2!x1 − 1!

3!x2 + 1!
4!x3 − 1!

5!x4 + · · ·
2!
3!x2 − 2!

4!x3 + 2!
5!x4 −·· ·

3!
4!x3 − 3!

5!x4 + · · ·
4!
5!x4 −·· ·

...

⎞⎟⎟⎟⎟⎟⎠ .

Thus,

〈B�x,B�x〉 =
∞

∑
j=0

∞

∑
s= j

(( j +1)!
(s+2)!

)2
x2

j +2
∞

∑
j=0

∞

∑
k= j+1

∞

∑
s=k

(−1) j+k ( j +1)!(k+1)!
(s+2)!2

x jxk ,

〈B∗S∗�x,B∗S∗�x〉 =
∞

∑
j=1

j

∑
s=1

( s!
( j +1)!

)2
x2

j +2
∞

∑
j=1

∞

∑
k= j+1

j

∑
s=1

(−1) j+k (s!)2

( j +1)!(k+1)!
x jxk ,

〈B�x,�x〉 =
∞

∑
j=0

( j +1)!
( j +2)!

x2
j +

∞

∑
j=0

∞

∑
k= j+1

(−1) j+k ( j +1)!
(k+2)!

x jxk ,

and

〈B∗S∗�x,S∗�x〉 =
∞

∑
j=1

j!
( j +1)!

x2
j +

∞

∑
j=1

∞

∑
k= j+1

(−1) j+k j!
(k+1)!

x jxk.

Hence Q(�x) =
∞

∑
j=0

d jx
2
j +2

∞

∑
j=0

∞

∑
k= j+1

mj,kx jxk where

d0 =
∞

∑
s=2

1
s!2

and m0,k = (−1)k
(
− 1

(k+2)!
+

∞

∑
s=k

(k+1)!
(s+2)!2

)
for k > 0.

If j > 0 and k > j , then

dk =
2

k+1
− 2

k+2
+

∞

∑
s=k

(
(k+1)!
(s+2)!

)2

−
k

∑
s=1

(
s!

(k+1)!

)2

and

mj,k = (−1) j+k

[
j!

(k+1)!
− ( j +1)!

(k+2)!
+

∞

∑
s=k

( j +1)!(k+1)!
((s+2)!)2 −

j

∑
s=1

s!2

( j +1)!(k+1)!

]
.

Let p(x,h) denote the rising Pochhammer symbol if h is positive and the falling
Pochhammer symbol if h is negative. Thus p(x,h) = x(x + 1) · · ·(x + h− 1) if h is
positive and p(x,h) = x(x−1) · · ·(x+h+1) if h is negative. Making use of this symbol
allows for a more convenient rewriting of dk and mj,k which we summarize below in
the following proposition.
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PROPOSITION 6. With

pk =
∞

∑
s=1

(
1

p(k+2,s)

)2

, q j =
j

∑
t=1

(
1

p( j +1,−t)

)2

,

and

b j,k =
k− j +1

( j +1)(k+2)
+ pk −q j,

the diagonal entries dk of [M̂∗
z ,M̂z] can be expressed as

dk =
1

(k+1)(k+2)
+bk,k

and, for 0 < j < k , the lower triangular entries mj,k are given by

mj,k = (−1)h 1
p(k+1,−h)

b j,k where h = k− j.

Proof. Simply compare to the formulas in the proposition to the formulas imme-
diately before the proposition. �

The following proposition provides the framework for the proof that M̂z is hy-
ponormal.

PROPOSITION 7. Let A = (a j,k)∞
j,k=0 be a self adjoint matrix with positive diag-

onal entries dk = ak,k and let AN = (a j,k)0� j,k�N be the (N +1)× (N +1) cutdown of
A. Let �an denote the n by 1 column vector with first entry a0,n and last entry an−1,n .
If, for some N ∈ Z+ ,

1. inf||�f ||=1

〈
AN�f , �f

〉
� dN+1 , and

2. dn−||�an|| � dn+1 for all n � N +1 ,

then A > 0 .

Proof. It suffices to show that inf
||�f ||=1

〈
AN�f , �f

〉
� dn+1 for all n � N . This will

be established by induction. The base case is the hypothesis, so assume that λn−1 =
inf

||�f ||=1

〈
An−1�f , �f

〉
� dn . Let �f ∈ Cn and let α ∈ C with ||�f ||2 + |α|2 = 1. Then

〈
An

(
�f
α

)
,

(
�f
α

)〉
=
〈(

An−1 �an

�a∗n dn

)(
�f
α

)
,

(
�f
α

)〉
=
〈
An−1�f , �f

〉
+dn|α|2 +2Re

(
α
〈
�an, �f

〉)
� λn−1||�f ||2 +dn|α|2−2|α| ||�f || ||�an||
� min(λn−1,dn)−||�an||
= dn−||�an||
� dn+1. �
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We will argue that M̂z is positive definite by showing that the proposition above
applies to the matrix (mj,k) where mn,n = dn . Due to the complexity of the formulas,
brute force will be applied to bounding ||�an|| for small n . For larger values of n , the
derived bounds will suffice. For some arguments, we appeal to simple computations on
ugly rational functions which can easily be verified using a symbolic algebra system
such as Mathematica on a computer. Perhaps a more elegant approach suffices, but we
have not found it. We will first prove a small lemma, followed by the main result of this
section.

LEMMA 1. If j,k � 2 then

1
(k+2)2 +

1
(k+2)2(k+3)2 < pk <

1
(k+2)2−1

1
( j +1)2−1

< q j <
1

( j +1)2 +
1

( j +1) j3

Proof. The inequalities for pk follow easily from the series definition. The left

hand inequality for q j follows from the fact that ∑∞
s= j

(
1

j+1

)2
� 1

( j+1)! as long as

j � 2. The right hand inequality for q j follows by induction on j . The base case
follows from q1 = 1

4 < 3
4 To accomplish the induction step, note that q j satisfies the

order preserving recursion: q j+1 = 1+q j

( j+2)2 . Applying the recursion to both sides of the

induction hypothesis completes the lemma. �

THEOREM 3. The operator M̂z on H(K) is hyponormal where

K(z,w) =
∞

∑
n=0

fn(z) fn(w) , fn(z) = ((n+1)+ z)n.

Proof. By Proposition 7, the theorem requires that dn−dn+1 exceeds

||�an|| =
(

n−1

∑
j=0

|mj,n|2
)1/2

.

Notice, by Proposition 6,

dn−dn+1 =
2

(n+1)(n+2)
− 2

(n+2)(n+3)
+ (pn− pn+1)− (qn−qn+1)

>
4

(n+1)(n+2)(n+3)
+
(

1
(n+2)2 +

1
(n+2)2(n+3)2 −

1
(n+3)2−1

)
−
(

1
(n+1)2 +

1
(n+1)n3 −

1
(n+2)2−1

)
=

4− r(n)
(n+1)(n+2)(n+3)
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where r(n) is a rational function in n which decreases for positive n . Specifically

r(n) =
144+420n+484n2+359n3 +186n4 +53n5 +6n6

n3(n+1)(n+2)(n+3)(n+4)

and r(n) decreases for n � 1 as the derivative of r = r(n) is negative for n � 1. Also
r(n) → 0 as n → ∞ .

By Proposition 6, |mj,k| =
1

p(k+1,−h)
|b j,k| . First we show that b j,k > 0 for

1 � j < k and use this positivity to bound b j,k from above. First note that pk,q j > 0
for all j,k > 0 Since k > j ,

b j,k =
1

( j +1)
− 1

k+2
+ pk −q j

� 1
( j +1)

− 1
j +3

+0− 1
( j +1)2 −

1
( j +1) j3

>
1

( j +1)
− 1

j +3
− 1

( j +1)2 −
1

( j +1) j3
.

Evaluating this last expression at j = 3+ t results in a ratio of polynomials in t , all of
whose coefficients are positive. Using q1 = 1/4 and q2 = 1/9+ 1/36 and the lower
bound for pk , it is a simple matter to verify the inequality for j = 1,2 as well.

Having established the positivity of b j,k , notice that, for 1 � j < k ,

b j,k <
1

( j +1)
− 1

k+2
+

1
(k+2)2−1

− 1
( j +1)2−1

<
1

j +1
− 1

k+2
+

1
(k+2)2 −

1
( j +1)2

=
j

( j +1)2 −
k+1

(k+2)2 .

For j = n−1 and k = n , this leads to

|mn−1,n| < 2n2−4
n2(n+1)(n+2)2 .

For j = n−2 = k , this leads to

|mn−2,n| < 3(n2−n−3)
(n−1)2n(n+1)(n+2)2 .

For j < n−2, the cruder approximation b j,n < 1
j+1 leads to |mj,n| < j!

(n+1)! . Addition-

ally, |m0,n| < 1
(n+2)! .
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Thus,

||�an||2 = |m0,n|2 +
n−3

∑
j=1

|mj,n|2 + |mn−2,n|2 + |mn−1,n|2

<

(
1

(n+2)!

)2

+
n−3

∑
j=1

(
j!

(n+1)!

)2

+
(

3(n2−n−3)
(n−1)2n(n+1)(n+2)2

)2

+
(

2n2−4
n2(n+1)(n+2)2

)2

.

Note that if n > 3,

n−3

∑
j=1

(
j!

(n+1)!

)2

=
qn−3

(n+1)2n2(n−1)2

<

1
(n−2)2 + 1

(n−2)(n−3)3

(n+1)2n2(n−1)2

=
n3−9n2 +28n−29

(n+1)2n2(n−1)2(n−2)2(n−3)3 .

Thus,

||�an||2 <

(
1

(n+2)!

)2

+
n3−9n2 +28n−29

(n+1)2n2(n−1)2(n−2)2(n−3)3

+
(

3(n2−n−3)
(n−1)2n(n+1)(n+2)2

)2

+
(

2n2−4
n2(n+1)(n+2)2

)2

=
(

1
(n+2)!

)2

+
r1(n)

(n+1)2(n+2)2(n+3)2

where r1(n) is the obvious rational function of n obtained on factoring (n+ 1)2(n+
2)2(n+3)2 out of the denominator in the last three terms. Note that a quick inspection
of these last three terms and their relationship to r1(n) shows that r1(n) → 4 as n →
∞ . Additionally, a tedious computation (or use of a computer algebra system) will
show that r′1(n+4) = − φ1(n)

φ2(n) where φ1 and φ2 are polynomials in n with all positive

coefficients. Hence r1(n) is decreasing for n � 4, a fact that also can be verified by
plotting the function.

We claim that, for all n � 3,

||�an||2 < (dn−dn+1)2.

For 3 � n � 4, direct computation using pn > 1/(n+ 2)2 and the exact values of q j

verifies the inequality. In light of the upper estimate for ||�an|| and the lower estimate
for dn−dn+1 , it suffices to show that(

1
(n+2)!

)2

+
r1(n)

(n+1)2(n+2)2(n+3)2 <

(
4− r(n)

(n+1)(n+2)(n+3)

)2
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for all n � 5. As lim
n→∞

r1(n) = 4 and (4−r(n))2 increases to 16 as n→∞ , it is apparent

that ||�an|| < dn−dn+1 for large n . Since r1(n) is decreasing for n � 4 and it is easily

seen that (n+1)(n+2)(n+3)
(n+2)! is decreasing with n , to finish the proof of the claim, it is

enough to verify (
(n+1)2(n+2)2(n+3)2

(n+2)!

)2

+ r1(n) < (4− r(n))2

for n = 5 which is easily done. To finish the proof that Tz is hyponormal, it suffices to
prove that

inf
||�f ||=1

〈A2�f , �f 〉 > d3

Approximating A2 and d3 to 6 decimal places gives

inf
||�f ||=1

〈A2�f , �f 〉 ≈ .086 > .070 ≈ d3

where we use the fact that for a positive n by n matrix A , inf
||�f ||=1

〈A�f , �f 〉 equals the

smallest eigenvalue. �

5. A norm estimate for M-dominated matrices and ||M̂z|| = 1

In general it is very difficult to calculate the norm of a matrix or operator. In this
section we develop an effective, but somewhat cumbersome, method for estimating the
norm of an operator. As will be seen, it is particularly effective for lower triangular
matrices alike in matrix form to our operator M̂z . We begin with some terms and
notation followed by a simple 3× 3 lower triangular matrix example. Following that
we state and prove a norm-estimation theorem which we then use to calculate the norm
of M̂z .

DEFINITION 1. If �x = (x1,x2, · · · ,xN) is a in vector Cn or l2+ , then the support of
�x is defined by supp(�x) = {k : xk = 0} .

DEFINITION 2. Let T = [tn,k] and D = [dn,k] be N ×N matrices such that for
each n and k , either dn,k = tn,k or dn,k = 0. Let �tn , �dn be the n th row-vectors of T ,
D respectively and set �vn =�tn − �dn . If �x = (x1,x2, · · · ,xN) ∈ Cn , then express �x as
�x =�xn,0 +�xn,1 +�xn,2 where, for j = 0,1,2,

• the coordinates of �xn, j are either the same as the coordinates of �x or are zero,

• supp(�dn) = supp(�xn,2) and

• supp(�vn) = supp(�xn,1) .

Note that k ∈ supp(�xn,0) if and only if tn,k = 0.
For M > 0, the matrix D is said to be M -dominating for T if there exist non-

negative sequences {εn} and {δn} satisfying:
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1. for each row�tn of TN ,

|�tn ·�x|2 � εn‖�xn,1‖2 +(M2− δn)‖�xn,2‖2,

and

2. for each i between 1 and N ,

∑
n∈Ai

εn < ∑
n∈Bi

δn

where
Ai = {n : i ∈ supp(�vn)} and Bi = {n : i ∈ supp(�dn)}.

If T and D are bounded infinite matrices, then D is M -dominating for T if, for each
N ∈ N , the N×N cut down Dn of D is M -dominating for the N×N cut down Tn of
T .

REMARK 1. It is worth noting that if we let An � ‖�vn‖2 , Bn � ‖�vn‖‖�dn‖ , and
Cn � ‖�dn‖2 , then condition 1 of Definition 2 can be established by finding non-negative
sequences {εn} and {δn} for which the quadratic inequality

(An− ε)‖�xn,1‖2 +2Bn‖�xn,1‖‖�xn,2‖+(Cn−M2 + δn)‖�xn,2‖2 � 0

holds since

|�tn ·�x|2 � ‖�vn‖2‖�xn,1‖2 +2‖�vn‖‖�dn‖‖�xn,1‖‖�xn,2‖+‖�dn‖2‖�xn,2‖2

� An‖�xn,1‖2 +2Bn‖�xn,1‖‖�xn,2‖+Cn‖�xn,2‖2.

The quadratic inequality can be expressed in dot product form as〈[
(An − εn) Bn

Bn (Cn −M2 + δn)

][‖�xn,1‖
‖�xn,2‖

]
,

[‖�xn,1‖
‖�xn,2‖

]〉
� 0.

The two conditions (An− εn) < 0 and

det

([
(An − εn) Bn

Bn (Cn −M2 + δn)

])
� 0

are sufficient for the quadratic inequality to be non-positive.

EXAMPLE 1. Let T =

⎛⎝2 0 0
1 2 0
0 1 2

⎞⎠ , so �t1 = (2,0,0) ,�t2 = (1,2,0) ,�t3 = (0,1,2) .

We will show that T is 3-dominated by D =

⎛⎝2 0 0
0 2 0
0 0 2

⎞⎠ . Note that �d1 = (2,0,0) ,

�d2 = (0,2,0) , �d3 = (0,0,2) while �v1 = (0,0,0) , �v2 = (1,0,0) , �v3 = (0,1,0) .
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If �x = (x1,x2,x3) , then

�x10 = (0,x2,x3) �x11 = (0,0,0) �x12 = (x1,0,0)
�x20 = (0,0,x3) �x21 = (x1,0,0) �x22 = (0,x2,0)
�x30 = (x1,0,0) �x31 = (0,x2,0) �x32 = (0,0,x3)

while A1 = {2} , B1 = {1} , A2 = {3} , B2 = {2} , A3 = /0 , and B3 = {3} . Letting
A1 = ||�v1||2 , B1 = ||�v1||||�dn||= 0, C1 = ||�dn||2 =2= 4, and 0 < ε1 , we see that A1−ε1 =
−ε1 < 0 and

det

([
(A1 − ε1) B1

B1 (C1 −M2 + δ1)

])
= det

([−ε1 0
0 (4−M2 + δ1)

])
= −ε1(4−M2 + δ1) � 0

provided that M2 � 4 + δ1 . Proceeding, we take A2 = 1, C2 = 4, B1 = 2, and the
conditions imply (1− ε2) < 0 and (1− ε2)(4−M2 +δ2) � 4. Similarly, with A3 = 1,
C3 = 4, and B3 = 2, we have (1− ε3) < 0 and (1− ε3)(4−M2 + δ3) � 4. Since
∑n∈Ai

εn < ∑n∈Bi
δn , we see 1 < ε2 < δ1 , 1 < ε3 < δ2 , while δ3 can be any positive

number. Letting ε2 = ε3 = 1+ ε where ε > 0 and δ1 = δ2 = 1+ δ where δ > 0, we
are led to M2 � 4

ε + ε + 5+ δ which is minimized by letting δ → 0 and ε = 2. This
results in M2 = 9 or M = 3. The next result shows that this provides an estimate of
||T || � 3. The actual value can be numerically computed to be about 2.76.

THEOREM 4. Let H be a separable complex Hilbert space with orthonormal ba-
sis B = {x1,x2,x3, · · ·} , assume that T = D+V , where T , D, and V are continuous
linear operators on H , and for each n = 1,2,3, . . . , the row vectors �dn and �vn of D
and V respectively have disjoint support. If, for each N ∈ N , TN is M -dominated by
DN , then

1. with�tn denoting the nth row of TN , for each �x ∈ CN ,

‖TN�x‖2 =
N

∑
n=1

|�tn ·�x|2 � M2‖�x‖2;

2. ‖T‖ � M.

Proof. Let PN denote the projection onto Bn = {x1,x2, · · · ,xN} . Since TN =
PNTPN converges in the strong operator topology to T , (2) will hold if ‖TN‖ � M
for all N ∈ N . To that end we observe that, for each �x ∈ CN ,

‖TN�x‖2 =
N

∑
n=1

|�tn.�x|2

By assumption DN M -dominates TN , which implies the existence of non-negative
sequences {εn} and {δn} such that:
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1. for each row�tn of TN ,

|�tn ·�x|2 � 0 · ‖�xn,0‖+‖�vn‖2‖�xn,1‖2 +2‖�vn‖‖�dn‖‖�xn,1‖‖�xn,2‖+‖�dn‖2‖�xn,2‖2

� εn‖�xn,1‖2 +(M2− δn)‖�xn,2‖2,

and

2. for each i between 1 and N ,

∑
n∈Ai

εn < ∑
n∈Bi

δn

where
Ai = {n : i ∈ supp(�vn)} and Bi = {n : i ∈ supp(�dn)}.

Hence,

‖TN�x‖2 =
N

∑
n=1

|�tn.�x|2 �
N

∑
n=1

(
εn‖�xn,1‖2 +(M2− δn)‖�xn,2‖2

)
=

N

∑
n=1

(
∑

n∈Ai

εnx
2
i + ∑

n∈Bi

(M2 − δn)x2
i

)
.

Applying (2), we obtain

‖TN�x‖2 �
N

∑
n=1

(
∑

i∈Ai∪Bi

M2x2
i

)
� M2‖�x‖2.

Hence ‖TN‖ � M . �

PROPOSITION 8. If M̂z denotes multiplication by z on H(K) where K(z,w) =
Kw(z) = ∑∞

n=0 fn(z) fn(w) with fn(z) = (n+1)zn + zn+1 , then ||M̂z|| = 1 .

Proof. Previously it was shown that the spectrum of M̂z was the closed unit disk,
so ||M̂z|| � 1. Additionally a matrix form for M̂z was determined in section 2. For
convenience we make all of the entries of the matrix form of M̂z positive and use
Theorem 4 to show that this matrix has norm at most 1, thereby establishing the result.
Note that making the entries all positive will not change our norm estimate since the
choices of An , Bn , and Cn in the M -dominating scheme only rely on the norms of the
rows of D and V .

Let T = [tn,k] be the lower triangular matrix with diagonal entries tn,n = n
n+1 and

tn,m = m!
(n+1)! for n � 2 and m = 1,2, . . . ,n− 1. Let D be the diagonal matrix with

diagonal entries { n
n+1} , and for n = 1, . . . ,N , let �dn = n

n+1�en where �en is the canonical

basis row-vector. Let �v1 =�0 and �vn = ∑n−1
k=1

k!
(n+1)!�ek for n � 2. Hence �xn,2 = xn�en ,

�xn,1 = ∑n−1
k=1 xk�ek , and �xn,0 = ∑N

k=n+1 xk�ek . We shall show below that T is M -dominated
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by D with M = 1. Since σ(T ) = D , invoking the previous theorem will then show that
T is a contraction.

When n = 1, |�t1 ·�x|2 = |�d1 ·�x|2 = 1
4 . Letting A1 = 0, C1 = 1

4 , B1 = 0, M = 1,
ε1 = 0, and δ1 = 3

4 , we have A1−ε1 = 0 � 0, C1−M2 +δ1 = 1
22 −1+ 3

4 = 0 � 0, and
the matrix below is negative semidefinite as it is the zero matrix[

A1− ε1 B1

B1 (C1−M2 + δ1)

]
=
[
0 0
0 0

]
.

When n = 2, �d2 = 2
3�e2 and �v2 = 1

6�e1 . Letting A2 = 1
62 , C2 = 4

9 , B2 = 1
9 , M = 1,

ε2 = 1
22 , and δ2 = 1

2 , we have A2− ε2 = − 2
9 � 0 and∣∣∣∣A2− ε2 B2

B2 (C2 −M2 + δ2)

∣∣∣∣= ∣∣∣∣− 2
9

1
9

1
9

4
9 −1+ 1

2

∣∣∣∣= 0 � 0.

Note that for n � 3,

‖�vn‖2 =
n−1

∑
k=1

k!2

(n+1)!2
�
(

1− 1
(n−1)(n−2)

)
(n−1)!2

(n+1)!2
� 1

n4 .

With An = 1
n4 , Cn = n2

(n+1)2 , Bn = 1
n(n+1) , M = 1, ε = 1

n2 , and δn = 1
n , it is routine to

check that for n � 3, An− ε = 1
n4 − 1

n2 < 0, and∣∣∣∣(An − εn) Bn

Bn (Cn −M2 + δn)

∣∣∣∣ =

∣∣∣∣∣(
1
n4 − 1

n2 ) 1
n(n+1)

1
n(n+1) ( n2

(n+1)2 −1+ 1
n )

∣∣∣∣∣
=

n4−2n3−2n2 +n+1
n5(n+1)2 � 0.

It remains to show that for each i between 1 and N ,

∑
n∈Ai

εn < ∑
n∈Bi

δn

where
Ai = {n : i ∈ supp(�vn)} and Bi = {n : i ∈ supp(�dn)}.

First note that Bi = {n : n = i} is a singleton set and that Ai = {n : i+1 � n � N−1} .
When i = 1,

∑
n∈Ai

εn <
∞

∑
k=2

1
k2 =

π2

6
−1 < ∑

n∈Bi

δn = δ1 =
3
4
.

For i � 2,

∑
n∈Ai

εn <
∞

∑
k=i+1

1
k2 �

∫ ∞

i

1
x2 =

1
i

= ∑
n∈Bi

δn = δi =
1
i
.

Thus T is 1-dominated by D and ‖T‖ � 1. Thus ‖M̂z‖ � 1. Since the spectral radius
of M̂z is 1 , ‖M̂z‖ = 1. �
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6. Subnormality and M̂z

We now return to the question of the subnormality of M̂z . Thus far it has been
established that M̂z is a hyponormal operator whose norm is equal to its spectral radius.
These are both necessary conditions for M̂z to be a subnormal operator. Additionally,
it has been shown that M̂z is similar to the subnormal operator Mz on L2

a(D,μ) and
that for all multipliers φ of H(K) , M̂φ is a perturbation by an integral operator of
the Toeplitz operator Mφ on L2

a(D,μ) . In fact the operator M̂z is sufficiently “close”
to being a subnormal operator that it passes most of the simpler tests for subnormal-
ity. In this section we show that M̂z is not a subnormal operator by making use of a
modification of an old result of Alan Lambert [5].

We begin by looking at the formula

∞

∑
k=n+1

(
n!
k!

)2

=
1

(n+1)2 +
1

(n+1)2(n+2)2 +
1

(n+1)2(n+2)2(n+3)2 + · · ·

for the diagonal elements of the Grammian computed at the end of Section 3, we can
see that the function

f (x) =
1

(x+1)2 +
1

(x+1)2(x+2)2 +
1

(x+1)2(x+2)2(x+3)2 + · · ·

is a limit of the sequence of completely monotone functions

fn(x) =
n

∑
k=1

1
(x+1)2 · · · (x+ k)2 .

Since the set of completely monotone functions is closed with respect to pointwise con-
vergence (see page 5 of Schilling, Song, and Vondraček), f is a completely monotone
function. The function f is also known as the hypergeometric function 1F2(1;x+2,x+2;1)

(x+1)2

and it is easily seen to satisfy the relation

f (n) =
1

(n+1)2

[
1+ f (n+1)

]
.

Since f is completely monotonic, it is the Laplace transform of a unique positive mea-
sure μ on [0,∞) (see Widder [9]). That unique measure is determined in the next
proposition.

PROPOSITION 9. The function

f (n) =
1

(n+1)2 +
1

(n+1)2(n+2)2 +
1

(n+1)2(n+2)2(n+3)2 + · · ·

is the Laplace transform of the measure h(t)dt where

h(t) = e−t

(
I0(2)K0(2e

−t
2 )−K0(2)I0(2e

−t
2 )

I1(2)K0(2)+ I0(2)K0(2)

)
.

where K0 denotes the BesselK function and I0 the Bessel0 function.
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Proof. Recall the Laplace transform of a function g is defined by L
(
g(t)

)
(n) =∫ ∞

0 e−ntg(t) dt . Assume that f (n) = L
(
h(t)

)
for some unknown h � 0 and note that

elementary properties of the Laplace transform imply L
(
e−th(t)

)
= f (n+1) as well

as L
(
te−t

)
= 1

(n+1)2 .

Since f (n) = 1
(n+1)2

[
1+ f (n+1)

]
,

L −1( f (n)
)

= L −1
(

1
(n+1)2

)
+L −1

(
1

(n+1)2 f (n+1)
)

.

Since the transform of the convolution of two functions is the product of the transforms,
h(t) = te−t + φ(t) where

φ(t) = (te−t)∗ (e−th(t)) =
∫ t

0
(t − τ)e−(t−τ)e−τh(τ) dτ = e−t

∫ t

0
(t− τ)h(τ) dτ.

Hence h(t) is equal to

te−t + te−t
∫ t

0
h(τ) dτ − e−t

∫ t

0
τh(τ) dτ = te−t

(
1+

∫ t

0
h(τ) dτ

)
− e−t

∫ t

0
τh(τ) dτ.

Multiplying by et yields

eth(t) = t

(
1+

∫ t

0
h(τ) dτ

)
−
∫ t

0
τh(τ) dτ.

Evaluating at t = 0 shows that h(0) = 0. Differentiating with respect to t yields

et(h′(t)+h(t)) =
(

1+
∫ t

0
h(τ) dτ

)
+ t h(t)− t h(t) = 1+

∫ t

0
h(τ) dτ.

Evaluating again at t = 0 shows that h′(0) = 1. A final differentiation yields

et
(
h′′(t)+2h′(t)+h(t)

)
= h(t)

from which we obtain the following second order linear equation with initial conditions

h′′(t)+2h′(t)+ (1− e−t)h(t) = 0 h(0) = 0, h′(0) = 1.

This equation can now be solved by the series method or by a computer algebra solution
such as Mathematica or Maple to obtain the solution

h(t) = e−t

(
I0(2)K0(2e

−t
2 )−K0(2)I0(2e

−t
2 )

I1(2)K0(2)+ I0(2)K0(2)

)
. �

Note that it is now a routine change of variables to draw the measure h(t)dt on
[0,∞) back to the measure q(t)dt on [0,1] resulting in

q(t) = 2t

(
I0(2)K0(2

√
t2)−K0(2)I0(2

√
t2)

I1(2)K0(2)+ I0(2)K0(2)

)
and f (n) = 〈zn,zn〉 =

∫ 1

0
t2nq(t)dt.

The next proposition is a slight reformulation of a characterization of subnormality due
to Alan Lambert [5].
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PROPOSITION 10. Let S be an operator on a Hilbert space H with ker(S)= {0}
and ||S||= 1 . The operator S is subnormal if and only if {||Sn f ||2||}∞

n=0 is a completely
monotone sequence for each f ∈ H .

Proof. Lambert’s [5] result asserts that S is a subnormal operator if and only if{ ||Sn+1 f ||
||Sn f ||

}∞

n=0
is the weight sequence of a subnormal weighted shift for each nonzero

f ∈H . Note that if { fn(z) =
√

anzn} is an orthonormal basis for a reproducing kernel
Hilbert space with kernel K(z,w) = ∑∞

n=0 an(wz)n , then the operator Mz of multiplica-

tion by z is a weighted shift with weight sequence

{√
an

an+1

}
. Moreover, Shield’s [6]

shows that all weighted shifts arise in this fashion. It is well known that a weighted shift
is subnormal if and only if { a0

an
} is a moment sequence (see Conway [4],page 57) if and

only if { a0
an
} is a completely monotonic sequence (see Widder [9]). Setting an = 1

||Sn f ||2

we see that Lambert’s condition is equivalent to the assertion that { ||Sn f ||2||
|| f ||2 }∞

n=0 is a

completely monotonic sequence for each nonzero f ∈ H . Since { ||Sn f ||2||
|| f ||2 }∞

n=0 is a

completely monotonic sequence if and only if {||Sn f ||2||}∞
n=0 is a completely mono-

tone sequence the result is established. �

PROPOSITION 11. The operator M̂z of multiplication by z on H(K) is not a sub-
normal operator when fn(z) = ((n+1)+ z)zn and K(z,w) = ∑∞

n=0 fn(z) fn(w) .

Proof. It has been established that the spectrum of M̂z is the closed unit disk
and the norm is equal to its spectral radius. Also, it is clear that the kernel of M̂z is
trivial. Hence the conditions of Proposition 10 result hold and we need only produce
a function f0 such that {||M̂n

z f0||2||}∞
n=0 is not a completely monotonic sequence. To

that end consider f0(z) = 1
10 + z and note that

g(n) = ||M̂n
z f0||2 =

∣∣∣∣∣∣ 1
10

zn + zn+1
∣∣∣∣∣∣2

=
1

100
〈zn,zn〉+ 2

10
〈zn,zn+1〉+ 〈zn+1,zn+1〉

=
1

100
f (n)+

[
1− 1

5
1

n+1

]
f (n+1)

since 〈zn,zn+1〉 = 〈zn+1,zn〉 = −1
n+1〈zn+1,zn+1〉 . Here f (n) = 〈zn,zn〉 is the completely

monotone sequence from Proposition 9 above. If g(n) is completely monotonic, then
it is the Laplace transform of a unique positive measure on [0,∞) . Hence the inverse
transform of g(n) must be a positive function on [0,∞) . Note that by Proposition 9 and
elementary properties of the Lapace transform we see

L −1(g) = L −1
(

1
100

f (n)+
[
1− 1

5
1

n+1

]
f (n+1)

)
=

1
100

h(t)+ e−th(t)− 1
5

(
e−t)∗ (e−th(t)

)
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where ∗ denotes convolution. Since

(
e−t)∗ (e−th(t)

)
=
∫ t

0
e−(t−τ)e−τh(τ) dτ = e−t

∫ t

0
h(τ) dτ,

we have

ĝ(t) = L−1(g) =
(

1
100

+ e−t
)

h(t)− 1
5
e−t

∫ t

0
h(τ) dτ.

Since et is always positive, we can consider instead the positivity of

et ĝ(t) =
(

1
100

et +1

)
h(t)− 1

5

∫ t

0
h(τ) dτ.

A numerical computation shows that e6.2ĝ(6.2)≈−.114402 with all digits significant,
hence g is not completely monotone and M̂z is not subnormal. �

7. Open questions and concluding remarks

A distinctive aspect of the operators looked at in this paper is that they are per-
turbations of multiplication operators by integral operators. While this presents the
usual computational challenges of anti-differentiation, it also opens a new door to ex-
amples of near subnormal operators with a rich functional calculus. Many concepts
of near subnormal operators have been introduced over the years such as polynomially
hyponormal, n -hyponormal, weakly subnormal, . . . It would be interesting to see how
our operator M̂z relates to these other concepts of nearly subnormal.

In general it is difficult to compute and work with the matrix form of M̂z on H(Kϕ )
unless ϕ(z) has a particularly simple form such as ϕ(z) = 1. A natural question is what
occurs if ϕ(z) = a for |a|< 1. In this case, for n � 1,

T (zn) =
(
1− 1

n+1

)
zn+1 +(−1)n n!

an+1

∞

∑
k=n+2

(−1)kak zk

k!

and

||T (zn)||2 =
(
1− 1

n+1

)2
+

∞

∑
k=n+2

(
n!
k!

)2

|a|2(k−n−1).

The matrix form for T relative to the basis {zn}∞
n=1 or M̂z relative to the basis { fn(z)}∞

n=1
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is given by

M̂z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 · · ·
1
2 0 0 0 0 0 0 0 0

. . .

a 1!
3!

2
3 0 0 0 0 0 0 0

. . .

−a2 1!
4! a 2!

4!
3
4 0 0 0 0 0 0

. . .

a3 1!
5! −a2 2!

5! a 3!
5!

4
5 0 0 0 0 0

. . .

−a4 1!
6! a3 2!

6! −a2 3!
6! a 4!

6!
5
6 0 0 0 0

. . .

a5 1!
7! −a4 2!

7! a3 3!
7! −a2 4!

7! a 5!
7!

6
7 0 0 0

. . .

−a6 1!
8! a5 2!

8! −a4 3!
8! a3 4!

8! −a2 5!
8! a 6!

8!
7
8 0 0

. . .

a7 1!
9! −a6 2!

9! a5 3!
9! −a4 4!

9! a3 5!
9! − a26!

9! a 7!
9!

8
9 0

. . .
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

As in the case of ϕ(z) = 1, the subdiagonal entries of this matrix form of M̂z are the
shift elements of the subnormal unilateral shift of multiplication by z on the space
L2(D,μ) where dμ = −4r ln(r)dr dθ

2π . The effect of the constant a is that the pertur-
bation from this unilateral shift is even smaller than before. This has no effect on the
hyponormality of the operator. Although it is unlikely that the operator is subnormal for
any value a , the inherent difficulty in checking monotonicity as well as inverse Laplace
transforms leaves an open question as to whether there exists a value of a for which M̂z

is subnormal.
In the cases ϕ(z) = 1

2−z and ϕ(z) = 2z
z2+α it is fairly routine to determine the

form of T (zn) and hence a matrix representation of M̂z . While an interesting exercise,
neither of these cases result in M̂z being even a hyponormal operator.

The spaces H(Kϕ) and operators introduced in this paper are but a first step in
the direction of Integro-Multiplication operators on analytic reproducing kernel Hilbert
spaces. One can generalize the mapping U( f ) = ϕ f + f ′ from H2

0 → H(K) in many
ways. For example U( f ) = ϕ1 f + ϕ2 f ′ + f ′′ , U( f ) = f + f ′ + f ′′ , or many other
combinations of derivatives. The spaces are naturally associated with differential and
integral equations and the properties of the multiplication operators are wide open for
exploration.
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[8] R. L. SCHILLING, R. SONG. Z. VONDRAČEK, Bernstein Functions, Studies in Math. 37, De Gruyter,
Berlin, Germany, 2010.

[9] D. V. WIDDER, The Laplace Transform, Princeton Univ. Press, Princeton, NJ, 1941.

(Received December 10, 2020) Gregory T. Adams
Mathematics Department

Bucknell University
Lewisburg, PA 17837

e-mail: adams@bucknell.edu

Nathan S. Feldman
Mathematics Department

Washington & Lee University
Lexington, VA 24450

e-mail: feldmanN@wlu.edu

Paul J. McGuire
Mathematics Department

Bucknell University
Lewisburg, PA 17837

e-mail: pmcguire@bucknell.edu

Operators and Matrices
www.ele-math.com
oam@ele-math.com


