
Operators
and

Matrices

Volume 16, Number 3 (2022), 645–659 doi:10.7153/oam-2022-16-47

ON OPERATORS SATISFYING T ∗(T ∗2T 2)pT � T ∗(T 2T ∗2)pT

FEI ZUO AND SALAH MECHERI

(Communicated by R. Curto)

Abstract. An operator T ∈ B(H) is called square- p -quasihyponormal if

T ∗(T ∗2T 2)pT � T ∗(T 2T ∗2)pT for p ∈ (0,1],

which is a further generalization of normal operator. In this paper, we give a sufficient condition
for an injective square- p -quasihyponormal operator to be self-adjoint, and we obtain that every
square- p -quasihyponormal operator has a scalar extension. As a consequence, we prove that
if T is a quasiaffine transform of square- p -quasihyponormal, then T satisfies Weyl’s theorem.
Finally some examples are presented.

1. Introduction

Let B(H) denote the C∗ -algebra of all bounded linear operators on an infinite
dimensional separable Hilbert space H . If T ∈ B(H) , we shall write N(T ) and R(T )
for the null space and the range space of T , and also, write σ(T ) , σe(T ) and ω(T )
for the spectrum, the essential spectrum and the Weyl spectrum of T , respectively.

An operator T ∈ B(H) is said to be p -hyponormal for p ∈ (0,1] if (T ∗T )p �
(TT ∗)p where T ∗ is the adjoint of T . If p = 1, T is called hyponormal and if
p = 1

2 , T is called semi-hyponormal. Semi-hyponormal operators were introduced
by Xia [25], and p -hyponormal operators were introduced by Aluthge [3]. An operator
T ∈ B(H) is called p -quasihyponormal for p ∈ (0,1] if T ∗(T ∗T )pT � T ∗(TT ∗)pT.
1-quasihyponormal is called quasihyponormal (see [5]). An operator T ∈ B(H) is
called paranormal if ||T 2x|| � ||Tx||2 for unit vector x. Clearly hyponormal opera-
tors are quasihyponormal operators, p -hyponormal operators are p -quasihyponormal
and p -quasihyponormal operators are paranormal. It is well-known that p -hyponormal
operators are q -hyponormal if 0 < q � p , however, it is not necessarily true that p -
quasihyponormal operators are q -quasihyponormal even if 0 < q < p .

An operator T ∈ B(H) is normal and 2-normal if T ∗T = TT ∗ and T ∗T 2 = T 2T ∗ ,
respectively. By Fuglede-Putnam theorem, it is easy to see that T is 2-normal if and
only if T 2 is normal (see [4]). In [17] an operator T ∈ B(H) is called k th root of
p -hyponormal for p ∈ (0,1] if Tk is p -hyponormal for some positive integer k . If
k = 2, T is said to be square- p -hyponormal, i.e., (T ∗2T 2)p � (T 2T ∗2)p , in particular
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for k = 2 and p = 1, T is said to be square hyponormal [8]. Now we are going to
consider an extension of the notion of square- p -hyponormal operator, similar in spirit
to the extension of the notion of p -hyponormality to p -quasihyponormality.

DEFINITION 1.1. An operator T ∈ B(H) is called square- p -quasihyponormal if

T ∗(T ∗2T 2)pT � T ∗(T 2T ∗2)pT for p ∈ (0,1].

It is clear that

normal⇒ 2-normal⇒ square hyponormal

⇒ square-p-hyponormal

⇒ square-p-quasihyponormal.

2-normal operator and square- p -hyponormal operator have been studied by many au-
thors and it is known that they have many interesting properties similar to those of
normal operator (see [7, 8, 9, 16, 17]).

In general, the conditions S−1TS = T ∗ and 0 /∈W (S) do not imply that T is nor-
mal, where W (S) = {〈Sx,x〉 : ‖x‖ = 1}. For example (see [24]), if T = SB , where
S is positive and invertible, B is self-adjoint, and S and B do not commute, then
S−1TS = T ∗ and 0 /∈ W (S) , but T is not normal. Therefore the following question
arises naturally.

QUESTION 1.2. Suppose that T is an operator for which there is an operator S
with 0 /∈ W (S) such that S−1TS = T ∗ . When does it follow that necessarily T is
normal?

In Section 2, we show that if T is an injective square- p -quasihyponormaloperator
and S is an arbitrary operator for which 0 /∈W (S) and ST = T ∗S , then T is a 2-normal
operator. A bounded linear operator T on H is called scalar of order m if it possesses
a spectral distribution of order m , i.e., if there is a continuous unital morphism of topo-
logical algebras Φ :Cm

0 (C)→B(H) such that Φ(z) = T , where z stands for the identity
function on C , and Cm

0 (C) stands for the space of compactly supported functions on
C , continuously differentiable of order m, 0 � m � ∞ . An operator is subscalar if
it is similar to the restriction of a scalar operator to an invariant subspace. In 1984,
Putinar [22] proved that every hyponormal operator has a scalar extension, which has
been extended from hyponormal operators to p -hyponormal operators [18], to analytic
roots of hyponormal operators [16], to analytic extensions of M -hyponormal operators
[19], and to k th roots of p -hyponormal operators [17]. In Section 3, we show that ev-
ery square- p -quasihyponormal operator is subscalar. As a consequence, we prove that
every square- p -quasihyponormal operator with rich spectrum has a nontrivial invariant
subspace. In Section 4, we also obtain that every F-square- p -quasihyponormaloperator
has a scalar extension. Finally, we give some examples of square- p -quasihyponormal
operator in Section 5.
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2. Operators similar to their adjoints

Before we state main theorems, we need several preliminary results.

LEMMA 2.1. (Hansen inequality [14]) If A,B ∈ B(H) satisfy A � 0 and ‖ B ‖�
1 , then

(B∗AB)δ � B∗Aδ B for all δ ∈ (0,1].

LEMMA 2.2. (Löwner-Heinz inequality [13]) A � B � 0 ensures Aα � Bα for any
α ∈ [0,1].

LEMMA 2.3. Suppose that T ∈ B(H) is a square- p-quasihyponormal operator
and R(T ) is not dense. Then

T =
(

A B
0 0

)
on H = R(T )⊕N(T ∗),

where A is a square- p-hyponormal operator and σ(T ) = σ(A)∪{0} .

Proof. The spectral inclusion relations are clear and it is sufficient to show that A
is square- p -hyponormal. Let P be the orthogonal projection onto R(T ) . Then(

A 0
0 0

)
= TP = PTP.

Since T is a square- p -quasihyponormal operator, we have

P((T ∗2T 2)p − (T 2T ∗2)p)P � 0.

Then

P(T ∗T ∗TT )pP � (PT ∗T ∗TTP)p (by lemma 2.1)

= (PT ∗PT ∗TPTP)p

=
(

(A∗2A2)p 0
0 0

)
,

and

P(TTT ∗T ∗)pP � P(TTPT ∗T ∗)pP (by lemma 2.2)

=
(

(A2A∗2)p 0
0 0

)
.

Hence (
(A∗2A2)p 0
0 0

)
� P(T ∗2T 2)pP � P(T 2T ∗2)pP �

(
(A2A∗2)p 0
0 0

)
,

i.e., A is a square- p -hyponormal operator. �
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LEMMA 2.4. ([24, Theorem 1]) If T ∈ B(H) is any operator such that S−1TS =
T ∗ , where 0 /∈W (S) , then σ(T ) ⊆ R.

In Lemma 2.4, the condition, 0 /∈W (S) , is essential. For example ([24, Example
1]), let W is the bilateral shift on l2 which is defined by Wen = en+1 , where {en}∞

n=−∞
is the canonical orthonormal basis for l2 , and let S be the unitary operator defined
by Sen = e−n . Then S−1WS = W ∗ , but the spectrum of W is not real. Actually, the
spectrum of W is the unit circle.

THEOREM 2.5. Let T be a square- p-hyponormal operator. If T is a paranormal
operator, S is an arbitrary operator for which 0 /∈W (S) and ST = T ∗S , then T is self-
adjoint.

Proof. Suppose that T is a square- p -hyponormal operator. Since σ(S) ⊆W (S) ,
S is invertible and hence ST = T ∗S becomes S−1T ∗S = T. Then σ(T )⊆R by Lemma
2.4. Hence m2(σ(T )) = 0 for the planar Lebesgue measure m2 . Now apply Put-
nam’s inequality for p -hyponormal operators to T 2 (depending upon which is p -
hyponormal) to get

||(T ∗2T 2)p − (T 2T ∗2)p|| � 1
π

m2(σ(T 2)) = 0.

It follows that T is 2-normal. Since a 2-normal paranormal operator is normal by
[23, Theorem 4.6], we have T is an normal operator, apply [24, Theorem], thus T is
self-adjoint. �

THEOREM 2.6. Let T be an injective square- p-quasihyponormal operator. If T
is a paranormal operator, S is an arbitrary operator for which 0 /∈ W (S) and ST =
T ∗S , then T is self-adjoint.

Proof. Since T is a square- p -quasihyponormal operator, we have the following
matrix representation by Lemma 2.3:

T =
(

A B
0 0

)
on H = R(T )⊕N(T ∗),

where A is a square- p -hyponormaloperator and σ(T )= σ(A)∪{0} . Let S =
(

S1 S2

S3 S4

)
.

Then from 0 /∈W (S) and ST = T ∗S , we have 0 /∈W (S1) and S1A = A∗S1 . Therefore
A is 2-normal by Theorem 2.5. Now let P be the orthogonal projection of H onto
R(T ) . Then we have (

A 0
0 0

)
= TP = PTP,

P(T ∗T ∗TT )pP � (PT ∗T ∗TTP)p (by lemma 2.1)

= (PT ∗PT ∗TPTP)p

=
(

(A∗2A2)p 0
0 0

)



ON SQUARE- p -QUASIHYPONORMAL OPERATORS 649

and

P(TTT ∗T ∗)pP � P(TTPT ∗T ∗)pP (by lemma 2.2)

=
(

(A2A∗2)p 0
0 0

)
.

Since T is a square- p -quasihyponormal operator,

(
(A∗2A2)p 0
0 0

)
� P(T ∗2T 2)pP � P(T 2T ∗2)pP �

(
(A2A∗2)p 0
0 0

)
,

and hence we may write

(T 2T ∗2)p =
(

(A∗2A2)p M
M∗ N

)
.

Let (T 2T ∗2)
p
2 =

(
X Y
Y ∗ Z

)
. Then

(
(A∗2A2)

p
2 0

0 0

)
= (P(T 2T ∗2)pP)

1
2

� P(T 2T ∗2)
p
2 P

=
(

X 0
0 0

)

� P(T 2PT ∗2)
p
2 P

=
(

(A∗2A2)
p
2 0

0 0

)
.

Hence

X = (A∗2A2)
p
2 .

On the other hand, a straightforward calculation shows

(T 2T ∗2)p =
(

X Y
Y ∗ Z

)2

=
(

X2 +YY ∗ XY +YZ
Y ∗X +ZY ∗ Y ∗Y +Z2

)
.

Hence

(A∗2A2)p = X2 +YY ∗ = X2.

This implies Y = 0 and

(T 2T ∗2)
p
2 =

(
(A∗2A2)

p
2 0

0 Z

)
.
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Then

T 2T ∗2 =
(

A2 AB
0 0

)(
A∗2 0
B∗A∗ 0

)

=
(

A2A∗2 +ABB∗A∗ 0
0 0

)

=
(

A∗2A2 0
0 0

)
.

Therefore, ABB∗A∗ = 0. Since T is an injective square- p -quasihyponormal operator,
A is an injective square- p -hyponormal operator, hence B = 0, T must be 2-normal.
Since T is a paranormal operator, it follows that T is an normal operator, apply [24,
Theorem], thus T is self-adjoint. �

COROLLARY 2.7. Let T be an injective square- p-quasihyponormal operator. If
S is an arbitrary operator for which 0 /∈W (S) and ST = T ∗S , then T is 2 -normal.

Proof. This is a consequence of Theorem 2.6. �

THEOREM 2.8. Let T be a square- p-quasihyponormal operator and M be its
invariant subspace. Then the restriction T |M of T to M is also a square- p-quasihypo-
normal operator.

Proof. Let E be the orthogonal projection onto M. Thus we can reprsent T as the
following 2×2 operator matrix with respect to the decomposition M⊕M⊥ ,

T =
(

A B
0 D

)
.

Put A = T |M . Then TE = ETE and A = (ETE)|M. Since T is a square- p -quasihypo-
normal operator, we have

ET ∗(T ∗2T 2)pTE � ET ∗(T 2T ∗2)pTE.

Since

ET ∗(T ∗2T 2)pTE = ET ∗E(T ∗2T 2)pETE

� ET ∗(ET ∗2T 2E)pTE (by lemma 2.1)

= ET ∗E(ET ∗2EET 2E)pETE

=
(

A∗(A∗2A2)pA 0
0 0

)
,



ON SQUARE- p -QUASIHYPONORMAL OPERATORS 651

and

ET ∗(T 2T ∗2)pTE = ET ∗E(T 2T ∗2)pETE

� ET ∗E(T 2ET ∗2)pETE (by lemma 2.2)

= ET ∗E(ET 2EET ∗2E)pETE

=
(

A∗(A2A∗2)pA 0
0 0

)
,

we have (
A∗(A∗2A2)pA 0

0 0

)
�
(

A∗(A2A∗2)pA 0
0 0

)
.

This implies that A is a square- p -quasihyponormal operator. �

3. Subscalarity

For a Banach space X , let ξ (U,X ) (resp., O(U,X )) denote the Fréchet space
of all infinite differentiable X -value functions on U (resp., of all analytic X -value
functions on U ). An operator T ∈ B(X ) is said to have property (β )ε at λ ∈ C if
there exists a neighbourhood D of λ such that for every open subset U of D and X -
value functions sequence { fn} in ξ (U,X ) , (T −zI) fn(z)→ 0 in ξ (U,X )⇒ fn(z)→
0 in ξ (U,X ), and T ∈ B(X ) is said to have property (β ) at λ ∈ C if there exists an
r > 0 such that for every subset U of the open discD(λ ;r) of radius r centered at λ and
sequence { fn} of X -value functions in O(U,X ) , (T − zI) fn(z) → 0 in O(U,X )⇒
fn(z) → 0 in O(U,X ). An operator T ∈ B(H) is said to have property (β )ε (resp.,
(β )) if T has property (β )ε (resp., (β )) at every point λ ∈ C . In this section we
show that every square- p -quasihyponormal operator has a scalar extension, we need
the following lemma.

LEMMA 3.1. ([18, Lemma 1]) For T ∈ B(X ) , the following statements are
equivalent:

(i) T is subscalar;
(ii) T has property (β )ε .

THEOREM 3.2. Suppose that T is a square- p-quasihyponormal operator. Then
T is subscalar.

Proof. Assume that R(T ) is dense. Then T is a square- p -hyponormal operator,
it is subscalar of order 8 by [17, Theorem 3.6]. So we may assume that T does not
have dense range. Then by Lemma 2.3 the operator T can be decomposed as follows:

T =
(

T1 T2

0 0

)
on H = R(T )⊕N(T ∗), where A is a square- p -hyponormaloperator. Set

σ(β )ε (S) = {μ ∈ σ(S) : S doesn’t satisfy property (β )ε at μ} . Recall from [6, Theorem
2.1] that given operators S and R , λ ∈ σ(β )ε (RS) ⇔ λ ∈ σ(β )ε (SR) . Considering T =



652 F. ZUO AND S. MECHERI

(
T1 T2

0 0

)
=
(

I1 0
0 0

)(
I1 T2

0 I2

)(
T1 0
0 I2

)
, let B =

(
I1 0
0 0

)
, E =

(
I1 T2

0 I2

)
, A =

(
T1 0
0 I2

)
.

Then T = BEA . Suppose λ ∈ σ(β )ε (T ) ⇔ λ ∈ σ(β )ε (BEA) = σ(β )ε (EAB) . Hence,
since E is invertible, λ ∈ σ(β )ε (AB) = σ(β )ε (T1 ⊕ 0) ⇒ λ ∈ σ(β )ε (T1) , contradiction.
Thus T has property (β )ε , i.e., T is subscalar. �

COROLLARY 3.3. Suppose that T is a square- p-quasihyponormaloperator. Then
T has Bishop’s property (β ) .

Proof. Since the Bishop’s property (β ) is transmitted from an operator to its re-
strictions to closed invariant subspace, we are reduced by Theorem 3.2 to the case of
a scalar operator. Since every scalar operator has Bishop’s property (β ) [22], T has
Bishop’s property (β ) . �

COROLLARY 3.4. Let T be a square- p-quasihyponormal operator. If σ(T ) has
nonempty interior in C , then T has a nontrivial invariant subspace.

Proof. It suffices to apply Theorem 3.2 and [11]. �

COROLLARY 3.5. Suppose that T is a quasinilpotent square- p-quasihyponor-
mal operator. Then T is nilpotent.

Proof. Since a quasinilpotent subscalar operator is nilpotent. It follows by Theo-
rem 3.2 that T is nilpotent. �

DEFINITION 3.6. An operator T ∈ B(H) is said to belong to the class H(p) if
there exists a natural number p := p(λ ) such that

H0(λ I−T ) = N(λ I−T )p for all λ ∈ C,

where H0(λ I−T ) := {x ∈ H : lim
n→∞

||(λ I−T )nx|| 1
n = 0}.

THEOREM 3.7. [20] Every subscalar operator T ∈ B(H) is H(p) .

Classical examples of subscalar operators are hyponormal operators. In this paper
we will show that other important classes of operators are H(p) .

DEFINITION 3.8. An operator T ∈ B(H) is said to be polaroid if every λ ∈
isoσ(T ) is a pole of the resolvent of T , where isoσ(T ) denotes the isolated points
of the spectrum.

The condition of being polaroid may be characterized by means of the quasi-
nilpotent part:
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THEOREM 3.9. [2] An operator T ∈ B(H) is polaroid if and only if there exists
p := p(λ I−T ) ∈ N such that

H0(λ I−T ) = N(λ I−T )p for all λ ∈ isoσ(T ).

Note that every H(p) operator is polaroid. By using Theorem 3.2 and Theorem
3.7, we deduce the following corollaries.

COROLLARY 3.10. Every square- p-quasihyponormal operator is H(p) .

COROLLARY 3.11. Every square- p-quasihyponormal operator is polaroid.

Recall that an operator X ∈B(H1,H2) is called a quasiaffinity if it has trivial kernel
and dense range. An operator S ∈ B(H1) is said to be a quasiaffine transform of T ∈
B(H2) if there is a quasiaffinity X ∈ B(H1,H2) such that XS = TX . Furthermore, S
and T are quasisimilar if there are quasiaffinities X and Y such that XS = TX and
SY = YT .

COROLLARY 3.12. Let T be a square- p-quasihyponormal operator. If S is a
quasiaffine transform of T , then S satisfies Weyl’s theorem (i.e., σ(T ) − ω(T ) =
π00(T ) , where π00(T ) = {λ ∈ isoσ(T ) : 0 < N(T −λ I) < ∞}.

Proof. If T is a square- p -quasihyponormal operator, then H0(λ I−T ) = N(λ I−
T )p for some integer p := p(λ ) � 0 and all λ ∈ C . Suppose US = TU with U
injective and x ∈ H0(λ I−S) . Then

||(λ I−T )nUx|| 1
n = ||U(λ I−S)nx|| 1

n � ||U || 1
n ||(λ I−S)nx|| 1

n ,

for which we obtain that Ux ∈ H0(λ I−T ) = N(λ I−T)p. Hence

U(λ I−S)px = (λ I−T )pUx = 0,

and since U injective this implies that (λ I − S)px = 0. Consequently H0(λ I − S) =
N(λ I − S)p for some integer p := p(λ ) � 0 and all λ ∈ C . By [1, Theorem 3.10]
Weyl’s theorem holds for S . �

COROLLARY 3.13. Let T and S be square- p-quasihyponormal operators. If T
and S are quasisimilar, then σ(T ) = σ(S) and σe(T ) = σe(S) .

Proof. It follows by Corollary 3.3 and [21]. �
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4. F -square- p -quasihyponormal operators

In this section we will define F -square- p -quasihyponormaloperators, and we will
present some properties of this class of operators.

DEFINITION 4.1. For 0 < p � 1 an operator T ∈ B(H) is said to be F -square-
p -quasihyponormal if F(T )∗(T ∗(T ∗2T 2)pT −T ∗(T 2T ∗2)pT )F(T ) � 0 for some non-
constant analytic function F on some neighborhood of σ(T ) , and q -square- p -quasi-
hyponormal operators if there exist a nonconstant polynomial q such that

q(T )∗(T ∗(T ∗2T 2)pT −T ∗(T 2T ∗2)pT )q(T ) � 0.

In particular, if q(z) = zk for some positive integer k , then T is said to be k -square- p -
quasihyponormal.

If T ∈ B(H) is analytic, then F(T ) = 0 for some nonconstant analytic function F
on a neighborhood U of σ(T ) . Since F cannot have infinitely many zeros in U , we
write F(z) = G(z)q(z) where the function G is analytic and does not vanish on U and
q is a nonconstant polynomial with zeros in U . By Riesz-Dunford calculus, G(T ) is
invertible and the invertibility of G(T ) induces that q(T ) = 0, which means that T is
algebraic (See [10]).

THEOREM 4.2. If T is an F -square- p-quasihyponormaloperator, then T is sub-
scalar. In particular, every k -square- p-quasihyponormal operator is subscalar.

Proof. Suppose that T ∈B(H) is F -square- p -quasihyponormal for some analytic
function F on a neighborhood of σ(T ) . If the range of F(T ) is norm dense in H , then
T is square- p -quasihyponormal, hence T is subscalar. Now it suffices to assume that
the range of F(T ) is not norm dense in H . Since F(T ) commutes with T , R(F(T ))
is a T -invariant subspace. Thus T can expressed as

T =
(

T1 T2

0 T3

)
,

on R(F(T ))⊕N(F(T )∗) ; where T1 = T |R(F(T )) and T3 = (I−P)T (I−P)|N(F(T )∗) , and

P denotes the projection of H onto R(F(T )) . Note that F(z) = G(z)q(z) where G is
a nonvanishing analytic function on a neighborhood of σ(T ) and q is a nonconstant
polynomial. Then G(T ) is invertible and thus we obtain that N(F(T )∗) = N(q(T )∗) .
Since q(T3) = (I−P)q(T)(I−P)|N(F(T )∗) , it follows for any x ∈ N(F(T )∗) that

〈q(T3)x;x〉 = 〈q(T )x;x〉 = 〈x;q(T )∗x〉 = 0.

Hence q(T3) = 0. Thus T3 is algebraic. Since P(T ∗(T ∗2T 2)pT −T ∗(T 2T ∗2)pT )P � 0.
Hence T ∗

1 (T ∗2
1 T 2

1 )pT1−T ∗
1 (T 2

1 T ∗2
1 )pT1 � 0. This shows that T1 is square- p -quasihypo-

normal. Therefore if T3 is algebraic, then T is subscalar by Theorem 3.2. �
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COROLLARY 4.3. Every F -square- p-quasihyponormaloperator has the Bishop’s
property (β ) .

COROLLARY 4.4. Every k -square- p-quasihyponormaloperator has the Bishop’s
property (β ) .

5. Examples

Consider unilateral weighted shift operator as an infinite dimensional Hilbert space
operator. Recall that given a bounded sequence of positive numbers α : α1,α2,α3, . . .
(called weights), the unilateral weighted shift Wα associated with α is the operator
on H = l2 defined by Wαen := αnen+1 for all n � 1, where {en}∞

n=1 is the canonical
orthonormal basis for l2 . We easily see that Wα can be never normal, and so in general
it is used to giving some easy examples of non-normal operators. It is well known
that Wα is p -quasihyponormal if and only if α is monotonically increasing (see [26,
Example 2.3]).

LEMMA 5.1. Wα belongs to square- p-quasihyponormal if and only if

Wα =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 · · ·
α1 0 0 0 0 · · ·
0 α2 0 0 0 · · ·
0 0 α3 0 0 · · ·
0 0 0 α4 0 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where
αnαn+1 � αn+2αn+3 (n = 1,2,3, . . .).

Proof. By simple calculations,

W ∗2
α W 2

α = (α2
1 α2

2 )⊕ (α2
2 α2

3 )⊕ (α2
3 α2

4 )+ . . .

and
W 2

αW ∗2
α = 0⊕0⊕ (α2

1α2
2 )⊕ (α2

2 α2
3 )⊕ (α2

3 α2
4 )+ . . . .

Hence

W ∗
α (W ∗2

α W 2
α )pWα = α2

1 (α2p
2 α2p

3 )⊕α2
2 (α2p

3 α2p
4 )⊕α2

3(α2p
4 α2p

5 )+ . . .

and

W ∗
α (W 2

αW ∗2
α )pWα = 0⊕α2

2 (α2p
1 α2p

2 )⊕α2
3 (α2p

2 α2p
3 )⊕α2

4 (α2p
3 α2p

4 )+ . . . .

Thus Wα belongs to square- p -quasihyponormal if and only if

αnαn+1 � αn+2αn+3 (n = 1,2,3, . . .). �

The following example provides an operator which is square- p -quasihyponormal
but not p -quasihyponormal.
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EXAMPLE 5.2. A square- p -quasihyponormal operator which is not p -quasihy-
ponormal.

Proof. Let Wα be a unilateral weighted shift operator with weights αn = 2 (n �= 2)
and α2 = 1. Simple calculations show that Wα is square- p -quasihyponormal, but Wα
is non- p -quasihyponormal. �

Finally we give an example to show that the class of square- p -hyponormal op-
erators is properly contained in the class of square- p -quasihyponormal operators. We
need the following lemma.

LEMMA 5.3. Let K =
⊕+∞

n=1 Hn , where Hn
∼= H . For given positive operators A

and B on H , define the operator T = TA,B on K as follows:

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 · · ·
A 0 0 0 0 0 · · ·
0 A 0 0 0 0 · · ·
0 0 B 0 0 0 · · ·
0 0 0 B 0 0 · · ·
0 0 0 0 B 0 · · ·
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then the following assertions hold:
(1) T belongs to square- p-hyponormal if and only if B4p � A4p and B4p �

(BA2B)p.
(2) T belongs to square- p-quasihyponormal if and only if A(B4p−A4p)A � 0 and

B(B4p− (BA2B)p)B � 0.

Proof. Since

T ∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 A 0 0 0 0 · · ·
0 0 A 0 0 0 · · ·
0 0 0 B 0 0 · · ·
0 0 0 0 B 0 · · ·
0 0 0 0 0 B · · ·
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

by simple calculations,

(T ∗2T 2)p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A4p 0 0 0 0 · · ·
0 (AB2A)p 0 0 0 · · ·
0 0 B4p 0 0 · · ·
0 0 0 B4p 0 · · ·
0 0 0 0 B4p · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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and

(T 2T ∗2)p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 · · ·
0 0 0 0 0 0 · · ·
0 0 A4p 0 0 0 · · ·
0 0 0 (BA2B)p 0 0 · · ·
0 0 0 0 B4p 0 · · ·
0 0 0 0 0 B4p · · ·
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Hence

T ∗(T ∗2T 2)pT =

⎛
⎜⎜⎜⎜⎜⎝

A(AB2A)pA 0 0 0 · · ·
0 AB4pA 0 0 · · ·
0 0 BB4pB 0 · · ·
0 0 0 BB4pB · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

and

T ∗(T 2T ∗2)pT =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 · · ·
0 AA4pA 0 0 · · ·
0 0 B(BA2B)pB 0 · · ·
0 0 0 BB4pB · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠ .

Thus T is square- p -hyponormal ((T ∗2T 2)p � (T 2T ∗2)p ) if and only if{
B4p � A4p,

B4p � (BA2B)p.

Similarly, T is square- p -quasihyponormal (T ∗(T ∗2T 2)pT � T ∗(T 2T ∗2)pT ) if and
only if {

AB4pA � AA4pA,

BB4pB � B(BA2B)pB.
�

EXAMPLE 5.4. A square-1-quasihyponormal operator which is not square-1-hy-
ponormal.

Proof. Let H be a two dimensional Hilbert space and p = 1. Take A and B as

A =

(
1
2 0

0 0

)
, B =

(
1
2

1
2

1
2

1
2

)
.

Then

B4−A4 =

(
7
16

1
2

1
2

1
2

)
� 0.
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Hence TA,B is a non-square-1-hyponormal operator.
On the other hand,

A(B4−A4)A =

(
1
2 0

0 0

)(
7
16

1
2

1
2

1
2

)(
1
2 0

0 0

)
=

(
7
64 0

0 0

)
� 0

and

B(B4−BA2B)B =

(
1
2

1
2

1
2

1
2

)(
7
16

7
16

7
16

7
16

)(
1
2

1
2

1
2

1
2

)
=

(
7
16

7
16

7
16

7
16

)
� 0.

Thus TA,B is a square-1-quasihyponormal operator. �
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[2] P. AIENA, M. CHŌ AND M. GONZÁLEZ, Polaroid type operators under quasi-affinities, J. Math.
Anal. Appl. 371 (2) (2010), 485–495.

[3] A. ALUTHGE, On p-hyponormal operators for 0 < p < 1 , Integral Equ. Oper. Theory 13 (1990),
307–315.

[4] S. A. ALUZURAIQI, A. B. PATEL, On n-normal operators, General Math. Notes 1 (2010), 61–73.
[5] S. C. ARORA, P. ARORA, On p-quasihyponormal operators for 0 < p < 1 , Yokohama Math. J.

41(1993), 25–29.
[6] C. BENHIDA, E. H. ZEROUALI, Local spectral theory of linear operators RS and SR , Integral Equ.

Oper. Theory 54 (2006), 1–8.
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