ON OPERATORS SATISFYING $T^{*}\left(T^{* 2} T^{2}\right)^{p} T \geqslant T^{*}\left(T^{2} T^{* 2}\right)^{p} T$

Fei Zuo and Salah Mecheri

(Communicated by R. Curto)

Abstract. An operator $T \in B(H)$ is called square- p-quasihyponormal if

$$
T^{*}\left(T^{* 2} T^{2}\right)^{p} T \geqslant T^{*}\left(T^{2} T^{* 2}\right)^{p} T \text { for } p \in(0,1]
$$

which is a further generalization of normal operator. In this paper, we give a sufficient condition for an injective square- p-quasihyponormal operator to be self-adjoint, and we obtain that every square- p-quasihyponormal operator has a scalar extension. As a consequence, we prove that if T is a quasiaffine transform of square- p-quasihyponormal, then T satisfies Weyl's theorem. Finally some examples are presented.

1. Introduction

Let $B(H)$ denote the C^{*}-algebra of all bounded linear operators on an infinite dimensional separable Hilbert space H. If $T \in B(H)$, we shall write $N(T)$ and $R(T)$ for the null space and the range space of T, and also, write $\sigma(T), \sigma_{e}(T)$ and $\omega(T)$ for the spectrum, the essential spectrum and the Weyl spectrum of T, respectively.

An operator $T \in B(H)$ is said to be p-hyponormal for $p \in(0,1]$ if $\left(T^{*} T\right)^{p} \geqslant$ $\left(T T^{*}\right)^{p}$ where T^{*} is the adjoint of T. If $p=1, T$ is called hyponormal and if $p=\frac{1}{2}, T$ is called semi-hyponormal. Semi-hyponormal operators were introduced by Xia [25], and p-hyponormal operators were introduced by Aluthge [3]. An operator $T \in B(H)$ is called p-quasihyponormal for $p \in(0,1]$ if $T^{*}\left(T^{*} T\right)^{p} T \geqslant T^{*}\left(T T^{*}\right)^{p} T$. 1 -quasihyponormal is called quasihyponormal (see [5]). An operator $T \in B(H)$ is called paranormal if $\left\|T^{2} x\right\| \geqslant\|T x\|^{2}$ for unit vector x. Clearly hyponormal operators are quasihyponormal operators, p-hyponormal operators are p-quasihyponormal and p-quasihyponormal operators are paranormal. It is well-known that p-hyponormal operators are q-hyponormal if $0<q \leqslant p$, however, it is not necessarily true that p quasihyponormal operators are q-quasihyponormal even if $0<q<p$.

An operator $T \in B(H)$ is normal and 2-normal if $T^{*} T=T T^{*}$ and $T^{*} T^{2}=T^{2} T^{*}$, respectively. By Fuglede-Putnam theorem, it is easy to see that T is 2 -normal if and only if T^{2} is normal (see [4]). In [17] an operator $T \in B(H)$ is called k th root of p-hyponormal for $p \in(0,1]$ if T^{k} is p-hyponormal for some positive integer k. If $k=2, T$ is said to be square- p-hyponormal, i.e., $\left(T^{* 2} T^{2}\right)^{p} \geqslant\left(T^{2} T^{* 2}\right)^{p}$, in particular

[^0]for $k=2$ and $p=1, T$ is said to be square hyponormal [8]. Now we are going to consider an extension of the notion of square- p-hyponormal operator, similar in spirit to the extension of the notion of p-hyponormality to p-quasihyponormality.

DEFINITION 1.1. An operator $T \in B(H)$ is called square- p-quasihyponormal if

$$
T^{*}\left(T^{* 2} T^{2}\right)^{p} T \geqslant T^{*}\left(T^{2} T^{* 2}\right)^{p} T \text { for } p \in(0,1] .
$$

It is clear that

$$
\begin{aligned}
\text { normal } \Rightarrow 2 \text {-normal } & \Rightarrow \text { square hyponormal } \\
& \Rightarrow \text { square- } p \text {-hyponormal } \\
& \Rightarrow \text { square- } p \text {-quasihyponormal. }
\end{aligned}
$$

2 -normal operator and square- p-hyponormal operator have been studied by many authors and it is known that they have many interesting properties similar to those of normal operator (see [7, 8, 9, 16, 17]).

In general, the conditions $S^{-1} T S=T^{*}$ and $0 \notin \overline{W(S)}$ do not imply that T is normal, where $W(S)=\{\langle S x, x\rangle:\|x\|=1\}$. For example (see [24]), if $T=S B$, where S is positive and invertible, B is self-adjoint, and S and B do not commute, then $S^{-1} T S=T^{*}$ and $0 \notin \overline{W(S)}$, but T is not normal. Therefore the following question arises naturally.

QuESTION 1.2. Suppose that T is an operator for which there is an operator S with $0 \notin \overline{W(S)}$ such that $S^{-1} T S=T^{*}$. When does it follow that necessarily T is normal?

In Section 2, we show that if T is an injective square- p-quasihyponormal operator and S is an arbitrary operator for which $0 \notin \overline{W(S)}$ and $S T=T^{*} S$, then T is a 2-normal operator. A bounded linear operator T on H is called scalar of order m if it possesses a spectral distribution of order m, i.e., if there is a continuous unital morphism of topological algebras $\Phi: C_{0}^{m}(\mathbb{C}) \rightarrow B(H)$ such that $\Phi(z)=T$, where z stands for the identity function on \mathbb{C}, and $C_{0}^{m}(\mathbb{C})$ stands for the space of compactly supported functions on \mathbb{C}, continuously differentiable of order $m, 0 \leqslant m \leqslant \infty$. An operator is subscalar if it is similar to the restriction of a scalar operator to an invariant subspace. In 1984, Putinar [22] proved that every hyponormal operator has a scalar extension, which has been extended from hyponormal operators to p-hyponormal operators [18], to analytic roots of hyponormal operators [16], to analytic extensions of M-hyponormal operators [19], and to k th roots of p-hyponormal operators [17]. In Section 3, we show that every square- p-quasihyponormal operator is subscalar. As a consequence, we prove that every square- p-quasihyponormal operator with rich spectrum has a nontrivial invariant subspace. In Section 4, we also obtain that every F-square- p-quasihyponormal operator has a scalar extension. Finally, we give some examples of square- p-quasihyponormal operator in Section 5.

2. Operators similar to their adjoints

Before we state main theorems, we need several preliminary results.
Lemma 2.1. (Hansen inequality [14]) If $A, B \in B(H)$ satisfy $A \geqslant 0$ and $\|B\| \leqslant$ 1, then

$$
\left(B^{*} A B\right)^{\delta} \geqslant B^{*} A^{\delta} B \quad \text { for all } \quad \delta \in(0,1] .
$$

Lemma 2.2. (Löwner-Heinz inequality [13]) $A \geqslant B \geqslant 0$ ensures $A^{\alpha} \geqslant B^{\alpha}$ for any $\alpha \in[0,1]$.

LEMMA 2.3. Suppose that $T \in B(H)$ is a square- p-quasihyponormal operator and $R(T)$ is not dense. Then

$$
T=\left(\begin{array}{cc}
A & B \\
0 & 0
\end{array}\right) \quad \text { on } \quad H=\overline{R(T)} \oplus N\left(T^{*}\right)
$$

where A is a square-p-hyponormal operator and $\sigma(T)=\sigma(A) \cup\{0\}$.
Proof. The spectral inclusion relations are clear and it is sufficient to show that A is square- p-hyponormal. Let P be the orthogonal projection onto $\overline{R(T)}$. Then

$$
\left(\begin{array}{ll}
A & 0 \\
0 & 0
\end{array}\right)=T P=P T P
$$

Since T is a square- p-quasihyponormal operator, we have

$$
P\left(\left(T^{* 2} T^{2}\right)^{p}-\left(T^{2} T^{* 2}\right)^{p}\right) P \geqslant 0
$$

Then

$$
\begin{aligned}
P\left(T^{*} T^{*} T T\right)^{p} P & \leqslant\left(P T^{*} T^{*} T T P\right)^{p} \quad(\text { by lemma 2.1) } \\
& =\left(P T^{*} P T^{*} T P T P\right)^{p} \\
& =\left(\begin{array}{cc}
\left(A^{* 2} A^{2}\right)^{p} & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
P\left(T T T^{*} T^{*}\right)^{p} P & \geqslant P\left(T T P T^{*} T^{*}\right)^{p} P \quad(\text { by lemma } 2.2) \\
& =\left(\begin{array}{cc}
\left(A^{2} A^{* 2}\right)^{p} & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

Hence

$$
\left(\begin{array}{ll}
\left(A^{* 2} A^{2}\right)^{p} & 0 \\
0 & 0
\end{array}\right) \geqslant P\left(T^{* 2} T^{2}\right)^{p} P \geqslant P\left(T^{2} T^{* 2}\right)^{p} P \geqslant\left(\begin{array}{ll}
\left(A^{2} A^{* 2}\right)^{p} & 0 \\
0 & 0
\end{array}\right)
$$

i.e., A is a square- p-hyponormal operator.

Lemma 2.4. ([24, Theorem 1]) If $T \in B(H)$ is any operator such that $S^{-1} T S=$ T^{*}, where $0 \notin \overline{W(S)}$, then $\sigma(T) \subseteq \mathbb{R}$.

In Lemma 2.4, the condition, $0 \notin \overline{W(S)}$, is essential. For example ([24, Example 1]), let W is the bilateral shift on l^{2} which is defined by $W e_{n}=e_{n+1}$, where $\left\{e_{n}\right\}_{n=-\infty}^{\infty}$ is the canonical orthonormal basis for l^{2}, and let S be the unitary operator defined by $S e_{n}=e_{-n}$. Then $S^{-1} W S=W^{*}$, but the spectrum of W is not real. Actually, the spectrum of W is the unit circle.

THEOREM 2.5. Let T be a square-p-hyponormal operator. If T is a paranormal operator, S is an arbitrary operator for which $0 \notin \overline{W(S)}$ and $S T=T^{*} S$, then T is selfadjoint.

Proof. Suppose that T is a square- p-hyponormal operator. Since $\sigma(S) \subseteq \overline{W(S)}$, S is invertible and hence $S T=T^{*} S$ becomes $S^{-1} T^{*} S=T$. Then $\sigma(T) \subseteq \mathbb{R}$ by Lemma 2.4. Hence $m_{2}(\sigma(T))=0$ for the planar Lebesgue measure m_{2}. Now apply Putnam's inequality for p-hyponormal operators to T^{2} (depending upon which is p hyponormal) to get

$$
\left\|\left(T^{* 2} T^{2}\right)^{p}-\left(T^{2} T^{* 2}\right)^{p}\right\| \leqslant \frac{1}{\pi} m_{2}\left(\sigma\left(T^{2}\right)\right)=0
$$

It follows that T is 2 -normal. Since a 2 -normal paranormal operator is normal by [23, Theorem 4.6], we have T is an normal operator, apply [24, Theorem], thus T is self-adjoint.

THEOREM 2.6. Let T be an injective square- p-quasihyponormal operator. If T is a paranormal operator, S is an arbitrary operator for which $0 \notin \overline{W(S)}$ and $S T=$ $T^{*} S$, then T is self-adjoint.

Proof. Since T is a square- p-quasihyponormal operator, we have the following matrix representation by Lemma 2.3:

$$
T=\left(\begin{array}{cc}
A & B \\
0 & 0
\end{array}\right) \quad \text { on } \quad H=\overline{R(T)} \oplus N\left(T^{*}\right)
$$

where A is a square- p-hyponormal operator and $\sigma(T)=\sigma(A) \cup\{0\}$. Let $S=\left(\begin{array}{ll}S_{1} & S_{2} \\ S_{3} & S_{4}\end{array}\right)$. Then from $0 \notin \overline{W(S)}$ and $S T=T^{*} S$, we have $0 \notin \overline{W\left(S_{1}\right)}$ and $S_{1} A=A^{*} S_{1}$. Therefore \underline{A} is 2 -normal by Theorem 2.5. Now let P be the orthogonal projection of H onto $\overline{R(T)}$. Then we have

$$
\left(\begin{array}{ll}
A & 0 \\
0 & 0
\end{array}\right)=T P=P T P
$$

$$
\begin{aligned}
P\left(T^{*} T^{*} T T\right)^{p} P & \leqslant\left(P T^{*} T^{*} T T P\right)^{p} \quad(\text { by lemma 2.1 }) \\
& =\left(P T^{*} P T^{*} T P T P\right)^{p} \\
& =\left(\begin{array}{cc}
\left(A^{* 2} A^{2}\right)^{p} & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
P\left(T T T^{*} T^{*}\right)^{p} P & \geqslant P\left(T T P T^{*} T^{*}\right)^{p} P \quad(\text { by lemma 2.2) } \\
& =\left(\begin{array}{cc}
\left(A^{2} A^{* 2}\right)^{p} & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

Since T is a square- p-quasihyponormal operator,

$$
\left(\begin{array}{ll}
\left(A^{* 2} A^{2}\right)^{p} & 0 \\
0 & 0
\end{array}\right) \geqslant P\left(T^{* 2} T^{2}\right)^{p} P \geqslant P\left(T^{2} T^{* 2}\right)^{p} P \geqslant\left(\begin{array}{ll}
\left(A^{2} A^{* 2}\right)^{p} & 0 \\
0 & 0
\end{array}\right)
$$

and hence we may write

$$
\left(T^{2} T^{* 2}\right)^{p}=\left(\begin{array}{cr}
\left(A^{* 2} A^{2}\right)^{p} & M \\
M^{*} & N
\end{array}\right)
$$

Let $\left(T^{2} T^{* 2}\right)^{\frac{p}{2}}=\left(\begin{array}{cc}X & Y \\ Y^{*} & Z\end{array}\right)$. Then

$$
\begin{aligned}
\left(\begin{array}{cc}
\left(A^{* 2} A^{2}\right)^{\frac{p}{2}} & 0 \\
0 & 0
\end{array}\right) & =\left(P\left(T^{2} T^{* 2}\right)^{p} P\right)^{\frac{1}{2}} \\
& \geqslant P\left(T^{2} T^{* 2}\right)^{\frac{p}{2}} P \\
& =\left(\begin{array}{cc}
X & 0 \\
0 & 0
\end{array}\right) \\
& \geqslant P\left(T^{2} P T^{* 2}\right)^{\frac{p}{2}} P \\
& =\left(\begin{array}{cc}
\left(A^{* 2} A^{2}\right)^{\frac{p}{2}} & 0 \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

Hence

$$
X=\left(A^{* 2} A^{2}\right)^{\frac{p}{2}} .
$$

On the other hand, a straightforward calculation shows

$$
\left(T^{2} T^{* 2}\right)^{p}=\left(\begin{array}{cc}
X & Y \\
Y^{*} & Z
\end{array}\right)^{2}=\left(\begin{array}{cc}
X^{2}+Y Y^{*} & X Y+Y Z \\
Y^{*} X+Z Y^{*} & Y^{*} Y+Z^{2}
\end{array}\right) .
$$

Hence

$$
\left(A^{* 2} A^{2}\right)^{p}=X^{2}+Y Y^{*}=X^{2}
$$

This implies $Y=0$ and

$$
\left(T^{2} T^{* 2}\right)^{\frac{p}{2}}=\left(\begin{array}{cc}
\left(A^{* 2} A^{2}\right)^{\frac{p}{2}} & 0 \\
0 & Z
\end{array}\right)
$$

Then

$$
\begin{aligned}
T^{2} T^{* 2} & =\left(\begin{array}{cc}
A^{2} & A B \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
A^{* 2} & 0 \\
B^{*} A^{*} & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
A^{2} A^{* 2}+A B B^{*} A^{*} & 0 \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
A^{* 2} A^{2} & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

Therefore, $A B B^{*} A^{*}=0$. Since T is an injective square- p-quasihyponormal operator, A is an injective square- p-hyponormal operator, hence $B=0, T$ must be 2 -normal. Since T is a paranormal operator, it follows that T is an normal operator, apply [24, Theorem], thus T is self-adjoint.

COROLLARY 2.7. Let T be an injective square-p-quasihyponormal operator. If S is an arbitrary operator for which $0 \notin \overline{W(S)}$ and $S T=T^{*} S$, then T is 2-normal.

Proof. This is a consequence of Theorem 2.6.

THEOREM 2.8. Let T be a square- p-quasihyponormal operator and M be its invariant subspace. Then the restriction $\left.T\right|_{M}$ of T to M is also a square-p-quasihyponormal operator.

Proof. Let E be the orthogonal projection onto M. Thus we can reprsent T as the following 2×2 operator matrix with respect to the decomposition $M \oplus M^{\perp}$,

$$
T=\left(\begin{array}{cc}
A & B \\
0 & D
\end{array}\right)
$$

Put $A=\left.T\right|_{M}$. Then $T E=E T E$ and $A=\left.(E T E)\right|_{M}$. Since T is a square- p-quasihyponormal operator, we have

$$
E T^{*}\left(T^{* 2} T^{2}\right)^{p} T E \geqslant E T^{*}\left(T^{2} T^{* 2}\right)^{p} T E
$$

Since

$$
\begin{aligned}
E T^{*}\left(T^{* 2} T^{2}\right)^{p} T E & =E T^{*} E\left(T^{* 2} T^{2}\right)^{p} E T E \\
& \leqslant E T^{*}\left(E T^{* 2} T^{2} E\right)^{p} T E \quad(\text { by lemma 2.1) } \\
& =E T^{*} E\left(E T^{* 2} E E T^{2} E\right)^{p} E T E \\
& =\left(\begin{array}{cr}
A^{*}\left(A^{* 2} A^{2}\right)^{p} A & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
E T^{*}\left(T^{2} T^{* 2}\right)^{p} T E & =E T^{*} E\left(T^{2} T^{* 2}\right)^{p} E T E \\
& \geqslant E T^{*} E\left(T^{2} E T^{* 2}\right)^{p} E T E \quad(\text { by lemma 2.2) } \\
& =E T^{*} E\left(E T^{2} E E T^{* 2} E\right)^{p} E T E \\
& =\left(\begin{array}{cr}
A^{*}\left(A^{2} A^{* 2}\right)^{p} A & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

we have

$$
\left(\begin{array}{cc}
A^{*}\left(A^{* 2} A^{2}\right)^{p} A & 0 \\
0 & 0
\end{array}\right) \geqslant\left(\begin{array}{cc}
A^{*}\left(A^{2} A^{* 2}\right)^{p} A & 0 \\
0 & 0
\end{array}\right)
$$

This implies that A is a square- p-quasihyponormal operator.

3. Subscalarity

For a Banach space \mathscr{X}, let $\xi(U, \mathscr{X})$ (resp., $\mathscr{O}(U, \mathscr{X})$) denote the Fréchet space of all infinite differentiable \mathscr{X}-value functions on U (resp., of all analytic \mathscr{X}-value functions on U). An operator $T \in B(\mathscr{X})$ is said to have property $(\beta)_{\varepsilon}$ at $\lambda \in \mathbb{C}$ if there exists a neighbourhood D of λ such that for every open subset U of D and \mathscr{X} value functions sequence $\left\{f_{n}\right\}$ in $\xi(U, \mathscr{X}),(T-z I) f_{n}(z) \rightarrow 0$ in $\xi(U, \mathscr{X}) \Rightarrow f_{n}(z) \rightarrow$ 0 in $\xi(U, \mathscr{X})$, and $T \in B(\mathscr{X})$ is said to have property (β) at $\lambda \in \mathbb{C}$ if there exists an $r>0$ such that for every subset U of the open $\operatorname{disc} D(\lambda ; r)$ of radius r centered at λ and sequence $\left\{f_{n}\right\}$ of \mathscr{X}-value functions in $\mathscr{O}(U, \mathscr{X}),(T-z I) f_{n}(z) \rightarrow 0$ in $\mathscr{O}(U, \mathscr{X}) \Rightarrow$ $f_{n}(z) \rightarrow 0$ in $\mathscr{O}(U, \mathscr{X})$. An operator $T \in B(H)$ is said to have property $(\beta)_{\varepsilon}$ (resp., (β)) if T has property $(\beta)_{\varepsilon}$ (resp., (β)) at every point $\lambda \in \mathbb{C}$. In this section we show that every square- p-quasihyponormal operator has a scalar extension, we need the following lemma.

Lemma 3.1. ([18, Lemma 1]) For $T \in B(\mathscr{X})$, the following statements are equivalent:
(i) T is subscalar;
(ii) T has property $(\beta)_{\varepsilon}$.

THEOREM 3.2. Suppose that T is a square-p-quasihyponormal operator. Then T is subscalar.

Proof. Assume that $R(T)$ is dense. Then T is a square- p-hyponormal operator, it is subscalar of order 8 by [17, Theorem 3.6]. So we may assume that T does not have dense range. Then by Lemma 2.3 the operator T can be decomposed as follows: $T=\left(\begin{array}{cc}T_{1} & T_{2} \\ 0 & 0\end{array}\right)$ on $H=\overline{R(T)} \oplus N\left(T^{*}\right)$, where A is a square- p-hyponormal operator. Set $\sigma_{(\beta)_{\varepsilon}}(S)=\left\{\mu \in \sigma(S): S\right.$ doesn't satisfy property $(\beta)_{\varepsilon}$ at $\left.\mu\right\}$. Recall from [6, Theorem 2.1] that given operators S and $R, \lambda \in \sigma_{(\beta)_{\varepsilon}}(R S) \Leftrightarrow \lambda \in \sigma_{(\beta)_{\varepsilon}}(S R)$. Considering $T=$
$\left(\begin{array}{cc}T_{1} & T_{2} \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}I_{1} & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{cc}I_{1} & T_{2} \\ 0 & I_{2}\end{array}\right)\left(\begin{array}{cc}T_{1} & 0 \\ 0 & I_{2}\end{array}\right)$, let $B=\left(\begin{array}{cc}I_{1} & 0 \\ 0 & 0\end{array}\right), E=\left(\begin{array}{cc}I_{1} & T_{2} \\ 0 & I_{2}\end{array}\right), A=\left(\begin{array}{cc}T_{1} & 0 \\ 0 & I_{2}\end{array}\right)$.
Then $T=B E A$. Suppose $\lambda \in \sigma_{(\beta)_{\varepsilon}}(T) \Leftrightarrow \lambda \in \sigma_{(\beta)_{\varepsilon}}(B E A)=\sigma_{(\beta)_{\varepsilon}}(E A B)$. Hence, since E is invertible, $\lambda \in \sigma_{(\beta)_{\varepsilon}}(A B)^{2}=\sigma_{(\beta)_{\varepsilon}}\left(T_{1} \oplus 0\right) \Rightarrow \lambda \in \sigma_{(\beta)_{\varepsilon}}\left(T_{1}\right)$, contradiction. Thus T has property $(\beta)_{\varepsilon}$, i.e., T is subscalar.

Corollary 3.3. Suppose that T is a square-p-quasihyponormal operator. Then T has Bishop's property (β).

Proof. Since the Bishop's property (β) is transmitted from an operator to its restrictions to closed invariant subspace, we are reduced by Theorem 3.2 to the case of a scalar operator. Since every scalar operator has Bishop's property (β) [22], T has Bishop's property (β).

COROLLARY 3.4. Let T be a square-p-quasihyponormal operator. If $\sigma(T)$ has nonempty interior in \mathbb{C}, then T has a nontrivial invariant subspace.

Proof. It suffices to apply Theorem 3.2 and [11].

Corollary 3.5. Suppose that T is a quasinilpotent square-p-quasihyponormal operator. Then T is nilpotent.

Proof. Since a quasinilpotent subscalar operator is nilpotent. It follows by Theorem 3.2 that T is nilpotent.

Definition 3.6. An operator $T \in B(H)$ is said to belong to the class $H(p)$ if there exists a natural number $p:=p(\lambda)$ such that

$$
H_{0}(\lambda I-T)=N(\lambda I-T)^{p} \text { for all } \lambda \in \mathbb{C}
$$

where $H_{0}(\lambda I-T):=\left\{x \in H: \lim _{n \rightarrow \infty}\left\|(\lambda I-T)^{n} x\right\|^{\frac{1}{n}}=0\right\}$.

THEOREM 3.7. [20] Every subscalar operator $T \in B(H)$ is $H(p)$.
Classical examples of subscalar operators are hyponormal operators. In this paper we will show that other important classes of operators are $H(p)$.

DEfinition 3.8. An operator $T \in B(H)$ is said to be polaroid if every $\lambda \in$ iso $\sigma(T)$ is a pole of the resolvent of T, where $\operatorname{iso} \sigma(T)$ denotes the isolated points of the spectrum.

The condition of being polaroid may be characterized by means of the quasinilpotent part:

THEOREM 3.9. [2] An operator $T \in B(H)$ is polaroid if and only if there exists $p:=p(\lambda I-T) \in \mathbb{N}$ such that

$$
H_{0}(\lambda I-T)=N(\lambda I-T)^{p} \text { for all } \lambda \in \operatorname{iso} \sigma(T)
$$

Note that every $H(p)$ operator is polaroid. By using Theorem 3.2 and Theorem 3.7, we deduce the following corollaries.

Corollary 3.10. Every square-p-quasihyponormal operator is $H(p)$.

Corollary 3.11. Every square-p-quasihyponormal operator is polaroid.
Recall that an operator $X \in B\left(H_{1}, H_{2}\right)$ is called a quasiaffinity if it has trivial kernel and dense range. An operator $S \in B\left(H_{1}\right)$ is said to be a quasiaffine transform of $T \in$ $B\left(H_{2}\right)$ if there is a quasiaffinity $X \in B\left(H_{1}, H_{2}\right)$ such that $X S=T X$. Furthermore, S and T are quasisimilar if there are quasiaffinities X and Y such that $X S=T X$ and $S Y=Y T$.

Corollary 3.12. Let T be a square-p-quasihyponormal operator. If S is a quasiaffine transform of T, then S satisfies Weyl's theorem (i.e., $\sigma(T)-\omega(T)=$ $\pi_{00}(T)$, where $\pi_{00}(T)=\{\lambda \in \operatorname{iso} \sigma(T): 0<N(T-\lambda I)<\infty\}$.

Proof. If T is a square- p-quasihyponormal operator, then $H_{0}(\lambda I-T)=N(\lambda I-$ $T)^{p}$ for some integer $p:=p(\lambda) \geqslant 0$ and all $\lambda \in \mathbb{C}$. Suppose $U S=T U$ with U injective and $x \in H_{0}(\lambda I-S)$. Then

$$
\left\|(\lambda I-T)^{n} U x\right\|^{\frac{1}{n}}=\left\|U(\lambda I-S)^{n} x\right\|^{\frac{1}{n}} \leqslant\|U\|^{\frac{1}{n}}\left\|(\lambda I-S)^{n} x\right\|^{\frac{1}{n}}
$$

for which we obtain that $U x \in H_{0}(\lambda I-T)=N(\lambda I-T)^{p}$. Hence

$$
U(\lambda I-S)^{p} x=(\lambda I-T)^{p} U x=0
$$

and since U injective this implies that $(\lambda I-S)^{p} x=0$. Consequently $H_{0}(\lambda I-S)=$ $N(\lambda I-S)^{p}$ for some integer $p:=p(\lambda) \geqslant 0$ and all $\lambda \in \mathbb{C}$. By [1, Theorem 3.10] Weyl's theorem holds for S.

Corollary 3.13. Let T and S be square-p-quasihyponormal operators. If T and S are quasisimilar, then $\sigma(T)=\sigma(S)$ and $\sigma_{e}(T)=\sigma_{e}(S)$.

Proof. It follows by Corollary 3.3 and [21].

4. F-square- p-quasihyponormal operators

In this section we will define F-square- p-quasihyponormal operators, and we will present some properties of this class of operators.

DEFInItion 4.1. For $0<p \leqslant 1$ an operator $T \in B(H)$ is said to be F-square-p-quasihyponormal if $F(T)^{*}\left(T^{*}\left(T^{* 2} T^{2}\right)^{p} T-T^{*}\left(T^{2} T^{* 2}\right)^{p} T\right) F(T) \geqslant 0$ for some nonconstant analytic function F on some neighborhood of $\sigma(T)$, and q-square- p-quasihyponormal operators if there exist a nonconstant polynomial q such that

$$
q(T)^{*}\left(T^{*}\left(T^{* 2} T^{2}\right)^{p} T-T^{*}\left(T^{2} T^{* 2}\right)^{p} T\right) q(T) \geqslant 0
$$

In particular, if $q(z)=z^{k}$ for some positive integer k, then T is said to be k-square- p quasihyponormal.

If $T \in B(H)$ is analytic, then $F(T)=0$ for some nonconstant analytic function F on a neighborhood U of $\sigma(T)$. Since F cannot have infinitely many zeros in U, we write $F(z)=G(z) q(z)$ where the function G is analytic and does not vanish on U and q is a nonconstant polynomial with zeros in U. By Riesz-Dunford calculus, $G(T)$ is invertible and the invertibility of $G(T)$ induces that $q(T)=0$, which means that T is algebraic (See [10]).

THEOREM 4.2. If T is an F-square- p-quasihyponormal operator, then T is subscalar. In particular, every k-square-p-quasihyponormal operator is subscalar.

Proof. Suppose that $T \in B(H)$ is F-square- p-quasihyponormal for some analytic function F on a neighborhood of $\sigma(T)$. If the range of $F(T)$ is norm dense in H, then T is square- p-quasihyponormal, hence T is subscalar. Now it suffices to assume that the range of $F(T)$ is not norm dense in H. Since $F(T)$ commutes with $T, \overline{R(F(T))}$ is a T-invariant subspace. Thus T can expressed as

$$
T=\left(\begin{array}{cc}
T_{1} & T_{2} \\
0 & T_{3}
\end{array}\right)
$$

on $\overline{R(F(T))} \oplus N\left(F(T)^{*}\right)$; where $T_{1}=\left.T\right|_{\overline{R(F(T))}}$ and $T_{3}=\left.(I-P) T(I-P)\right|_{N\left(F(T)^{*}\right)}$, and P denotes the projection of H onto $\overline{R(F(T))}$. Note that $F(z)=G(z) q(z)$ where G is a nonvanishing analytic function on a neighborhood of $\sigma(T)$ and q is a nonconstant polynomial. Then $G(T)$ is invertible and thus we obtain that $N\left(F(T)^{*}\right)=N\left(q(T)^{*}\right)$. Since $q\left(T_{3}\right)=\left.(I-P) q(T)(I-P)\right|_{N\left(F(T)^{*}\right)}$, it follows for any $x \in N\left(F(T)^{*}\right)$ that

$$
\left\langle q\left(T_{3}\right) x ; x\right\rangle=\langle q(T) x ; x\rangle=\left\langle x ; q(T)^{*} x\right\rangle=0
$$

Hence $q\left(T_{3}\right)=0$. Thus T_{3} is algebraic. Since $P\left(T^{*}\left(T^{* 2} T^{2}\right)^{p} T-T^{*}\left(T^{2} T^{* 2}\right)^{p} T\right) P \geqslant 0$. Hence $T_{1}^{*}\left(T_{1}^{* 2} T_{1}^{2}\right)^{p} T_{1}-T_{1}^{*}\left(T_{1}^{2} T_{1}^{* 2}\right)^{p} T_{1} \geqslant 0$. This shows that T_{1} is square- p-quasihyponormal. Therefore if T_{3} is algebraic, then T is subscalar by Theorem 3.2.

Corollary 4.3. Every F-square- p-quasihyponormal operator has the Bishop's property (β).

COROLLARY 4.4. Every k-square- p-quasihyponormaloperator has the Bishop's property (β).

5. Examples

Consider unilateral weighted shift operator as an infinite dimensional Hilbert space operator. Recall that given a bounded sequence of positive numbers $\alpha: \alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots$ (called weights), the unilateral weighted shift W_{α} associated with α is the operator on $H=l_{2}$ defined by $W_{\alpha} e_{n}:=\alpha_{n} e_{n+1}$ for all $n \geqslant 1$, where $\left\{e_{n}\right\}_{n=1}^{\infty}$ is the canonical orthonormal basis for l_{2}. We easily see that W_{α} can be never normal, and so in general it is used to giving some easy examples of non-normal operators. It is well known that W_{α} is p-quasihyponormal if and only if α is monotonically increasing (see [26, Example 2.3]).

LEMMA 5.1. W_{α} belongs to square-p-quasihyponormal if and only if

$$
W_{\alpha}=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & \cdots \\
\alpha_{1} & 0 & 0 & 0 & 0 & \cdots \\
0 & \alpha_{2} & 0 & 0 & 0 & \cdots \\
0 & 0 & \alpha_{3} & 0 & 0 & \cdots \\
0 & 0 & 0 & \alpha_{4} & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

where

$$
\alpha_{n} \alpha_{n+1} \leqslant \alpha_{n+2} \alpha_{n+3} \quad(n=1,2,3, \ldots)
$$

Proof. By simple calculations,

$$
W_{\alpha}^{* 2} W_{\alpha}^{2}=\left(\alpha_{1}^{2} \alpha_{2}^{2}\right) \oplus\left(\alpha_{2}^{2} \alpha_{3}^{2}\right) \oplus\left(\alpha_{3}^{2} \alpha_{4}^{2}\right)+\ldots
$$

and

$$
W_{\alpha}^{2} W_{\alpha}^{* 2}=0 \oplus 0 \oplus\left(\alpha_{1}^{2} \alpha_{2}^{2}\right) \oplus\left(\alpha_{2}^{2} \alpha_{3}^{2}\right) \oplus\left(\alpha_{3}^{2} \alpha_{4}^{2}\right)+\ldots
$$

Hence

$$
W_{\alpha}^{*}\left(W_{\alpha}^{* 2} W_{\alpha}^{2}\right)^{p} W_{\alpha}=\alpha_{1}^{2}\left(\alpha_{2}^{2 p} \alpha_{3}^{2 p}\right) \oplus \alpha_{2}^{2}\left(\alpha_{3}^{2 p} \alpha_{4}^{2 p}\right) \oplus \alpha_{3}^{2}\left(\alpha_{4}^{2 p} \alpha_{5}^{2 p}\right)+\ldots
$$

and

$$
W_{\alpha}^{*}\left(W_{\alpha}^{2} W_{\alpha}^{* 2}\right)^{p} W_{\alpha}=0 \oplus \alpha_{2}^{2}\left(\alpha_{1}^{2 p} \alpha_{2}^{2 p}\right) \oplus \alpha_{3}^{2}\left(\alpha_{2}^{2 p} \alpha_{3}^{2 p}\right) \oplus \alpha_{4}^{2}\left(\alpha_{3}^{2 p} \alpha_{4}^{2 p}\right)+\ldots
$$

Thus W_{α} belongs to square- p-quasihyponormal if and only if

$$
\alpha_{n} \alpha_{n+1} \leqslant \alpha_{n+2} \alpha_{n+3} \quad(n=1,2,3, \ldots)
$$

The following example provides an operator which is square- p-quasihyponormal but not p-quasihyponormal.

EXAMPLE 5.2. A square- p-quasihyponormal operator which is not p-quasihyponormal.

Proof. Let W_{α} be a unilateral weighted shift operator with weights $\alpha_{n}=2(n \neq 2)$ and $\alpha_{2}=1$. Simple calculations show that W_{α} is square- p-quasihyponormal, but W_{α} is non- p-quasihyponormal.

Finally we give an example to show that the class of square- p-hyponormal operators is properly contained in the class of square- p-quasihyponormal operators. We need the following lemma.

LEMMA 5.3. Let $K=\bigoplus_{n=1}^{+\infty} H_{n}$, where $H_{n} \cong H$. For given positive operators A and B on H, define the operator $T=T_{A, B}$ on K as follows:

$$
T=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
A & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & A & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & B & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & B & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & B & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Then the following assertions hold:
(1) T belongs to square-p-hyponormal if and only if $B^{4 p} \geqslant A^{4 p}$ and $B^{4 p} \geqslant$ $\left(B A^{2} B\right)^{p}$.
(2) T belongs to square- p-quasihyponormal if and only if $A\left(B^{4 p}-A^{4 p}\right) A \geqslant 0$ and $B\left(B^{4 p}-\left(B A^{2} B\right)^{p}\right) B \geqslant 0$.

Proof. Since

$$
T^{*}=\left(\begin{array}{ccccccc}
0 & A & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & A & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & B & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & B & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & B & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right),
$$

by simple calculations,

$$
\left(T^{* 2} T^{2}\right)^{p}=\left(\begin{array}{cccccc}
A^{4 p} & 0 & 0 & 0 & 0 & \cdots \\
0 & \left(A B^{2} A\right)^{p} & 0 & 0 & 0 & \cdots \\
0 & 0 & B^{4 p} & 0 & 0 & \cdots \\
0 & 0 & 0 & B^{4 p} & 0 & \cdots \\
0 & 0 & 0 & 0 & B^{4 p} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

and

$$
\left(T^{2} T^{* 2}\right)^{p}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & A^{4 p} & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & \left(B A^{2} B\right)^{p} & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & B^{4 p} & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & B^{4 p} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Hence

$$
T^{*}\left(T^{* 2} T^{2}\right)^{p} T=\left(\begin{array}{ccccc}
A\left(A B^{2} A\right)^{p} A & 0 & 0 & 0 & \cdots \\
0 & A B^{4 p} A & 0 & 0 & \cdots \\
0 & 0 & B B^{4 p} B & 0 & \cdots \\
0 & 0 & 0 & B B^{4 p} B & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

and

$$
T^{*}\left(T^{2} T^{* 2}\right)^{p} T=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & \cdots \\
0 & A A^{4 p} A & 0 & 0 & \cdots \\
0 & 0 & B\left(B A^{2} B\right)^{p} B & 0 & \cdots \\
0 & 0 & 0 & B B^{4 p} B & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) .
$$

Thus T is square- p-hyponormal $\left(\left(T^{* 2} T^{2}\right)^{p} \geqslant\left(T^{2} T^{* 2}\right)^{p}\right)$ if and only if

$$
\left\{\begin{array}{l}
B^{4 p} \geqslant A^{4 p} \\
B^{4 p} \geqslant\left(B A^{2} B\right)^{p}
\end{array}\right.
$$

Similarly, T is square- p-quasihyponormal $\left(T^{*}\left(T^{* 2} T^{2}\right)^{p} T \geqslant T^{*}\left(T^{2} T^{* 2}\right)^{p} T\right)$ if and only if

$$
\left\{\begin{array}{l}
A B^{4 p} A \geqslant A A^{4 p} A \\
B B^{4 p} B \geqslant B\left(B A^{2} B\right)^{p} B
\end{array}\right.
$$

EXAMPLE 5.4. A square-1-quasihyponormal operator which is not square-1-hyponormal.

Proof. Let H be a two dimensional Hilbert space and $p=1$. Take A and B as

$$
A=\left(\begin{array}{ll}
\frac{1}{2} & 0 \\
0 & 0
\end{array}\right), B=\left(\begin{array}{ll}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right) .
$$

Then

$$
B^{4}-A^{4}=\left(\begin{array}{cc}
\frac{7}{16} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right) \ngtr 0 .
$$

Hence $T_{A, B}$ is a non-square-1-hyponormal operator.
On the other hand,

$$
A\left(B^{4}-A^{4}\right) A=\left(\begin{array}{ll}
\frac{1}{2} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\frac{7}{16} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)\left(\begin{array}{ll}
\frac{1}{2} & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
\frac{7}{64} & 0 \\
0 & 0
\end{array}\right) \geqslant 0
$$

and

$$
B\left(B^{4}-B A^{2} B\right) B=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)\left(\begin{array}{cc}
\frac{7}{16} & \frac{7}{16} \\
\frac{7}{16} & \frac{7}{16}
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)=\left(\begin{array}{cc}
\frac{7}{16} & \frac{7}{16} \\
\frac{7}{16} & \frac{7}{16}
\end{array}\right) \geqslant 0 .
$$

Thus $T_{A, B}$ is a square-1-quasihyponormal operator.
Acknowledgement. This research is supported by the National Research Project Cultivation Foundation of Henan Normal University (20210372), High-quality Postgraduate Education Courses in Henan Normal University (YJS2021KC01) and Postgraduate Education Reform and Quality Improvement Project of Henan Province (2021SJGLX009Y).

REFERENCES

[1] P. Aiena, E. Aponte and E. Balzan, Weyl type theorems for left and right polaroid operators, Integr. Equ. Oper. Theory 66 (1) (2010), 1-20.
[2] P. Aiena, M. Chō and M. GonzÁlez, Polaroid type operators under quasi-affinities, J. Math. Anal. Appl. 371 (2) (2010), 485-495.
[3] A. Aluthge, On p-hyponormal operators for $0<p<1$, Integral Equ. Oper. Theory 13 (1990), 307-315.
[4] S. A. Aluzuraiqi, A. B. Patel, On n-normal operators, General Math. Notes 1 (2010), 61-73.
[5] S. C. Arora, P. Arora, On p-quasihyponormal operators for $0<p<1$, Yokohama Math. J. 41(1993), 25-29.
[6] C. Benhida, E. H. Zerouali, Local spectral theory of linear operators $R S$ and $S R$, Integral Equ. Oper. Theory 54 (2006), 1-8.
[7] M. Chō, J. E. Lee, K. Tanahashi and A. Uchiyama, Remarks on n-normal operators, Filomat 32 (15) (2018), 5441-5451.
[8] M. Chō, D. Mosić, B. N. Nastovska and T. Saito, Spectral properties of square hyponormal operators, Filomat 33 (15) (2019), 4845-4854.
[9] M. ChŌ, B. NAC̆EVSKA, Spectral properties of n-normal operators, Filomat 32 (14) (2018), 50635069.
[10] X. H. CaO, Analytically class A operators and Weyl's theorem, J. Math. Anal. Appl. 320 (2)(2006), 795-803.
[11] J. EsCHMEIER, Invariant subspaces for subscalar operators, Arch. Math. 52 (1989), 562-570.
[12] J. ESCHMEIER, M. PUTINAR, Bishop's condition (β) and rich extensions of linear operators, Indiana Univ. Math. J. 37 (1988), 325-348.
[13] T. Furuta, Invitation to Linear Operators, Taylor and Fancis, Oxford, 2001.
[14] F. Hansen, An equality, Math. Ann. 246 (1980), 249-250.
[15] I. H. Jeon, J. I. Lee and A. Uchiyama, On p-quasihyponormal operators and quasisimilarity, Math. Inequal. Appl. 6 (2003), 309-315.
[16] S. Jung, E. Ko, On analytic roots of hyponormal operators, Mediterr. J. Math. 14 (5) (2017), 1-18.
[17] E. Ko, K th roots of p-hyponormal operators are subscalar operators of order $4 k$, Integr. Equ. Oper. Theory 59 (2007), 173-187.
[18] C. Lin, Y. B. Ruan and Z. K. Yan, p-Hyponormal operators are subscalar, Proc. Amer. Math. Soc. 131 (9) (2003), 2753-2759.
[19] S. Mecheri, F. Zuo, Analytic extensions of M-hyponormal operators, J. Korean Math. Soc. 53 (1) (2016), 233-246.
[20] M. OUDGHIRI, Weyl's and Browder's theorems for operators satisfying the SVEP, Studia Math. 163 (1) (2004), 85-101.
[21] M. Putinar, Quasisimilarity of tuples with Bishop's property (β), Integr. Equ. Oper. Theory 15 (1992), 1047-1052.
[22] M. Putinar, Hyponormal operators are subscalar, J. Oper. Theory 12 (1984), 385-395.
[23] D. Thompson, T. McClatchey and C. Holleman, Binormal, complex symmetric operators, Linear and Multilinear Algebra 69 (2021), 1705-1715.
[24] J. P. Williams, Operators similar to their adjoints, Proc. Amer. Math. Soc. 20 (1969), 121-123.
[25] D. XiA, Spectral Theory of Hyponormal Operators, Birkhäuser Verlag, Boston, 1983.
[26] J. T. Yuan, G. X. Ji, On ($n ; k$)-quasiparanormal operators, Studia Math. 209 (3) (2012), 289-301.

Fei Zuo
College of Mathematics and Information Science
Henan Normal University
Xinxiang 453007, China
e-mail: zuofei2008@126.com
Salah Mecheri
Faculty of Mathematics and informatics
Mohamed EI Bachir EI Ibrahimi University
Bordj Bou Arreridj, 34000, Algeria
e-mail: mecherisalah@hotmail.com

[^0]: Mathematics subject classification (2020): Primary 47B20; Secondary 47A10, 47A11.
 Keywords and phrases: Square-p-quasihyponormal operator, 2 -normal operator, subscalarity, Weyl's theorem.

