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ON OPERATORS SATISFYING T*(T*2T?)PT > T*(T*T**)T

FEI ZUO AND SALAH MECHERI

(Communicated by R. Curto)

Abstract. An operator T € B(H) is called square- p -quasihyponormal if
T(T2THPT > T*(T*T*2)PT for pe(0,1]

which is a further generalization of normal operator. In this paper, we give a sufficient condition
for an injective square- p -quasihyponormal operator to be self-adjoint, and we obtain that every
square- p-quasihyponormal operator has a scalar extension. As a consequence, we prove that
if T is a quasiaffine transform of square- p-quasihyponormal, then T satisfies Weyl’s theorem.
Finally some examples are presented.

1. Introduction

Let B(H) denote the C*-algebra of all bounded linear operators on an infinite
dimensional separable Hilbert space H. If T € B(H), we shall write N(7) and R(T)
for the null space and the range space of T, and also, write 6(T), 0.(T) and o(T)
for the spectrum, the essential spectrum and the Weyl spectrum of T', respectively.

An operator T € B(H) is said to be p-hyponormal for p € (0,1] if (T*T)? >
(TT*)? where T* is the adjoint of T. If p =1, T is called hyponormal and if
p= %, T 1is called semi-hyponormal. Semi-hyponormal operators were introduced
by Xia [25], and p-hyponormal operators were introduced by Aluthge [3]. An operator
T € B(H) is called p-quasihyponormal for p € (0,1] if T7*(T*T)?T > T*(TT*)"T.
1 -quasihyponormal is called quasihyponormal (see [5]). An operator T € B(H) is
called paranormal if ||T2x|| > ||Tx||> for unit vector x. Clearly hyponormal opera-
tors are quasihyponormal operators, p-hyponormal operators are p-quasihyponormal
and p-quasihyponormal operators are paranormal. It is well-known that p-hyponormal
operators are g-hyponormal if 0 < g < p, however, it is not necessarily true that p-
quasihyponormal operators are g-quasihyponormal even if 0 < g < p.

Anoperator T € B(H) is normal and 2-normal if 7*7 = TT* and T*T? = T*T*,
respectively. By Fuglede-Putnam theorem, it is easy to see that 7 is 2-normal if and
only if T2 is normal (see [4]). In [17] an operator T € B(H) is called kth root of
p-hyponormal for p € (0,1] if T* is p-hyponormal for some positive integer k. If
k=2, T is said to be square- p-hyponormal, i.e., (T**T?)? > (T*>T*?), in particular
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for k=2 and p=1, T is said to be square hyponormal [8]. Now we are going to
consider an extension of the notion of square- p-hyponormal operator, similar in spirit
to the extension of the notion of p-hyponormality to p-quasihyponormality.

DEFINITION 1.1. An operator T € B(H) is called square- p-quasihyponormal if
T*(T**T*PT > T*(T*T**)PT for p € (0,1].
It is clear that

normal = 2-normal = square hyponormal
= square-p-hyponormal

= square-p-quasihyponormal.

2 -normal operator and square- p-hyponormal operator have been studied by many au-
thors and it is known that they have many interesting properties similar to those of
normal operator (see [7, 8, 9, 16, 17]).

In general, the conditions S~'T'S = 7* and 0 ¢ W do not imply that T is nor-
mal, where W(S) = {(Sx,x) : ||x|| = 1}. For example (see [24]), if T = SB, where
S is positive and invertible, B is self-adjoint, and S and B do not commute, then
S7ITS =T* and 0 ¢ W(S), but T is not normal. Therefore the following question
arises naturally.

QUESTION 1.2. Suppose that T is an operator for which there is an operator S

with 0 ¢ W(S) such that S~!TS = T*. When does it follow that necessarily T is
normal?

In Section 2, we show thatif T is an injective square- p -quasihyponormal operator
and S is an arbitrary operator for which 0 ¢ W(S) and ST = T*S, then T is a 2-normal
operator. A bounded linear operator 7 on H is called scalar of order m if it possesses
a spectral distribution of order m, i.e., if there is a continuous unital morphism of topo-
logical algebras ® : C'(C) — B(H) such that ®(z) =T, where z stands for the identity
function on C, and C{j'(C) stands for the space of compactly supported functions on
C, continuously differentiable of order m, 0 < m < eo. An operator is subscalar if
it is similar to the restriction of a scalar operator to an invariant subspace. In 1984,
Putinar [22] proved that every hyponormal operator has a scalar extension, which has
been extended from hyponormal operators to p-hyponormal operators [ 18], to analytic
roots of hyponormal operators [16], to analytic extensions of M -hyponormal operators
[19], and to kth roots of p-hyponormal operators [17]. In Section 3, we show that ev-
ery square- p -quasihyponormal operator is subscalar. As a consequence, we prove that
every square- p-quasihyponormal operator with rich spectrum has a nontrivial invariant
subspace. In Section 4, we also obtain that every F-square- p-quasihyponormal operator
has a scalar extension. Finally, we give some examples of square- p-quasihyponormal
operator in Section 5.
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2. Operators similar to their adjoints
Before we state main theorems, we need several preliminary results.
LEMMA 2.1. (Hansen inequality [14]) If A,B € B(H) satisfy A >0 and || B ||<
1, then
(B*AB)® > B*A°B  forall &€ (0,1].

LEMMA 2.2. (Lowner-Heinz inequality [13]) A > B > 0 ensures A% > B® for any
€[0,1].

LEMMA 2.3. Suppose that T € B(H) is a square- p-quasihyponormal operator
and R(T) is not dense. Then

T— (g g) on H=RT)&N(T"),

where A is a square- p -hyponormal operator and o(T) = c(A) U{0}.

Proof. The spectral inclusion relations are clear and it is sufficient to show that A
is square- p-hyponormal. Let P be the orthogonal projection onto R(T'). Then

(A 0) =TP=PTP.

00
Since T is a square- p-quasihyponormal operator, we have

P((T2T*)P —(T*T*2)P)P > 0.

Then
P(T*T*TT)’P < (PT*T*TTP)” (by lemma 2.1)
= (PT*PT*TPTP)”
B (A*2A2)p 0
o 0 0/’
and
P(TTT*T*)’P > P(TTPT*T*)’P (bylemma 2.2)
( (A2A*2)P 0)
Hence

((A*2A2)p 0

2 A%2\p
0 O) ZP(T*ZTZ)pPZP(TZT*2)pP> ((A A ) O>’

0 0

i.e., A is a square- p-hyponormal operator. [
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LEMMA 2.4. ([24, Theorem 1]) If T € B(H) is any operator such that S~'TS =

T*, where 0 ¢ W(S), then o(T) CR.

In Lemma 2.4, the condition, 0 ¢ W(S), is essential. For example ([24, Example
11), let W is the bilateral shift on /> which is defined by We,, = e,,,1, where {e,}
is the canonical orthonormal basis for /%, and let S be the unitary operator defined
by Se, = e_,. Then S1wS = W*, but the spectrum of W is not real. Actually, the
spectrum of W is the unit circle.

THEOREM 2.5. Let T be a square- p-hyponormal operator. If T is a paranormal
operator, S is an arbitrary operator for which 0 ¢ W(S) and ST =T*S, then T is self-
adjoint.

Proof. Suppose that T is a square- p-hyponormal operator. Since ¢(S) C W(S),
S is invertible and hence ST = T*S becomes S~!T*S = T. Then ¢(T) C R by Lemma
2.4. Hence my(o(T)) = 0 for the planar Lebesgue measure my. Now apply Put-
nam’s inequality for p-hyponormal operators to T2 (depending upon which is p-
hyponormal) to get

T2 — (TP < —ma(a(1%)) =0.

It follows that 7" is 2-normal. Since a 2-normal paranormal operator is normal by
[23, Theorem 4.6], we have T is an normal operator, apply [24, Theorem], thus T is
self-adjoint. [

THEOREM 2.6. Let T be an injective square- p -quasihyponormal operator. If T
is a paranormal operator, S is an arbitrary operator for which 0 ¢ W(S) and ST =
T*S, then T is self-adjoint.

Proof. Since T is a square- p-quasihyponormal operator, we have the following
matrix representation by Lemma 2.3:

T=</3g) on H=R(T)®N(T*),

where A is a square- p-hyponormal operator and (7)) = 6(A)U{0}. Let S= (gl §2> .
354

Then from 0 ¢ W(S) and ST = T*S, we have 0 ¢ W(S1) and S;A = A*S;. Therefore
A is 2-normal by Theorem 2.5. Now let P be the orthogonal projection of H onto

R(T). Then we have
(A O) —TP=PTP,

00

P(T*T*TT)PP < (PT*T*TTP)” (by lemma2.1)
— (PT*PT*TPTP)?

- ((A”gxz)!’ 8)
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and
P(TTT*T*)’P > P(TTPT*T*)’P (bylemma 2.2)
B (A2A*2)p 0
o 0 0)"

Since T is a square- p-quasihyponormal operator,

*2 A2\p 2A%2\p
((()A A) 8) >P(T*2T2)”P>P(T2T*2)PP> ((()AA ) 8>’

and hence we may write

Let (T2T*2)% = (X Y) . Then

Hence

On the other hand, a straightforward calculation shows

2oy = (XY P (XYYt Xy+vZ
Y*Z VX +ZY* Y*Y+27%2)"

Hence
(APAYP = X2+ YY" = X7

This implies ¥ =0 and
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Then

A2 AB\ [ A2 0

2x2

T _<o 0><B*A*O)
_ (A*A*? +ABB*A* 0
- 0 0

_ [AT2A%0
“\L 0 o)

Therefore, ABB*A* = 0. Since T is an injective square- p-quasihyponormal operator,
A is an injective square- p-hyponormal operator, hence B = 0, T must be 2-normal.
Since T is a paranormal operator, it follows that 7 is an normal operator, apply [24,
Theorem], thus T is self-adjoint. [

COROLLARY 2.7. Let T be an injective square- p -quasihyponormal operator. If
S is an arbitrary operator for which 0 ¢ W(S) and ST =T*S, then T is 2-normal.

Proof. This is a consequence of Theorem 2.6. [J

THEOREM 2.8. Let T be a square- p-quasihyponormal operator and M be its
invariant subspace. Then the restriction T|y of T to M is also a square- p -quasihypo-
normal operator.

Proof. Let E be the orthogonal projection onto M. Thus we can reprsent 7' as the
following 2 x 2 operator matrix with respect to the decomposition M & M,

AB
r-(4).
Put A=T|y. Then TE = ETE and A = (ETE)|y. Since T is a square- p-quasihypo-
normal operator, we have

ET*(T**T?)PTE > ET*(T*T**)"TE.
Since
ET*(T**T?)PTE = ET*E(T**T*)PETE
< ET*(ET**T?E)PTE (by lemma 2.1)

= ET*E(ETEET’E)’ETE

_ [(AT(AA%)PA O
- 0 0)’
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and
ET*(T*T*?)PTE = ET*E(T*T**)PETE
> ET*E(T*ET**)PETE  (by lemma 2.2)
= ET*E(ET*EETE)’ETE
_[(AF(A%A)PA 0
- 0 0)’
we have

*(A*2A2)pA 0 - *(A2A*2)pA 0
0 0)~ 0 0/

This implies that A is a square- p-quasihyponormal operator. [J

3. Subscalarity

For a Banach space 27, let £(U, 2Z") (resp., O(U, %)) denote the Fréchet space
of all infinite differentiable 2 -value functions on U (resp., of all analytic 2" -value
functions on U). An operator T € B(Z") is said to have property (). at A € C if
there exists a neighbourhood D of A such that for every open subset U of D and 2" -
value functions sequence {f,} in E(U, Z"), (T —zl)fu(z) = 0in (U, 27) = fu(2) —
0in&(U,Z), and T € B(Z") is said to have property () at A € C if there exists an
r > 0 such that for every subset U of the open disc D(A;r) of radius r centered at A and
sequence {f,} of 2 -value functionsin O(U, 2"), (T —zl)fu(z) = 0in O(U, Z") =
fa(z) = 0in O(U, Z"). An operator T € B(H) is said to have property ()¢ (resp.,
(B)) if T has property (B)s (resp., (B)) at every point A € C. In this section we
show that every square- p-quasihyponormal operator has a scalar extension, we need
the following lemma.

LEMMA 3.1. ([18, Lemma 1]) For T € B(Z'), the following statements are
equivalent:
(i) T is subscalar;

(ii) T has property (fB)e.

THEOREM 3.2. Suppose that T is a square- p-quasihyponormal operator. Then
T is subscalar.

Proof. Assume that R(T') is dense. Then T is a square- p-hyponormal operator,
it is subscalar of order 8 by [17, Theorem 3.6]. So we may assume that 7 does not
have dense range. Then by Lemma 2.3 the operator T can be decomposed as follows:

00
0(p) (S) ={u € 6(S) : S doesn’t satisty property () at pt}. Recall from [6, Theorem
2.1] that given operators S and R, 4 € 6(),(RS) < A € 0(3),(SR). Considering T =

T= ( e ) onH=R(T)®N(T"), where A is a square- p-hyponormal operator. Set
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TG\ _ (LO\ (LT (T 0 _(LO0\ . (LT , (T, 0
(0 0) - (0 0) (0 12> (0 12>’letB_ (0 0)’ E= (0 12>’ A= <o 12>'
Then T = BEA. Suppose A € 0(3),(T) < A € o(p),(BEA) = 0(p),(EAB). Hence,
since E is invertible, A € o), (AB) = o(p),(T1 ©0) = A € o), (T1), contradiction.

Thus T has property ()¢, i.e., T is subscalar. [J

COROLLARY 3.3. Supposethat T is a square- p -quasihyponormal operator. Then
T has Bishop’s property (3).

Proof. Since the Bishop’s property (f3) is transmitted from an operator to its re-
strictions to closed invariant subspace, we are reduced by Theorem 3.2 to the case of
a scalar operator. Since every scalar operator has Bishop’s property () [22], T has
Bishop’s property (). O

COROLLARY 3.4. Let T be a square- p-quasihyponormal operator. If 6(T) has
nonempty interior in C, then T has a nontrivial invariant subspace.

Proof. Tt suffices to apply Theorem 3.2 and [11]. O

COROLLARY 3.5. Suppose that T is a quasinilpotent square- p -quasihyponor-
mal operator. Then T is nilpotent.

Proof. Since a quasinilpotent subscalar operator is nilpotent. It follows by Theo-
rem 3.2 that T is nilpotent. [J

DEFINITION 3.6. An operator 7 € B(H) is said to belong to the class H(p) if
there exists a natural number p := p(A) such that

Ho(AI—T)=N(AI—T)? forall A € C,

where Ho(AI —T) := {x € H : lim [|(AI — T)"x||» = 0}.

THEOREM 3.7. [20] Every subscalar operator T € B(H) is H(p).

Classical examples of subscalar operators are hyponormal operators. In this paper
we will show that other important classes of operators are H(p).

DEFINITION 3.8. An operator T € B(H) is said to be polaroid if every A €
isoo(T) is a pole of the resolvent of T, where isoo(T) denotes the isolated points
of the spectrum.

The condition of being polaroid may be characterized by means of the quasi-
nilpotent part:
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THEOREM 3.9. [2] An operator T € B(H) is polaroid if and only if there exists
p:=p(A—T) € N such that

Ho(AI—T) =NAI—T)? forall A € isoo(T).

Note that every H(p) operator is polaroid. By using Theorem 3.2 and Theorem
3.7, we deduce the following corollaries.

COROLLARY 3.10. Every square- p-quasihyponormal operator is H(p).

COROLLARY 3.11. Every square- p-quasihyponormal operator is polaroid.

Recall that an operator X € B(H|,H,) is called a quasiaffinity if it has trivial kernel
and dense range. An operator S € B(H)) is said to be a quasiaffine transform of 7' €
B(H,) if there is a quasiaffinity X € B(H;,H,) such that XS = TX. Furthermore, S
and T are quasisimilar if there are quasiaffinities X and Y such that XS = TX and
SY=YT.

COROLLARY 3.12. Let T be a square- p-quasihyponormal operator. If S is a
quasiaffine transform of T, then S satisfies Weyl’s theorem (i.e., o(T)— o(T) =
7'E()()(T), where ﬂoo(T) = {2, S iSOG(T) :0< N(T — AI) < 00}.

Proof. If T is a square- p-quasihyponormal operator, then Hy(AI —T) = N(AI —
T)? for some integer p := p(A) >0 and all A € C. Suppose US = TU with U
injective and x € Hy(AI — S). Then

= TyUx||n = |0 (A1 = )"l [» < [|U]|7 | (A1 = )]
for which we obtain that Ux € Hy(AI —T) = N(AI —T)?. Hence
UAI—S)Px=(A-T)’Ux=0,
and since U injective this implies that (A1 — S)?x = 0. Consequently Hy(AI —S) =

N(AI—S)P for some integer p := p(A) > 0 and all A € C. By [l, Theorem 3.10]
Weyl’s theorem holds for S§. [J

COROLLARY 3.13. Let T and S be square- p-quasihyponormal operators. If T
and S are quasisimilar, then o(T) = o(S) and c,(T) = 0,(S).

Proof. Tt follows by Corollary 3.3 and [21]. [
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4. F -square- p-quasihyponormal operators

In this section we will define F -square- p-quasihyponormal operators, and we will
present some properties of this class of operators.

DEFINITION 4.1. For 0 < p < 1 an operator T € B(H) is said to be F -square-
p-quasihyponormal if F(T)*(T*(T**T?)PT — T*(T*T*?)PT)F(T) > 0 for some non-
constant analytic function F on some neighborhood of ¢(7T'), and g-square- p-quasi-
hyponormal operators if there exist a nonconstant polynomial g such that

g(T) (T (TT)PT — T*(T°T2)T)g(T) > 0.

In particular, if ¢(z) = z* for some positive integer k, then T is said to be k-square-p-
quasihyponormal.

If T € B(H) is analytic, then F(T) = 0 for some nonconstant analytic function F
on a neighborhood U of ¢(T). Since F cannot have infinitely many zeros in U, we
write F(z) = G(z)q(z) where the function G is analytic and does not vanish on U and
q is a nonconstant polynomial with zeros in U. By Riesz-Dunford calculus, G(T) is
invertible and the invertibility of G(T') induces that ¢(T) = 0, which means that T is
algebraic (See [10]).

THEOREM 4.2. If T is an F -square- p -quasihyponormal operator, then T is sub-
scalar. In particular, every k-square- p -quasihyponormal operator is subscalar.

Proof. Suppose that T € B(H) is F -square- p-quasihyponormal for some analytic
function F on a neighborhood of ¢(T). If the range of F(T') is norm dense in H, then
T is square- p-quasihyponormal, hence T is subscalar. Now it suffices to assume that
the range of F(T) is not norm dense in H. Since F(T) commutes with 7', R(F(T))
is a T -invariant subspace. Thus 7 can expressed as

(T D
=07 )
on R(F(T))®N(F(T)*); where T) = T\W and T3 = (I — P)T (I — P)|n(p(r))» and

P denotes the projection of H onto R(F(T)). Note that F(z) = G(z)q(z) where G is
a nonvanishing analytic function on a neighborhood of ¢(7) and ¢ is a nonconstant
polynomial. Then G(T) is invertible and thus we obtain that N(F(T)*) = N(¢(T)*).
Since ¢(T3) = (I — P)q(T)(I — P)|n(r(1))» it follows for any x € N(F(T)*) that

(g(T3)x;x) = (q(T)x;x) = (x,9(T)"x) = 0.

Hence ¢(T3) = 0. Thus Tj is algebraic. Since P(T*(T**T?)PT —T*(T*T**)’T)P > 0.
Hence T} (T;T2)P Ty — T (TET;%)P T, > 0. This shows that Tj is square- p-quasihypo-
normal. Therefore if 73 is algebraic, then T is subscalar by Theorem 3.2. [
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COROLLARY 4.3. Every F -square- p -quasihyponormal operator has the Bishop’s
property (B).

COROLLARY 4.4. Every k-square- p-quasihyponormal operator has the Bishop’s
property (B).

5. Examples

Consider unilateral weighted shift operator as an infinite dimensional Hilbert space
operator. Recall that given a bounded sequence of positive numbers o : 1,00, 03, ...
(called weights), the unilateral weighted shift W, associated with « is the operator
on H = I, defined by Wye,, := ape,4 forall n > 1, where {en ~_, is the canonical
orthonormal basis for /. We easily see that W, can be never normal and so in general
it is used to giving some easy examples of non-normal operators. It is well known
that W, is p-quasihyponormal if and only if ¢ is monotonically increasing (see [26,
Example 2.3]).

LEMMA 5.1. Wy, belongs to square- p-quasihyponormal if and only if

0000 O0:-

a0 00 0--

0 0 0 0
We=10 0 o0 0-- |>

000 040:--

where
001 < Opi20py3 (n=1,2,3,...).

Proof. By simple calculations,

Wo?Wg = (a7 03) & (03 08) @ (o3 05) + ..

and
W2W2 =000 (0fe) @ (505) ® (050F) + ...
Hence
K ik 2 2 2 2p 2
W (Wa W )P Wo, = i ( 2pa p)@%( o, p)@%(aztpasp)‘f'---
and

WE(W2IWE)PWo = 0@ 03 (0" 0" ) @ 02 (05" 057 ) @ od (057 05) + ...
Thus Wy, belongs to square- p-quasihyponormal if and only if

001 < Opin0py3 (n=1,2,3,...). O

The following example provides an operator which is square- p-quasihyponormal
but not p-quasihyponormal.
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EXAMPLE 5.2. A square- p-quasihyponormal operator which is not p-quasihy-
ponormal.

Proof. Let Wy, be a unilateral weighted shift operator with weights o, =2 (n # 2)
and op = 1. Simple calculations show that W, is square- p-quasihyponormal, but W,
is non- p-quasihyponormal. []

Finally we give an example to show that the class of square- p-hyponormal op-
erators is properly contained in the class of square- p-quasihyponormal operators. We
need the following lemma.

LEMMA 5.3. Let K = ::1 H,,, where H, = H. For given positive operators A
and B on H, define the operator T =Ty p on K as follows:

000000
A00000--
0A0000--
r—looBooo--
000B0O--
0000B0 -

Then the following assertions hold:

(1) T belongs to square- p-hyponormal if and only if B*? > A*’ and B* >
(BA%B)P.

(2) T belongs to square- p-quasihyponormal if and only if A(B*? —A*P)A > 0 and
B(B* — (BA’B)?)B > 0.

Proof. Since
0A0000 -
00A000 -
000BOO -
"={0000B0-- |-
00000B -

by simple calculations,

A0 0 0 0

0 (AB*A)» 0 0 O

- 0 0 B* 0 0
(TT)" =1 o 0 0 B¥ 0
0 0 0 0 B*
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and
00 0 0 0 0 -
00 0 0 0 0 -
00A* 0 0 0 -
(r27°2)p = | 00 0 (BA’B)” 0 0 -
00 0 0 B* 0 -
00 0 0 0 B*.
Hence
A(AB’A)PA 0 0 0
0 AB*A 0 0
T*(T*ZTZ)pT _ 0 0 BB4pB 0 .
0 0 0 BB*B ...
and
0 0 0 0
0 AA*PA 0 0
(1727 = |0 0 B(BA’B)’B 0 :
0 0 0 BB*B ...

Thus T is square- p-hyponormal ((T*2T2)? > (T>T*?)P) if and only if
B > A%,
B*? > (BA’B)P.
Similarly, T is square-p-quasihyponormal (T*(T**T?)PT > T*(T>T*?)PT) if and
only if
AB*PA > AA*PA,
BB*’B > B(BA’B)”B.

EXAMPLE 5.4. A square- | -quasihyponormal operator which is not square- 1 -hy-
ponormal.

Proof. Let H be a two dimensional Hilbert space and p = 1. Take A and B as
1 1
=0 S

A=(2"), B=[*?].
00 !

B —A* = ( ) #0.

Nf— NI—

Then

—
DL
Nl— l—
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Hence Ty p is a non-square- 1 -hyponormal operator.

and

On the other hand,
1 7 1 1 7
50 = 5 50 =0
A(B4—A4)A: 2 16 2 2 _ (& >0

00/ \33/\00 00

11 7 1 11 7 1

B(B4—BA2B)B: 22 16 16 22)_ (1616 >0

11 7 1 11 7 1

22 16 16 22 16 16

Thus Ty p is a square- 1 -quasihyponormal operator.  []
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