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k–QUASI–A–PARANORMAL OPERATORS

IN SEMI–HILBERTIAN SPACES

MESSAOUD GUESBA ∗ AND SID AHMED OULD AHMED MAHMOUD

(Communicated by R. Curto)

Abstract. In this paper, we introduce and analyze a new class of generalized paranormal opera-
tors, namely k -quasi-A -paranormal operators for a bounded linear operator acting on a complex
Hilbert space H when an additional semi-inner product induced by a positive operator A is
considered. After establishing the basic properties of such operators. We extend some results
obtained in several papers related to this class on a Hilbert space. In addition, we characterize
the spectra and tensor product of these operators.

1. Introduction

Throughout this paper, H denotes a non trivial complex Hilbert space with inner
product 〈., .〉 and associated norm ‖.‖ . Let B(H ) denote the algebra of all bounded
linear operators acting on H . Let the symbol I stand for the identity operator on H .
For every operator S∈B(H ) , N (S) , R(S) and R(S) stand for respectively, the null
space, the range and the closure of the range of S and its adjoint by S∗ .

For the sequel, it is useful to point out the following facts. Let B(H )+ be the
cone of positive (semi-definite) operators i.e.;

B (H )+ = {A ∈ B (H ) : 〈Ax,x〉 � 0,∀ x ∈ H } .

Any positive operator A ∈ B (H )+ defines a positive semi-definite sesquilinear
form

〈., .〉A : H ×H → C, 〈x,y〉A = 〈Ax,y〉 .
Naturally, this semi-inner product induces a semi-norm ‖.‖A defined by

‖x‖A =
√
〈x,x〉A =

∥∥∥A
1
2 x

∥∥∥ , ∀ x ∈ H .

Observe that ‖x‖A = 0 if and only if x ∈ N (A) . Then ‖.‖A is a norm on H
if and only if A is injective operator and the semi-normed space (B (H ) ,‖.‖A) is
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complete if and only if R (A) is closed. The above semi-norm induces a semi-norm on
the subspace

BA(H ) = {S ∈ B(H )
∣∣ ∃ c > 0, ‖Sx‖A � c‖x‖A, ∀ x ∈ R(A)}.

For these operators the following identities hold.

‖S‖A := sup
x∈R(A)

x
=0

‖Sx‖A

‖x‖A

= sup
x∈R(A)
‖x‖A=1

‖Sx‖A .

It was observed that BA(H ) is not a subalgebra of B(H ) ([8, Example 2.1])
and that ‖S‖A = 0 if and only if ASA = 0.

For S ∈ B(H ) , an operator T ∈ B(H ) is called an A-adjoint of S if for every
x,y ∈ H

〈Sx,y〉A = 〈x,Ty〉A,

i.e.; AT = S∗A . S is called A-selfadjoint if AS = S∗A , and it is called A-positive, and
we write S �A 0 if AS is positive (see [1]).

The existence of an A-adjoint operator is not guaranteed. The set of all operators
which admit A-adjoints is denoted by BA(H ) . By Douglas theorem [7], we get

BA(H ) = {S ∈ B(H ) : R (S∗A) ⊂ R (A)}
= {S ∈ B(H ) : ∃ c > 0;‖ASx‖ � c‖Ax‖ ,∀ x ∈ H } .

Note that BA(H ) is a subalgebra of B(H ) which is neither closed nor dense in
B(H ) . If S ∈ BA(H ) then S admits an A-adjoint operator. Moreover, there exists
a distinguished A-adjoint operator of S , namely the reduced solution of the equation
AX = S∗A , i.e., S# = A†S∗A , where A† is the Moore-Penrose inverse of A . The A-
adjoint operator S# verifies

AS# = S∗A, R
(
S#) ⊂ R (A) and N

(
S#) = N (S∗A) .

Again, by applying Douglas theorem ([7]), we can see that

B
A

1
2
(H ) = {S ∈ B(H ) : ∃ c > 0;‖Sx‖A � c‖x‖A ,∀ x ∈ H } .

Any operator in B
A

1
2
(H ) is called A-bounded operator. Moreover, it was proved

in [3] that if S ∈ B
A

1
2
(H ) , then

‖S‖A := sup
x/∈N (A)

‖Sx‖A

‖x‖A
= sup

‖x‖A=1
‖Sx‖A

= sup
‖x‖A�1

‖Sx‖A.
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In addition, if S is A-bounded, then S (N (A)) ⊂ N (A) and

‖Sx‖A � ‖S‖A ‖x‖A ,∀ x ∈ H .

Note that BA(H ) and B
A

1
2
(H ) are two subalgebras of B(H ) which are nei-

ther closed nor dense in B(H ) (see [2]). Moreover, the following inclusions

BA(H ) ⊂ B
A

1
2
(H ) ⊂ BA(H ) ⊂ B(H ),

hold with equality if A is injective and has a closed range.
In the following theorem, we collect some interesting properties of S#.

THEOREM 1.1. ([1, 2, 3]) Let S∈BA(H ) . Then, the following statements hold:

(1) S# ∈ BA(H ) ,
(
S#

)# = PR(A)SPR(A) and
((

S#
)#

)#

= S# , where PR(A) de-

notes the orthogonal projection onto R(A).
(2) S#S and SS# are A-self-adjoint and A-positive operators.

(3) If T ∈ BA(H ) , then TS ∈ BA(H ) and (TS)
#
= S

#
T

#
.

(4) ‖S‖A =
∥∥S#

∥∥
A =

∥∥S#S
∥∥ 1

2
A =

∥∥SS#
∥∥ 1

2
A .

From now on, to simplify notation, we write P instead of PR(A).

An operator S ∈ B(H ) is said to be normal if S∗S = SS∗ , hyponormal if S∗S
� SS∗ , k -quasi-hyponormal if S∗k

(
S∗S − SS∗

)
Sk � 0 ([6]), paranormal if ‖Sx‖2 �

‖S2x‖‖x‖, for all x ∈ H ([9] ) and k -quasi-paranormal if ‖Sk+1x‖2 � ‖Sk+2x‖‖Skx‖,
for all x ∈ H and for some positive integer k ([10]).

Many authors has extended some of these concepts to the semi-Hilbertian opera-
tors.

An operator S∈BA(H ) is said to be A-normal if S#S = SS# ([13], A-hyponormal
if S#S �A SS# ([14], k -quasi-A-hyponormal if S#k

(
S#S− SS#

)
Sk �A 0 ([14]) and A-

paranormal if ‖Sx‖2
A � ‖S2x‖A‖x‖A, for all x ∈ H ([11]).

This paper is devoted to the study of some classes of operators on the semi-
Hilbertian space (H , 〈 . 〉A) which is a generalization of A-normal, A-hyponormal
and A-paranormal operators. More precisely, we introduce a new class of operators
which is called the class of k -quasi-A-paranormal operator. It is proved in Example
2.1 that there is an operator which is k -quasi-A-paranormal but not A-paranormal for
some positive integer k , and thus, the proposed new class of operators contains the
class of A-paranormal operators as a proper subset. In the course of our study, we
have proven that some properties of A-paranormal operators remain true of k - quasi-
A-paranormal operators. In Section 2, we prove an equivalent condition for an opera-
tor S ∈ B

A
1
2
(H ) to be k -quasi-A-paranormal (Theorem 2.1). Several properties are

proved by exploiting this characterization (Theorem 2.4, Theorem 2.8, Lemma 4.1). In
particular, we prove that if S ∈ B

A
1
2
(H ) is an k -quasi-A-paranormal then its power

is k -quasi-A-paranormal. Section 3, is devoted to describe some properties concerning
the A-spectral radius and approximate spectrum of an k -quasi-A-paranormal operator
(Theorem 2.7).
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2. Properties of k -quasi-A-paranormal operators

In this section, we define the class of k -quasi-A-paranormal operators in semi-
Hilbertian spaces and we investigate some properties of such operator.

Firstly, we start with the definition of this class.

DEFINITION 2.1. An operator S ∈ B
A

1
2
(H ) is called an k -quasi-A-paranormal

if for a positive integer k , ∥∥∥Sk+1x
∥∥∥2

A
�

∥∥∥Sk+2x
∥∥∥

A

∥∥∥Skx
∥∥∥

A
,

for all x ∈ H .

Before we move on, we state the following remark.

REMARK 2.1. (1) When k = 0 we get the class of A-paranormal operators in-
troduced in [11].

(2) If k = 1, we say that S is quasi-A-paranormal operator.
(3) αS is k -quasi-A-paranormal for all α ∈ C .
(4) If A = I , then every k -quasi-A-paranormal is k -quasi-paranormal operators

([10]).
(5) It is not difficult to verify the following inclusions:

A-paranormal⊆ quasi-A-paranormal⊆ k-quasi-A-paranormal

⊆ (k+1)-quasi-A-paranormal.

In the following example, we give an operator S ∈ B
A

1
2
(H ) that is k -quasi-A-para-

normal for some positive integer k but not A-paranormal.

EXAMPLE 2.1. Let S =

⎛
⎝0 1 1

0 0 1
0 0 0

⎞
⎠ and A =

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠ . A direct calculation

shows that S satisfying the following conditions⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

‖Sx‖A � 1√
2
‖x‖A, ∀ x ∈ C

3

‖S4x‖2
A � ‖S5x‖A‖S3x‖A, ∀ x ∈ C

3

‖Sx0‖2
A � ‖S2x0‖A for some x0 ∈ C3such that ‖x0‖A = 1.

Therefore, S ∈ B
A

1
2
(H ) and S is a 3-quasi-A-paranormal but not A-paranormal.

In [11] it has been shown that S ∈ BA(H ) is A-paranormal if and only if

S#2S2−2λPS#S+ λ 2P �A 0, for all λ > 0.
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Similarly, we have the following characterization for the members of the class of k -
quasi-A-paranormal operators. It is similar to [10, Theorem 2.1] for Hilbert space
operators.

THEOREM 2.1. Let S ∈ BA(H ) . Then S is k -quasi-A-paranormal if and only
if (

S#)k
(
S#2

S2−2λS#S+ λ 2P
)

Sk �A 0, (2.1)

for all λ > 0 .

Proof. Notice that if S is A-quasi-k -paranormal, then we have the following in-
equality 〈

S#k+2
S

k+2
x,x

〉 1
2

A

〈
S#k

S
k
x,x

〉 1
2

A
�

〈
S#k+1

S
k+1

x,x
〉 1

2

A
,

for all x ∈ H . By generalized arithmetic-geometric mean inequality, we obtain

〈
S#k+2

S
k+2

x,x
〉 1

2

A

〈
S#k

S
k
x,x

〉 1
2

A
=

(
λ−1

〈
S#k+2

S
k+2

x,x
〉

A

) 1
2
(

λ
〈
S#k

S
k
x,x

〉
A

) 1
2

� 1
2

λ−1
〈
S#k+2

S
k+2

x,x
〉

A
+

1
2

λ
〈
S#k

S
k
x,x

〉
A
,

for all x ∈ H and λ > 0. Thus, we get

1
2

λ−1
〈
S#k+2

S
k+2

x,x
〉

A
+

1
2

λ
〈
S#k

S
k
x,x

〉
A

�
〈
S#k+1

S
k+1

x,x
〉

A
, (2.2)

for all x ∈ H and λ > 0. So that implies the following inequality〈
S#k

(
S#2

S2−2λS#S+ λ 2P
)

Skx,x
〉

A
� 0,

for all x ∈ H and λ > 0. Therefore, we deduce the desired inequality.
Conversely, it is easily checked that (2.1) is equivalent to the inequality (2.2) .

Again by generalized arithmetic-geometric mean inequality, we have

〈
S#k+1

S
k+1

x,x
〉 1

2

A
�

〈
S#k+2

S
k+2

x,x
〉 1

2

A

〈
S#k

S
k
x,x

〉 1
2

A
.

So, that implies ∥∥∥Sk+1x
∥∥∥2

A
�

∥∥∥Sk+2x
∥∥∥

A

∥∥∥Skx
∥∥∥

A
,

for all x ∈ H . Hence, S is k -quasi-A-paranormal operator. �

In [11], the authors proved that if S ∈BA(H ) such that
(
S#

)2
S2 �A

(
S#S

)2
, then

S is A-paranormal. In the following theorem we give a similar condition for k -quasi-
A-paranormal operator.
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THEOREM 2.2. Let S∈BA(H ) such that ‖S‖A � 1 and S satisfies the following
inequality

S#k
((

S#)2
S2−S#S

)
S

k �A 0, (2.3)

for a positive integer k . Then, S is an k -quasi-A-paranormal operator.

Proof. Assume that S satisfies (2.3) . Let x ∈ H , then we have

∥∥∥Sk+1x
∥∥∥2

A
=

〈
S

k+1
x,S

k+1
x
〉

A

=
〈
S#SS

k
x,S

k
x
〉

A

=
〈
S#kS#SSkx, x

〉
A

�
〈
S#kS#2S2Skx, x

〉
A

=
〈
S#2S2Skx, Skx

〉
A

� ‖S#2S2Skx‖A‖Skx‖A

� ‖Sk+2x‖A‖Skx‖A.

So, we have that ∥∥∥Sk+1x
∥∥∥2

A
�

∥∥∥Sk+2x
∥∥∥

A

∥∥∥Skx
∥∥∥

A
,

for all x ∈ H . Therefore, S is an k -quasi-A-paranormal operator. �

PROPOSITION 2.1. Let S ∈BA(H ) be k -quasi-A-paranormal. If R(Sk) = H ,
then S is A-paranormal.

Proof. Since S is k -quasi-A-paranormal it follows by Theorem 2.1

S#k
(

S#2S2−2λS#T + λ 2P

)
Sk �A 0,

for all x ∈ H and for all λ > 0. This means that〈(
S#2S2−2λS#S+ λ 2P

)
Skx, Skx

〉
A

� 0,

for all x ∈ H and for all λ > 0. Therefore

S#2S2−2λS#S+ λ 2P �A 0 on R(Sk) = H .

Consequently, S is A-paranormal. �
Let T,S ∈ B(H ) we say that S is A-unitary equivalent to T if there exists an

A-unitary operator U ∈ BA(H ) such that S = UTU � .
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THEOREM 2.3. Let T ∈ B
A

1
2
(H ) be an k -quasi-A-paranormal operator such

that N (A)⊥ is invariant subspace of T . If S ∈ B
A

1
2
(H ) is A-unitarily equivalent to

T , then S is k -quasi-A-paranormal operator.

Proof. Since S is A-unitary equivalent to T , there exists an A-unitary operator U
such that S = UTU � .

Under the assumption that N (A) is a reducing subspace of T , it follows that
TP = PT and PA = AP = A . Furthermore, it is not difficult to verify that

Sn =
(
UTU �

)n
= UPTnU �,

for a positive integer n .
On the other hand, we have

∥∥∥Sk+1x
∥∥∥2

A
=

∥∥∥∥(
UTU �

)k+1
x

∥∥∥∥
2

A

=
∥∥∥UPTk+1U �x

∥∥∥2

A

=
∥∥∥PTk+1U �x

∥∥∥2

A

(
since ‖Ux‖A = ‖x‖A, ∀ x ∈ H

)
=

∥∥∥Tk+1
(
U �x

)∥∥∥2

A

�
∥∥∥Tk+2

(
U �x

)∥∥∥
A

∥∥∥Tk
(
U �x

)∥∥∥
A

=
∥∥∥PTk+2

(
U �x

)∥∥∥
A

∥∥∥PTk
(
U �x

)∥∥∥
A

(since T
(
R (A)

)
⊆ R (A))

=
∥∥∥UPTk+2

(
U �x

)∥∥∥
A

∥∥∥UPTk
(
U �x

)∥∥∥
A

=
∥∥∥Sk+2x

∥∥∥
A

∥∥∥Skx
∥∥∥

A
.

Hence, ∥∥∥Sk+1x
∥∥∥2

A
�

∥∥∥Sk+2x
∥∥∥

A

∥∥∥Skx
∥∥∥

A
, for all x ∈ H .

Therefore, S is k -quasi-A-paranormal operator. �

PROPOSITION 2.2. Let S ∈ BA(H ) , then the following assertions hold:
(1) If S is A-self-adjoint, then S is k -quasi-A-paranormal operator.
(2) If S is A-normal, then S and S# are k -quasi-A-paranormal operators.
(3) If S is A-hyponormal operator, then S is k -quasi-A-paranormal operator.
(4) If S is k -quasi-A-hyponormal operator, then S is k -quasi-A-paranormal

operator.
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Proof. (1) Assume that S is A-self-adjoint, then AS = S∗A . Let x ∈ H and for
a positive integer k . We have

‖Sk+1x‖2
A = 〈Sk+1x,Sk+1x〉A

= 〈ASk+1x,Sk+1x〉
= 〈S∗ASk+1x,Skx〉
= 〈ASk+2x,Skx〉
= 〈A 1

2 Sk+2x,A
1
2 Skx〉

� ‖A 1
2 Sk+2x‖‖ A

1
2 Skx‖

=
∥∥∥Sk+2x

∥∥∥
A

∥∥∥Skx
∥∥∥

A
.

So, S is k -quasi-A-paranormal.
(2) If S is A-normal, then we know that ‖Sx‖A =

∥∥S#x
∥∥

A for all x ∈ H . We
have

‖Sk+1x‖2
A = 〈Sk+1x,Sk+1x〉A

= 〈ASk+1x,Sk+1x〉
= 〈(S∗A)Sk+1x, Skx〉
= 〈(AS#)Sk+1x,Skx〉
= 〈A 1

2 S#Sk+1x,A
1
2 Skx〉

�
∥∥∥A

1
2 S#Sk+1x

∥∥∥∥∥∥A
1
2 Skx

∥∥∥
=

∥∥∥S#
(
Sk+1x

)∥∥∥
A

∥∥∥Skx
∥∥∥

A

=
∥∥∥S

(
Sk+1x

)∥∥∥
A

∥∥∥Skx
∥∥∥

A
(since S is A-normal)

=
∥∥∥Sk+2x

∥∥∥
A

∥∥∥Skx
∥∥∥

A
.

Therefore, ∥∥∥Sk+1x
∥∥∥2

A
�

∥∥∥Sk+2x
∥∥∥

A

∥∥∥Skx
∥∥∥

A
.

Now, we prove that S# is k -quasi-A-paranormal. We have

‖S#(k+1)x‖2
A = 〈S#(k+1)x, S#(k+1)x〉A

= 〈AS#(k+1)x,S#(k+1)x〉
= 〈S#(k+1)x,

(
AS#)S#kx〉

= 〈S#(k+1)x,S∗AS#kx〉
= 〈ASS#(k+1)x,S#kx〉
= 〈A 1

2 SS#(k+1)x,A
1
2 S#kx〉
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�
∥∥∥A

1
2 SS#k+1x

∥∥∥∥∥∥A
1
2 S#kx

∥∥∥
=

∥∥∥SS#(k+1)x
∥∥∥

A

∥∥∥S#kx
∥∥∥

A
.

Since S is A-normal, then∥∥∥SS#k+1x
∥∥∥

A
=

∥∥∥S#k+2x
∥∥∥

A
, for all x ∈ H .

Therefore, we get ‖S#k+1x‖2
A �

∥∥∥S#(k+2)x
∥∥∥

A

∥∥S#kx
∥∥

A .

(3) If S is A-hyponormal, it follows that∥∥S#x
∥∥

A � ‖Sx‖A ,

for all x ∈ H . We have

‖Sk+1x‖2
A = 〈Sk+1x,Sk+1x〉A

= 〈ASk+1x,Sk+1x〉
= 〈S∗ASk+1x,Skx〉
= 〈AS#Sk+1x,Skx〉
= 〈A 1

2 S#Sk+1x,A
1
2 Skx〉

� ‖A 1
2 S#Sk+1x‖‖ A

1
2 Skx‖

=
∥∥∥S#

(
Sk+1x

)∥∥∥
A

∥∥∥Skx
∥∥∥

A

�
∥∥∥S

(
Sk+1x

)∥∥∥
A

∥∥∥Skx
∥∥∥

A
(since S is A-hyponormal)

=
∥∥∥Sk+2x

∥∥∥
A

∥∥∥Skx
∥∥∥

A
.

So, we get ∥∥∥Sk+1x
∥∥∥2

A
�

∥∥∥Sk+2x
∥∥∥

A

∥∥∥Skx
∥∥∥

A
,

for all x ∈ H . Therefore, S is k -quasi-A-paranormal operator.
(4) Suppose that S is k -quasi-A-hyponormal, then

∥∥S#Skx
∥∥

A �
∥∥Sk+1x

∥∥
A for a

positive integer k . Let x ∈ H . From (3) we found

‖Sk+1x‖2
A �

∥∥∥S#
(
Sk+1x

)∥∥∥
A

∥∥∥Skx
∥∥∥

A
.

Since S is k -quasi-A-hyponormal, so
∥∥S#

(
Sk+1x

)∥∥
A �

∥∥Sk+2x
∥∥

A . Consequently, we
infer that S is k -quasi-A-paranormal. �

In the following theorem, we give sufficient conditions for which the product of
an k -quasi-A-paranormal operator with an A-isometric operator is an k -quasi-A-para-
normal operator.
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THEOREM 2.4. Let T,S ∈ BA(H ) be such that T is an k -quasi-A-paranormal
and S is an A-isometry. If TS = ST and ST � = T �S , then TS is an k -quasi-A-para-
normal operator.

Proof. In view of Theorem 2.1, we need to prove that

(TS)#
k
(
(TS)#2

(TS)
2 −2λ (TS)# (TS)+ λ 2P

)
(TS)k �A 0,

for all λ > 0. In fact, since S is A-isometric (S#S = P), TS = ST and ST � = T �S , it
follows that

(TS)#2
(TS)

2 −2λ (TS)# (TS)+ λ 2P = S#2T #2S2T 2 −2λS#T #TS+ λ 2P

= S#2S2T #2T 2 −2λS#ST #T + λ 2P

= P
(
T #2T 2 −2λT#T + λ 2P

)
.

On the other hand, we have for all x ∈ H ,〈
(TS)#

k
(
(TS)#2

(TS)
2 −2λ (TS)# (TS)+ λ 2P

)
(TS)k x,x

〉
A

=
〈
(TS)#

k
P

(
T #2T 2−2λT#T + λ 2P

)
(TS)k x,x

〉
A

=
〈
A(TS)#

k
P

(
T #2T 2−2λT#T + λ 2P

)
(TS)k x,x

〉
=

〈
(TS)∗

k
AP

(
T #2T 2 −2λT#T + λ 2P

)
(TS)k x,x

〉
=

〈
A

(
T #2T 2−2λT #T + λ 2P

)
(TS)k x,(TS)k x

〉
=

〈(
T #2T 2 −2λT#T + λ 2P

)
TkSkx, TkSkx

〉
A

� 0.

Consequently, we obtain

(TS)#k
(
(TS)#2

(TS)
2 −2λ (TS)# (TS)+ λ 2P

)
(TS)k �A 0,

for all λ > 0. This shows that TS is k -quasi-A-paranormal operator. �
In the following theorem we give a sufficient condition under which the product

of two k -quasi-A-paranormal operators is k -quasi-A-paranormal.

THEOREM 2.5. Let T,S∈BA(H ) be k -quasi-A-paranormaloperators. If
(
TS

)2

�A
(
TS

)#(
TS

)
, then TS is k -quasi-A-paranormal operator.

Proof. Let x ∈ H , we have

‖(TS)k+1 x‖2
A = 〈(TS)k+1 x,(TS)k+1 x〉A

= 〈A(TS)k+1 x,(TS)k+1 x〉



k -QUASI-A -PARANORMAL OPERATORS IN SEMI-HILBERTIAN SPACES 633

= 〈A(TS)k+1 x,(TS)(TS)k x〉
= 〈(TS)∗A(TS)k+1 x,(TS)k x〉
= 〈(TS)# (TS)(TS)k x,(TS)k x〉A
� 〈(TS)2 (TS)k x,(TS)k x〉
= 〈(TS)k+2 x,(TS)k x〉A
� ‖(TS)k+2 x‖A‖(TS)k x‖A.

Hence,
‖(TS)k+1 x‖2

A � ‖(TS)k+2 x‖A‖(TS)k x‖A,

for all positive integer k . Therefore, TS is k -quasi-A-paranormal. �
The following theorem is a remarkable extension of [11, Proposition 3].

THEOREM 2.6. Let T ∈ BA(H ) and S ∈ BA(H ) be two commuting k -quasi-
A-paranormal for some positive integer k . If T and S satisfy the following condition

max
{‖Tk+2Skx‖2

A, ‖Sk+2Tkx‖2
A

}
� ‖(TS)k+2x‖A‖

(
TS

)k
x‖A,

for all x ∈ H , then TS is k -quasi-A-paranormal.

Proof. Since TS = ST and T,S are k -quasi-A-paranormal, it follows that

‖(TS)k+1x‖2
A = ‖Tk+1Sk+1x‖2

A

� ‖Tk+2Sk+1x‖A‖TkSk+1‖A

= ‖Sk+1Tk+2x‖A‖Sk+1Tk‖A

� ‖Sk+2Tk+2x‖
1
2
A‖SkT k+2x‖

1
2
A‖Sk+2Tkx‖

1
2
A |SkT kx‖

1
2
A

=
(‖Sk+2Tk+2x‖

1
2
A |SkTkx‖

1
2
A

)(‖SkTk+2x‖
1
2
A‖Sk+2Tkx‖A

)
� ‖Sk+2Tk+2x‖A|SkT kx‖A

= ‖(TS
)k+2

x‖A|
(
TS

)k
x‖A, ∀ x ∈ H .

This means that TS is k -quasi-A-paranormal. �

PROPOSITION 2.3. Let S ∈ BA(H ) such that S2 is an A-isometry. If S satisfies
the following inequality

2‖Sk+1x‖2
A � ‖Sk+2x‖2

A +‖Skx‖2
A,

for all x ∈ H and for some positive integer k , then S is k -quasi-A-paranormal.

Proof. Let x ∈ H , we have

2‖Sk+1x‖2
A � ‖Sk+2x‖2

A +‖Skx‖2
A

=
(
‖Sk+2x‖A −‖Skx‖A

)2

+2‖Sk+2x‖A‖Skx‖A
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By the assumption that S2 is A-isometry, we have ‖Sk+2x‖A = ‖Skx‖A, ∀ x ∈ H and
hence

‖Sk+1x‖2
A � ‖Sk+2x‖A‖Skx‖A, ∀ x ∈ H .

Therefore, S is k -quasi-A-paranormal. �

In [11], the authors proved that a power of an A-paranormal operator is A-paranor-
mal. However, it was proved in [12, Theorem 3.8] that a power of k -quasi-paranormal
operator is again an k -quasi-paranormal. Next we show that the corresponding result
is true for the class of k -quasi-A-paranormal operators. Its proof is inspired from [12].

THEOREM 2.7. Let S ∈ B
A

1
2
(H ) . If S is an k -quasi-A-paranormal operator,

then Sn is also k -quasi-A-paranormal operator for every integer n � 1 .

Proof. We will prove that

∥∥∥Sn(k+1)x
∥∥∥2

A
�

∥∥∥Sn(k+2)x
∥∥∥

A

∥∥∥Snkx
∥∥∥

A
, (2.4)

for all x ∈ H . Notice first that if Skx ∈ N (A) , then (2.4) holds. Now, assume that
S jx /∈ N (A) for all j � k and x ∈ H . From the assumption that S is an k -quasi-A-
paranormal, we get ∥∥Sk+1x

∥∥
A

‖Skx‖A
�

∥∥Sk+2x
∥∥

A

‖Sk+1x‖A
.

Hence, it follows that ∥∥Sk+i+1x
∥∥

A

‖Sk+ix‖A
�

∥∥Sk+i+2x
∥∥

A

‖Sk+i+1x‖A
,

for all non-negative integer i .
Therefore,∥∥Snk+nx

∥∥
A

‖Snkx‖A
=

∥∥Snk+1x
∥∥

A

‖Snkx‖A
.

∥∥Snk+2x
∥∥

A

‖Snk+1x‖A
. . .

∥∥Snk+nx
∥∥

A

‖Snk+n−1x‖A

�
∥∥Snk+2x

∥∥
A

‖Snk+1x‖A
.

∥∥Snk+3x
∥∥

A

‖Snk+2x‖A
. . .

∥∥Snk+n+1x
∥∥

A

‖Snk+nx‖A

�
∥∥Snk+n+1x

∥∥
A

‖Snk+nx‖A
.

∥∥Snk+n+2x
∥∥

A

‖Tnk+n+1x‖A
. . .

∥∥Snk+n+nx
∥∥

A∥∥Snk+n+(n−1)x
∥∥

A

=

∥∥Snk+2nx
∥∥

A

‖Snk+nx‖A
.

Consequently, we infer that (2.4) holds for all x ∈ H . Hence, Sn is k -quasi-A-
paranormal. This finishes the proof. �
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PROPOSITION 2.4. Let S ∈ B
A

1
2
(H ) . If (Sn)n ∈ B

A
1
2
(H ) is a sequence of

k -quasi-A-paranormal operators such that lim
n→∞

‖Sn − S‖ = 0 , then S is k -quasi-A-

paranormal.

Proof. Since the product of operators is sequentially continuous in the strong
topology, one concludes that

Sn −→ S, Sk
n −→ Sk and A

1
2 Sk

n −→ A
1
2 Sk,

for each positive integer k .
Taking any x ∈ H , a direct computation shows that

‖Sk+1x‖2
A = ‖A 1

2 Sk+1x‖2

= lim
n−→∞

‖A 1
2 Sk+1

n x‖2

= lim
n−→∞

‖Sk+1
n x‖A

� lim
n−→∞

(
‖Sk+2

n x‖A‖Sk
nx‖A

)
= lim

n−→∞

(
‖Sk+2

n x‖A

)
lim

n−→∞

(
‖Sk

nx‖A

)
= ‖A 1

2 Sk+2x‖‖A 1
2 Skx‖

= ‖Sk+2x‖A‖Skx‖A.

Hence,

‖Sk+1x‖2
A � ‖Sk+2x‖A‖Skx‖A,

for all x ∈ H . Thus shows that S is k -quasi-A-paranormal. �

LEMMA 2.1. Let (Si j)1�i, j�2 where Si j ∈ BA(H ) for all i, j = 1,2 . Then S =(
S11 S12

S21 S22

)
∈BA0(H ⊕H ) where A0 =

(
A 0
0 A

)
. Furthermore, S#A0 =

(
S#

11 S#
21

S#
12 S#

22

)
.

Proof. The proof follows from [5, Lemma 3.1]. �

THEOREM 2.8. Let S1,S2 ∈B(H ) and let S be the operator on BA0(H ⊕H )
defined as

S =
(

S1 S2

0 0

)
.

If S1 is A-paranormal, then S is quasi-A0 -paranormal.
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Proof. From Lemma 2.1 we have S#A0 =
(

S#
1 0

S#
2 0

)
and with simple calculation we

show that

S#
(
S#2

S2−2λS#S+ λ 2P
)

S

=

⎛
⎝ S#

1

(
S#2

1 S2
1 −2λS#

1S1 + λ 2P
)

S1 S#
1

(
S#2

1 S2
1−2λS#

1S1 + λ 2P
)

S2

S#
2

(
S#2

1 S2
1 −2λS#

1S1 + λ 2P
)

S1 S#
2

(
S#2

1 S2
1−2λS#

1S1 + λ 2P
)

S2

⎞
⎠ ,

for all λ > 0.
Let u = x⊕ y ∈ H ⊕H . Then, we have〈
S#

(
S#2

S2−2λS#S+ λ 2P
)

Su,u
〉

A

=
〈
S#

1

(
S#2

1 S2
1 −2λS#

1S1 + λ 2P
)

S1x,x
〉

A
+

〈
S#

1

(
S#2

1 S2
1 −2λS#

1S1 + λ 2P
)

S2y,x
〉

A

+
〈
S#

2

(
S#2

1 S2
1 −2λS#

1S1 + λ 2P
)

S1x,y
〉

A
+

〈
S#

2

(
S#2

1 S2
1−2λS#

1S1 + λ 2P
)

S2y,y
〉

A

=
〈(

S#2

1 S2
1 −2λS#

1S1 + λ 2P
)

(S1x+S2y) ,(S1x+S2y)
〉

A
� 0

(since S1 is A-paranormal). �

3. Spectral properties of k -quasi-A-paranormal operators

In this section, we describe some spectral properties of an k -quasi-A-paranor-
mal operator. The introduction of the concept of spectral radius and numerical radius
of transformation in Hilbert spaces yielded a flow of papers generalizing this concept
both in Hilbert and Banach spaces. Recently, many authors extended these concepts
to operators in semi-Hilbertian spaces. For an operator S ∈ B

A
1
2
(H ), the A-spectral

radius of S is defined by

rA(S) = inf
n∈N

‖Sn‖
1
n
A = lim

n→∞
‖Sn‖

1
n
A ,

([8]) and its A-numerical radius is defined by

ωA(S) = sup{|〈Sx , x〉A |, x ∈ H : ‖x‖A = 1},

(see [13]).
The following theorem extends [10, Theorem 2.4].

THEOREM 3.1. Let S ∈ B
A

1
2
(H ) be an k -quasi-A-paranormal operator, then

the following assertions hold:
(1) ‖Sm+1‖2

A � ‖Sm+2‖A‖Sm‖A for all positive integers m � k .
(2) If ‖Sm‖A = 0 for some positive integer m � k , then ‖Sk+1‖A = 0 .
(3) ‖Sm‖A � ‖Sm−1‖ArA (S) for all positive integer m � k+1 .
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Proof. (1) This statement follows from Definition 2.1 and the fact that every k -
quasi-A-paranormal operator is (k+1)-quasi-A-paranormal operator.

(2) This is a direct consequence of (1) above.
(3) Observe that if ‖Sm−1‖A = 0, the desired inequality is satisfied. Now assume

that ‖S j‖A 
= 0 for all j � k and we need to prove

rA(S) � ‖Sm‖A

‖Sm−1‖A
∀ m � k+1.

From the hypothesis that S is k -quasi-A-paranormal, it follows that

‖Sk+m‖A

‖Sk+m−1‖A
� ‖Sk+1‖A

‖sk‖A
.

This implies that

‖Sk+m‖A � ‖Sk+1‖A

‖Sk‖A
‖Sk+m−1‖A

�
(‖Sk+1‖A

‖Sk‖A

)2

‖Sk+m−2‖A

�
...

�
(‖Sk+1‖A

‖Sk‖A

)m

‖Sk‖A.

This yields that
‖Sk+m‖A

‖Sk‖A
�

(‖Sk+1‖A

‖Sk‖A

)m

.

Hence,

‖Sm‖A � ‖Sk+m‖A

‖Sk‖A
�

(‖Sk+1‖A

‖Sk‖A

)m

.

So we get

‖Sm‖
1
m
A � ‖Sk+1‖A

‖Sk‖A
.

According to [8, Theorem 1], we have

rA(S) = lim
m→∞

‖Sm‖
1
m
A � ‖Sk+1‖A

‖Sk‖A
.

Repeating the above process we can prove that

rA(S) � ‖Sk+2‖A

‖Sk+1‖A
,

and furthermore,

rA(S) � ‖Sm‖A

‖Sm−1‖A
,
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for all positive integer m � k+1. �
Next, we need to introduce the following definition.

DEFINITION 3.1. ([8]) An operator S ∈ B
A

1
2
(H ) is said to be A-normaloid if

rA (S) = ‖S‖A .

In [11], the authors proved that if S ∈ B
A

1
2
(H ) is A-paranormal, then rA (S) =

‖S‖A i.e, S is A-normaloid. It was observed in [10] that in general an k -quasi-A-para-
normal operator is not A-normaloid for A = I . Now, in view of Theorem 3.1, we drive
a sufficient condition for which an k -quasi-A-paranormal operator to be A-normaloid.

COROLLARY 3.1. Let S ∈ B
A

1
2
(H ) be an k -quasi-A-paranormal operator for

a positive integer k .
(1) If ‖Sn+1‖A = ‖Sn‖A‖S‖A for some positive integer n � k , then S is A-normaloid.
(2) If ‖Sn+1‖A = ‖S‖n+1

A for some positive integer n � k , then S is A-normaloid.

Proof. (1) By the statement (3) of Theorem 3.1, it follows that

‖Sn+1‖A � ‖Sn‖ArA(S).

If ‖Sn+1‖A = ‖Sn‖A‖S‖A, we obtain

‖S‖A � rA(S).

In view of [4, Proposition 2.5] and [8, Theorem 3], we get

rA(S) � ωA(S) � ‖S‖A.

Consequently, rA(S) = ‖S‖A and therefore S is A-normaloid.
(2) From the statement (1) we get

‖S‖A = ‖Sn‖
1
n
A � rA(S) � ‖S‖A.

Therefore, S is A-normaloid. �

THEOREM 3.2. Let S ∈ B
A

1
2
(H ) be an k -quasi-A-paranormal operator. If Sp

is A-normaloid for p � k , then Sp+m is A-normaloid for m = 1,2, · · · .

Proof. We need to prove by induction on m that Sp+m is A-normaloid for all
m = 1,2 · · · . Firstly, we observe that if ‖Sp‖A = 0, then

rA(Sm+p) � rA(Sp)rA(Sm) = 0,

and
‖Sm+p‖A � ‖Sp‖A‖Sm‖A = 0.
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Hence rA(Sm+p) = ‖Sm+p‖A and the result is true.
Assume that ‖S j‖A 
= 0 for all j � p . We prove that Sp+1 is A-normaloid.
From the fact that S is k -quasi-A-paranormal, it follows in view of Theorem 3.1

‖Sk+ j‖A

‖Sk+ j−1‖A
� ‖Sk+ j−1‖A

‖Sk+ j−2‖A
� · · · � ‖Sk+1‖A

‖Sk‖A
,

and in particular
‖S2p‖A

‖S2p−1‖A
� ‖Sp+1‖A

‖Sp‖A
.

Since Sp is A-normaloid, we have∥∥S2p
∥∥

A

‖S2p−1‖A
=

‖Sp‖2
A

‖S2p−1‖A
�

∥∥Sp+1
∥∥

A

‖Sp‖A
.

Hence, we obtain
‖Sp‖3

A �
∥∥S2p−1

∥∥
A

∥∥Sp+1
∥∥

A .

It follows that
(rA (S))3p �

∥∥Sp+1
∥∥

A (rA (S))2p−1 ,

so we get
rA

(
Sp+1) �

∥∥Sp+1
∥∥

A ,

and always we have
rA

(
Sp+1) �

∥∥Sp+1
∥∥

A .

Hence, we get
rA

(
Sp+1) =

∥∥Sp+1
∥∥

A .

So, the result is true for m = 1.
Now assume that Sp+m is A-normaloid and prove that Sp+m+1 is A-normaloid.
In fact, since Sp+m is A-normaloid we deduce from the above calculation that∥∥∥S2(p+m)

∥∥∥
A∥∥S2(p+m)−1
∥∥

A

�
∥∥Sp+m+1

∥∥
A

‖Sp+m‖A
,

or equivalently ∥∥Sp+m
∥∥3

A �
∥∥Sp+m+1

∥∥
A

∥∥∥S2(p+m)−1
∥∥∥

A
.

This in turn gives,

(rA (S))3p+3m �
∥∥Sp+m+1

∥∥
A (rA (S))2p+2m−1 .

Hence,

rA

(
S

p+m+1
)

�
∥∥Sp+m+1

∥∥
A ,

and so that, rA

(
S

p+m+1
)

=
∥∥Sp+m+1

∥∥
A . Therefore, Sp+m+1 is A-normaloid as re-

quired. �
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DEFINITION 3.2. Let S ∈ BA(H ) we say that S is A-regular operator if S is
invertible and S−1 ∈ BA(H ) .

THEOREM 3.3. Let S ∈ BA(H ) be A-regular k -quasi-A-paranormal operator.
If 0 /∈ σa(A) , then

σa(S) ⊆
{

λ ∈ C :
1

‖(S−1)k+1‖A

√
‖Sk+1‖A‖Sk−1‖A

� |λ |
}

,

where σa(S) is the approximate spectrum of S .

Proof. Let x ∈ H such that ‖x‖A = 1. Since S is A-regular k -quasi-A-paranor-
mal, it follows that

‖x‖2
A = ‖(S−1)k+1Sk+1x‖2

A

� ‖(S−1)k+1‖2
A‖Sk+1x‖2

A

� ‖(S−1)k+1‖2
A‖Sk+2x‖A‖Skx‖A

� ‖(S−1)k+1‖2
A‖Sk+1‖A‖Sk−1‖A‖Sx‖2

A.

So,

‖Sx‖A � 1

‖(S−1)k+1‖A

√
‖Sk+1‖A‖Sk−1‖A

.

Assume that λ ∈σa(S) . Since 0 /∈σa(A) , there exists a sequence (xn)n ∈H : ‖xn‖= 1
satisfying (S−λ )xn −→ 0 and ‖Axn‖ � δ for some δ > 0.

We observe that∥∥∥(S−λ )
xn

‖Axn‖
∥∥∥

A
�

∥∥∥S
xn

‖Axn‖
∥∥∥

A
−|λ |

∥∥∥ xn

‖Axn‖
∥∥∥

A

=
∥∥∥S

xn

‖Axn‖
∥∥∥

A
−|λ |

� 1

‖(S−1)k+1‖A

√
‖Sk+1‖A‖Sk−1‖A

−|λ |.

When n −→ ∞ , we get

0 � 1

‖(S−1)k+1‖A

√
‖Sk+1‖A‖Sk−1‖A

−|λ |.

Therefore,

|λ | � 1

‖(S−1)k+1‖A

√
‖Sk+1‖A‖Sk−1‖A

.

Consequently,

σa(S) ⊆
{

λ ∈ C :
1

‖(S−1)k+1‖A

√
‖Sk+1‖A‖Sk−1‖A

� |λ |
}

. �
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4. Tensor product of k -quasi-A-paranormal operators

In this section, we prove under suitable conditions that the tensor product of an
k -quasi-A-paranormal operator and an A-isometry is an k -quasi-A⊗ A-paranormal
operator (Proposition 4.1). However, the tensor product of an k -quasi-A-paranormal
and an k -quasi-B-paranormal is an k -quasi A⊗B-paranormal (Theorem 4.1).

LEMMA 4.1. Let S ∈ BA(H ) be an k -quasi-A-paranormal, then the tensor
product S⊗ I and I⊗S are k -quasi-A⊗A-paranormal.

Proof. Let λ > 0, we observe that

(
S⊗ I

)#k
((

S⊗ I
)#2(

S⊗ I
)2 −2λ

(
S⊗ I

)#(
S⊗ I

)
+ λ 2P

)(
S⊗ I

)k

= S#k
(

S#2S2−2λSS# + λ 2P

)
Sk ⊗P

� A⊗A0. �

PROPOSITION 4.1. Let T,S ∈ BA(H ) such that N (A)⊥ is invariant for T . If
T is an k -quasi-A-paranormal and S is an A-isometry, then T ⊗S ∈ BA⊗A(H ⊗H )
is an k -quasi-A⊗A-paranormal.

Proof. It is well known that T ⊗S =
(
T ⊗ I

)(
I⊗S

)
=

(
I⊗S

)(
T ⊗ I

)
.

Under the condition that N (A)⊥ is invariant for T , we obtain TP = PT and
hence (

T ⊗ I
)(

I⊗S
)# =

(
I⊗S

)#(
T ⊗ I

)
.

Now, Since T is an k -quasi-A-paranormal and S is an A-isometry, it follows that
T ⊗ I is an k -quasi-A⊗A-paranormal (by Lemma 4.1) and I⊗S is an A⊗A-isometry.
Clearly T ⊗ I and I ⊗ S satisfy the conditions of Theorem 2.4 and therefore T ⊗ S is
an k -quasi-A⊗A-paranormal. �

COROLLARY 4.1. Let T,S ∈ B
A

1
2
(H ) such that N (A)⊥ is invariant for T . If

T is an k -quasi-A-paranormaland S is an A-isometry, then T p⊗Sq ∈BA⊗A(H ⊗H )
is an k -quasi-A⊗A-paranormal.

Proof. It is obvious that if S is an A-isometry so is Sq . On the other hand , since T
is an k -quasi-A-paranormal, in view of Theorem 2.7, T p is an k -quasi-A-paranormal.
The desired conclusion follow from Proposition 4.1. �

THEOREM 4.1. Let T ∈ B
A

1
2
(H ) and S ∈ B

B
1
2
(H ) . If T is an k -quasi-A-

paranormal and S is an k -quasi-B-paranormal, then T ⊗ S is k -quasi-A⊗B-para-
normal.
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Proof. Since T is an k -quasi-A-paranormal and S is an k -quasi-B-paranormal,
it follows that

‖Tk+1u‖2
A � ‖Tk+2u‖2

A‖Tku‖2
A, ∀ u ∈ H ,

and
‖Sk+1v‖2

B � ‖Sk+2v‖2
B‖Skv‖2

B, ∀ v ∈ H .

This means that

‖Tk+1u‖2
A‖Sk+1v‖2

B � ‖Tk+2u‖2
A‖Sk+2v‖2

B‖Tku‖2
A‖Skv‖2

B, ∀ u,v ∈ H ,

similarly,

‖Tk+1⊗Sk+1(u⊗v)‖2
A⊗B � ‖Tk+2⊗Sk+2(u⊗v)‖2

A⊗B‖Tk⊗Sk(u⊗v)‖2
A⊗B, ∀ u,v∈H ,

or equivalently,

‖(T ⊗S
)k+1(u⊗v)‖2

A⊗B � ‖(T ⊗S
)k+2(u⊗v)‖2

A⊗B‖
(
T ⊗S

)k(u⊗v)‖2
A⊗B, ∀ u,v∈H .

Therefore, T ⊗S is an k -quasi-A⊗B-paranormal. �
The following corollary is an immediate consequence of Theorem 2.7 and Theo-

rem 4.1.

COROLLARY 4.2. Let T ∈ B
A

1
2
(H ) and S ∈ B

B
1
2
(H ) . If T is an k -quasi-A-

paranormal and S is an k -quasi-B-paranormal, then Tn⊗Sm is k -quasi-A⊗B-para-
normal for all positive integers n and m.
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