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A ROTATION OF WIENER INTEGRAL ASSOCIATED WITH

BOUNDED OPERATORS ON ABSTRACT WIENER SPACES
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(Communicated by J. Ball)

Abstract. In this paper, we establish a rotation theorem for the Wiener integral associated with
bounded operator on abstract Wiener spaces. To do this, we introduce a class of the angle pre-
serving operators defined on the abstract Wiener space B .

1. Introduction

Let C0[0,T ] denote the one-parameter Wiener space [15], that is, the space of all
real-valued continuous functions x on the time interval [0,T ] with x(0) = 0. Let M
denote the class of all Wiener measurable subsets of C0[0,T ] and let mw denote the
Wiener measure. Then, as is well-known, (C0[0,T ],M ,mw) is a complete probability
space, and we denote the Wiener integral of a Wiener integrable functional F by∫

C0[0,T ]
F(x)dmw(x).

The function space C0[0,T ] can be considered as a space of all continuous sample paths
of a Brownian motion {Bt : t ∈ [0,T ]} on a probability space Ω , see [7].

The motivation of this work will be introduced by two folds: In [1], Bearman
provided a rotation theorem for the Wiener measure on the product Wiener space
C2

0 [0,T ] ≡C0[0,T ]×C0[0,T ] , as follows.

THEOREM 1.1. Let F be a mw×mw -integrable functional on the product Wiener
space C2

0 [0,T ] . Given a function θ of bounded variation on [0,T ] , let Rθ : C2
0 [0,T ] →

C2
0 [0,T ] be the transformation defined by Rθ (w,z) = (x,y) with{

x(t) =
∫ t
0 cosθ (s)dw(s)− ∫ t

0 sinθ (s)dz(s),
y(t) =

∫ t
0 sinθ (s)dw(s)+

∫ t
0 cosθ (s)dz(s).

Then the transform Rθ is measure preserving and∫
C2

0 [0,T ]
F(Rθ (w,z))d(mw ×mw)(w,z) =

∫
C2

0 [0,T ]
F(x,y)d(mw ×mw)(x,y). (1.1)
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As a special case of (1.1), one can see that for any Wiener integrable functional F
on C0[0,T ] and all θ ∈ R ,∫

C2
0 [0,T ]

F(wcosθ + zsinθ )d(mw ×mw)(w,z) =
∫
C0[0,T ]

F(x)dmw(x). (1.2)

Using equation (1.2), one can also verify the following equation: for all real numbers
α and β , it follows that∫

C2
0 [0,T ]

F(αw+ β z)d(mw ×mw)(w,z) =
∫
C0[0,T ]

F(
√

α2 + β 2x)dmw(x). (1.3)

In view of equation (1.1), we see that the Wiener measure mw ×mw is rotation
invariant. Equations (1.2) and (1.3) have been played an important role in various areas
in mathematics and physics concerned with Wiener integration theory. Equation (1.2)
was further developed by Cameron and Storvick [2] and by Johnson and Skoug [9]
in their studies of Wiener integral equations. In [12], Lee extended equation (1.3) on
the complexification of abstract Wiener space to study the solutions of the differential
equation which is called a Cauchy problem. Furthermore, in [3], equation (1.3) was
developed for the functionals in nonstationary Gaussian processes on the Wiener space
C0[0,T ] .

The next illustration is the second motivation of the topic of this article. Equation
(1.1) extended in [3] for cylinder functionals F on C0[0,T ] defined by

F(Zh(x, ·)) = f

(∫ T

0
α1(t)dZh(x,t), . . . ,

∫ T

0
αn(t)dZh(x,t)

)
,

where {α1, . . . ,αn} is an orthonormal set of functions from L2[0,T ] ,
∫ T
0 α(t)dZh(x,t)

and Zh(x, t) =
∫ t
0 h(s)dx(s) denote the stochastic integrals, and the paths x are in the

Wiener space C0[0,T ] . In particular, the stochastic integral Zh(x,t) =
∫ t
0 h(s)dx(s)

can be interpreted as the Itô integral of deterministic functions h in L2[0,T ] , see [13]
and the references cited therein. Given a function h in L2[0,T ] , the integral process
Zh(x, t) =

∫ t
0 h(s)dx(s) on C0[0,T ]× [0,T ] is Gaussian with mean zero and covariance

function

Cov(Zh(x,s),Zh(x,t)) =
∫ min{s,t}

0
h2(u)du.

For more details, see [7, p. 157]. Also, if h is a function of bounded variation on [0,T ] ,
Zh is a continuous process on C0[0,T ]× [0,T ] .

Furthermore, for a function h in L∞[0,T ] , the Itô integral
∫ t
0 α(s)dZh(x,s) of the

deterministic function h has the kernel exchange properties as follows: given functions
α ∈ L2[0,T ] and h1,h2 ∈ L∞[0,T ] ,∫ t

0
α(s)dZh(x,s) =

∫ t

0
α(s)h(s)dx(s) (1.4)

and∫ t

0
α(s)dZh2(Zh1(x, ·),s) =

∫ t

0
α(s)h1(s)h2(s)dx(s) =

∫ t

0
α(s)dZh1h2(x,s). (1.5)
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Let

C′
0[0,T ] =

{
w ∈C0[0,T ] : w(t) =

∫ t

0
v(s)dx(s) for some v ∈ L2[0,T ]

}
and let

C∗
0 [0,T ] = {β ∈C′

0[0,T ] : Dβ is of bounded variation}
where Dβ ≡ d

dt β . Then it is well known in the abstract Wiener space theory that the
space C′

0[0,T ] forms the Cameron–Martin space of the Wiener space C0[0,T ] . The
inner product 〈·, ·〉 is given by the formula 〈w1,w2〉 =

∫ T
0 Dw1(t)Dw2(t)dt . Given a

function k in C∗
0 [0,T ] , we denote the stochastic integral ZDk(x,T ) =

∫ T
0 Dk(t)dx(t)

by the symbol (k,x) . Then the symbol (·, ·) on C∗
0 [0,T ]×C0[0,T ] is a bilinear form.

In this case, equations (1.4) and (1.5) with t replaced with T , respectively, can be
characterized by

(g,ZDk(x, ·)) = (k	g,x) (1.6)

and
(g,ZDk2(ZDk1(x, ·), ·)) = (k1	 k2	g,x) (1.7)

for all g in C′
0[0,T ] and all k,k1,k2 ∈ C∗

0 [0,T ] , where 	 is the operation between
C∗

0 [0,T ] and C′
0[0,T ] defined by (k	g)(t) =

∫ t
0 Dg(s)Dk(s)ds . In fact, these kernel ex-

change properties of the bilinear form associated with the processes ZDk are developed
in [7] extensively. In [7, Chapter 5], these rotation transformations with the processes
ZDk replaced with the operators on abstract Wiener spaces and rigorous structures of
the rotation operators are introduced via white noise setting on nuclear spaces. For
more information of those white noise analysis, we refer to the reference [8] and the
references cited therein.

Based on those researches and the applications studied in [2, 3, 7, 8, 9, 12], it is
worth-while to study another development of the rotation property of abstract Wiener
measure. In this paper, we thus establish a rotation theorem for the Wiener integral
associated with bounded operators on abstract Wiener spaces. The stochastic integrals
in the product Wiener integral (1.1) will be replaced by bounded linear operators on
abstract Wiener space B . To do this, we adopt a concept of the angle preserving opera-
tors on B (see Definition 2.5 below). The structures of the operators on abstract Wiener
spaces and the Banach space adjoints involve the properties such as the kernel exchange
properties appeared in (1.6) and (1.7).

2. Preliminaries

Let H be a real infinite dimensional Hilbert space with inner product 〈·, ·〉 and
associated norm | · | , and let B be a real separable Banach space with norm ‖ · ‖ . It
is assumed that H is continuously, linearly, and densely embedded in B . The natural
injection (i.e., embedding) is denoted by ι : H ↪→ B . Let ν be a centered Gaussian
probability measure on (B,B(B)) , where B(B) is the Borel σ -field of B . The triple
(H,B,ν) is called an abstract Wiener space if∫

B
exp

{
i(θ ,x)

}
dν(x) = exp

{
− 1

2
|ι∗(θ )|2

}
= exp

{
− 1

2
|θ |2

}
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for any θ ∈ B∗ , where (·, ·) denotes the B∗–B paring, and ι∗ : B∗ → H∗ is the dual
map to the natural injection ι : H ↪→ B , and where B∗ and H∗ are the topological duals
of B and H , respectively. The space B∗ is identified as a dense subspace of H∗ ≈ H
in the sense that, for all θ ∈ B∗ and x ∈ H , 〈θ ,x〉 = (θ ,x) . Thus we have the triple

B∗ ⊂ H∗ ≈ H ⊂ B. (2.1)

The Hilbert space H is called the Cameron–Martin space of the abstract Wiener space
B . For more details, see [4, 6, 10, 11].

Given a Banach space X , let L (X) ≡ L (X ,X) denote the space of all bounded
linear operators from X to X . Then L (B∗) , L (H) and L (B) are Banach spaces. By
the concept of the Banach space adjoint operator, given an operator A ∈ L (B) , there
exists a bounded linear operator A∗ : B∗ → B∗ such that for all θ ∈ B∗ and x ∈ B ,

(A∗θ )x = θ (Ax). (2.2)

By the structure of the B∗–B paring and the triple (2.1) (i.e., in the sense of Riesz
representation theorem), equation (2.2) can be rewritten by

(A∗θ ,x) = (θ ,Ax).

For a finite subset V = {θ1, . . . ,θm} of B∗ , let XV : B → Rm denote the random
vector given by

XV (x) ≡ (
(θ1,x), . . . ,(θm,x)

)
. (2.3)

A functional F is called a cylinder functional on B if there exists a linearly independent
subset V = {θ1, . . . ,θm} of B∗ such that

F(x) = ψ
(
XV (x)

) ≡ ψ
(
(θ1,x), . . . ,(θm,x)

)
, x ∈ B, (2.4)

where ψ is a complex-valued Borel measurable function on Rm . It is easy to show
that for the cylinder functional F of the form (2.4), there exists an orthogonal subset
G = {g1, · · · ,gn} of H whose elements are in B∗ such that F is expressed as

F(x) = f
(
XG (x)

) ≡ f
(
(g1,x), · · · ,(gn,x)

)
, x ∈ B, (2.5)

where f is a complex-valued Borel measurable function on Rn . Thus, we loose no
generality in assuming that every cylinder functional on B is of the form (2.5).

Proofs of the following lemma, corollaries and theorem are modifications of those
in [5].

LEMMA 2.1. Let (B,H,ν) be an abstract Wiener space. Let V = {θ1, . . . ,θm}
be a set of vectors in B∗ , let XV be given by (2.3), and let ψ : R

m → C be a Borel
measurable function. Let V be the covariance matrix of the Gaussian random variables
{(g1,x), . . . ,(gn,x)} and suppose V is nonsingular (i.e., detV = 0 ). Then it follows that∫

B
ψ

(
XG (x)

)
dν(x) ∗=

(
(2π)m detV

)−1/2
∫

Rm
ψ(�u)exp

{
− 1

2
(�uV−1) ·�u

}
d�u, (2.6)

in the sense that if either side exists, then both sides exist and equality holds, where �u ·�v
denotes the standard inner product of �u and �v in R

m .



A ROTATION OF WIENER INTEGRAL ASSOCIATED WITH BOUNDED OPERATORS 665

The matrix V in the previous lemma is known to be positive definite in the case
that the random variables (g j,x) , j ∈ {1, . . . ,n} , are non-degenerate and linearly inde-
pendent.

COROLLARY 2.2. Let (B,H,ν) be an abstract Wiener space. Let V = {θ1, . . . ,θm}
be a linearly independent set of vectors in B∗ , and let XV , ψ , and V be as in Lemma
2.1. Then the covariance matrix V is nonsingular and equation (2.6) holds true.

REMARK 2.3. Let V = {θ1, . . . ,θm} be a linearly independent set of vectors in
B∗ . Then the covariance matrix V is given by

V =

⎛
⎜⎜⎜⎝

(θ1,θ1) (θ1,θ2) · · · (θ1,θm)
(θ2,θ1) (θ2,θ2) · · · (θ2,θm)

...
...

. . .
...

(θm,θ1) (θm,θ2) · · · (θm,θm)

⎞
⎟⎟⎟⎠ .

COROLLARY 2.4. Let (B,H,ν) be an abstract Wiener space. Let G = {g1, . . . ,gn}
be an orthogonal subset of H whose elements are in B∗ , let XG : B → Rn denote the
random vector given by XG (x) = ((g1,x), . . . ,(gm,x)) , and let f be Borel measurable
function on Rn . Then it follows that

∫
B

f
(
XG (x)

)
dν(x) ∗=

(
(2π)n

n

∏
j=1

|g j|2
)−1/2 ∫

Rn
f (�u)exp

{
− 1

2

n

∑
j=1

u2
j

|g j|2
}

d�u.

Given an orthogonal set G = {g1, . . . ,gn} of elements in B∗ , let a functional F on
B be given by (2.5) above. Then, for any operator A in L (B) ,

F(Ax) = f
(
(g1,Ax), . . . ,(gn,Ax)

)
= f

(
(A∗g1,x), . . . ,(A∗gn,x)

)
.

Even though the set G = {g1, . . . ,gn} of vectors in B∗ is orthogonal in H , the set
A∗(G ) ≡ {A∗g : g ∈ G } of B∗ might not be orthogonal in H .

DEFINITION 2.5. Given an orthogonal set G = {g1, . . . ,gn} of vectors in H such
that each of whose elements is in B∗ , let APB(G ) be the class of all operators A in
L (B) such that

(g j,gk) = 〈g j,gk〉 = 〈A∗g j,A
∗gk〉 = (A∗g j,A

∗gk)

for all j,k ∈ {1, . . . ,n} .

REMARK 2.6. Let A be an operator in L (B) . If A(H) ⊆ H and A∗ is angle
preserving as an operator in L (H) , then A∈APB(G ) . In particular, if A is orthogonal
(or unitary) on H , then A is in APB(G ) .



666 J. G. CHOI

THEOREM 2.7. Let G = {g1, . . . ,gn} , XG and f be as in Corollary 2.4. Then it
follows that for any operator A in APB(G ) ,∫

B
f
(
XG (Ax)

)
dν(x) ≡

∫
B

f
(
(A∗g1,x), . . . ,(A∗gn,x)

)
dν(x)

∗=
(

(2π)n
n

∏
j=1

(g j,AA∗g j)
)−1/2 ∫

Rn
f (�u)exp

{
− 1

2

n

∑
j=1

u2
j

(g j,AA∗g j)

}
d�u.

(2.7)

3. A rotation via the operators on abstract Wiener spaces

In order to obtain our rotation theorem for the abstract Wiener integral associated
with bounded operators we provide the following structure for bounded operators on
B .

(O1) Let A be an operator in L (B) such that A(H)⊆H . Then A is an element of
L (H) (precisely speaking, the restriction, A|H is in L (H)). We will denote the class
of all operators satisfying the condition “A∈L (B) and A(H)⊆H ” by L (B)∩L (H) .
Notice that L (B)∩L (H) is a linear space. For any operator A in L (B)∩L (H) ,
AA∗ is positive definite (as an operator on H ) and so, by the square root lemma [14],
there exists a positive operator |A| such that |A|=√

AA∗ . We notice that every bounded
positive definite operator on a Hilbert space is self-adjoint.

(O2) Given two bounded operators A1 and A2 in L (B) ∩L (H) , the opera-
tor A1A∗

1 + A2A∗
2 is positive definite on H . Thus, by the square root lemma, there

exists an operator
√

A1A∗
1 +A2A∗

2 , uniquely, in L (H) . It is clear that the operator√
A1A∗

1 +A2A∗
2 is in L (B)∩L (H) .

In order to identify these operators, we consider the relation ∼ on L (B)∩L (H)
given by

A1∼A2 ⇐⇒ A1A
∗
1 = A2A

∗
2.

Then ∼ is an equivalence relation. For each A in L (B)∩L (H) , let [A] denote the
equivalence class of A . In view of the observation (O1), it follows that there exists a
positive definite operator S(A) such that A ∼ S(A) .

In this paper, given two bounded operators A1 and A2 in L (B)∩L (H) , we will
use the symbol ‘S(A1,A2)’ to denote the representative of the equivalence class

[
S(A1,A2)

]
=

{
S ∈ L (B)∩L (H) : S∼√

A1A∗
1 +A2A∗

2

}
.

Then, in view of the observation (O2), it follows that for any operators S in [S(A1,A2)]
and all g ∈ B∗ ,

|S∗g|2 = (S∗g,S∗g) = (g,SS∗g) = (g,(A1A
∗
1 +A2A

∗
2)g).

Throughout the rest of this paper, for convenience, we will regard

[S(A1,A2)] ≡ S(A1,A2)

as an operator in L (B)∩L (H) . Then S(A1,A2)S(A1,A2)∗ = A1A∗
1 +A2A∗

2.
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Given an orthogonal set G in H whose elements are in B∗ , let CG (B2) be the
class of all ν ×ν -integrable functionals, F : B×B→ C , given by

F(x,y) = f ((g1,x), . . . ,(gn,x);(g1,y), . . . ,(gn,y))

≡ f
(
XG (x);XG (y)

) (3.1)

for ν ×ν -a.e. (x,y) ∈ B×B , where f : R2n → C is a Borel measurable function. For
notational convenience we define the class:

APH,B(G ) ≡ APB(G )∩ (L (B)∩L (H)).

We are now ready to provide our main assertion.

THEOREM 3.1. Let (B,H,ν) be an abstract Wiener space. Let G = {g1, . . . ,gn}
be an orthogonal subset of H whose elements are in B∗ , let F ∈ CG (B2) be given by

(3.1), and let A1 and A2 be operators in APH,B(G ) . Suppose that det

(
A1 A2

A∗
1 A∗

2

)
=

A1A∗
2 −A2A∗

1 = 0 on B∗ . Then it follows that

∫
B2

F
(
A1w−A2z,A2w+A1z

)
d(ν ×ν)(w,z)

=
∫

B2
F
(
S(A1,A2)x,S(A1,A2)y

)
d(ν ×ν)(x,y).

(3.2)

It will be helpful to establish the following two lemmas before giving the proof of
Theorem 3.1.

LEMMA 3.2. Let G = {g1, . . . ,gn} , A1 and A2 be as in Theorem 3.1. For each
j ∈ {1, . . . ,n} , let S j,Tj : B×B → R be given by

S j(w,z) = (g j,A1w)− (g j,A2z) = (A∗
1g j,w)− (A∗

2g j,z) (3.3)

and

Tj(w,z) = (g j,A2w)+ (g j,A1z) = (A∗
2g j,w)+ (A∗

1g j,z), (3.4)

respectively. Then

R = {S1, . . . ,Sn,T1, . . . ,Tn} (3.5)

is a set of independent Gaussian random variables. For each j ∈ {1, . . . ,n} ,

S j ∼ N
(
0,(g j,A1A

∗
1g j)+ (g j,A2A

∗
2g j)

)
and

Tj ∼ N
(
0,(g j,A1A

∗
1g j)+ (g j,A2A

∗
2g j)

)
.
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Proof. We note that for each θ ∈ B∗ , (θ ,x) , as a functional of x in B , has a
Gaussian distribution with mean zero and variance |θ |2 = 〈θ ,θ 〉 = (θ ,θ ) . Using this
fact, we observe that for θ1,θ2 ∈ B∗ ,∫

B
(θ1,x)(θ2,x)dν(x) = (θ1,θ2). (3.6)

However, using (3.6) and Fubini’s theorem, we have that for all j, l ∈ {1, . . . ,n} with
j = l , ∫

B2
S j(w,z)Sl(w,z)d(ν ×ν)(w,z) = (A∗

1g j,A
∗
1gl)+ (A∗

2g j,A
∗
2gl) = 0

and ∫
B2

Tj(w,z)Tl(w,z)d(ν ×ν)(w,z) = (A∗
2g j,A

∗
2gl)+ (A∗

1g j,A
∗
1gl) = 0.

Also, we have that for all j, l ∈ {1, . . . ,n} ,
∫

B2
S j(w,z)Tl(w,z)d(ν ×ν)(w,z) = (A∗

1g j,A
∗
2gl)− (A∗

2g j,A
∗
1gl) = 0,

because
(A∗

2g j,A
∗
1gl) = (g j,A2A

∗
1gl) = (g j,A1A

∗
2gl) = (A∗

1g j,A
∗
2gl).

From these facts above, we observe that for any X ,Y ∈R with X =Y , Cov(X ,Y ) = 0.
This completes the proof of this lemma. �

The following lemma follows from Lemma 3.2.

LEMMA 3.3. Let G , A1 and A2 be as in Theorem 3.1. Then the Gaussian random
vectors

R1
A1,A2

: B×B → R
n, R1

A1,A2
(w,z) = XG (A1w)−XG (A2z)

and
R2

A1,A2
: B×B → R

n, R2
A1,A2

(w,z) = XG (A2w)+XG (A1z)

are independent. Furthermore, the covariance matrix of R1
A1,A2

and R2
A1,A2

is given by

(Cov(X ,Y ))X ,Y∈R ,

where R is given by (3.5) above.

We note that the determinant of the matrix (Cov(X ,Y ))X ,Y∈R is given by

det(Cov(X ,Y ))X ,Y∈R = trace(Cov(X ,Y ))X ,Y∈R

=
n

∑
j=1

(
(g j,A1A

∗
1g j)+ (g j,A2A

∗
2g j)

)
.

We are now finally ready to provide the proof of Theorem 3.1.
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Proof. [Proof of Theorem 3.1] Using equations (3.3) and (3.4), we observe that
for (w,z) ∈ B×B ,

XG

(
A1w

)−XG

(
A2z

)
=

(
S1(w,z), . . . ,Sn(w,z)

)
and

XG

(
A2w

)
+XG

(
A1z

)
=

(
T1(w,z), . . . ,Tn(w,z)

)
.

Thus, using these, (3.1), Fubini’s theorem, and (2.7), and applying Lemmas 3.2 and 3.3,
we obtain∫

B×B
F
(
A1w−A2z,A2w+A1z

)
d(ν ×ν)(w,z)

=
∫

B×B
f
(
S1(w,z), . . . ,Sn(w,z);T1(w,z), . . . ,Tn(w,z)

)
d(ν ×ν)(w,z)

=
( n

∏
j=1

2π
(
(g j,A1A

∗
1g j)+ (g j,A2A

∗
2g j)

))−1/2

×
∫

Rn

[∫
B

f
(
�u;A2w+A1z)dν(x)

]

× exp

{
−

n

∑
j=1

u2
j

2((g j,A1A∗
1g j)+ (g j,A2A∗

2g j))

}
d�u

=
( n

∏
j=1

2π
(
(g j,A1A

∗
1g j)+ (g j,A2A

∗
2g j)

))−1

×
∫

R2n
f
(
�u;�v)exp

{
−

n

∑
j=1

u2
j + v2

j

2((g j,A1A∗
1g j)+ (g j,A2A∗

2g j))

}
d�ud�v.

(3.7)

Now, let β j = S(A1,A2)∗g j for each j ∈ {1, . . . ,n} . Then we have that for all
j, l ∈ {1, . . . ,n} with j = l ,

(β j,βl) =
(
g j,S(A1,A2)S(A1,A2)∗gl

)
=

(
g j,(A1A

∗
1 +A2A

∗
2)gl

)
= (g j,A1A

∗
1gl)+ (g j,A2A

∗
2gl)

= (A∗
1g j,A

∗
1gl)+ (A∗

2g j,A
∗
2gl) = 0

(3.8)

and that for each j ∈ {1, . . . ,n} ,

(β j,β j) =
(
g j,S(A1,A2)S(A1,A2)∗g j

)
=

(
g j,(A1A

∗
1 +A1A

∗
2)g j

)
= (A∗

1g j,A
∗
1g j)+ (A∗

2g2,A
∗
2g j).

(3.9)

Hence, from (3.8) and (3.9), we see that B = {β1, . . . ,βn} is an orthogonal set of
elements in B∗ and that the B∗–B parings

(β j,x) = (S(A1,A2)∗g j,x) = (g j,S(A1,A2)x), j ∈ {1, . . . ,n}
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form a set of independent Gaussian random variables on B with mean zero and variance
(g j,A1A∗

1g j)+ (g j,A2A∗
2g j) , respectively, by checking their covariances. Also, using

Fubini’s theorem and (2.7), we obtain that

∫
B2

F
(
S(A1,A2)x,S(A1,A2)y

)
d(ν ×ν)(x,y)

=
∫

B2
f
(
(β1,x), . . . ,(βn,x);(β1,y), . . . ,(βn,y)

)
d(ν ×ν)(x,y)

=
∫

B

∫
B

f
(
XB(x);XB(y)

)
dν(x)dν(y)

=
( n

∏
j=1

2π
(
(g j,A1A

∗
1g j)+ (g j,A2A

∗
2g j)

))−1/2

×
∫

Rn

∫
B

f
(
�u;XB(y)

)
dν(y)exp

{
−

n

∑
j=1

u2
j

2((g j,A1A∗
1g j)+ (g j,A2A∗

2g j))

}
d�u

=
( n

∏
j=1

2π
(
(g j,A1A

∗
1g j)+ (g j,A2A

∗
2g j)

))−1

×
∫

R2n
f
(
�u;�v

)
exp

{
−

n

∑
j=1

u2
j + v2

j

2((g j,A1A∗
1g j)+ (g j,A2A∗

2g j))

}
d�ud�v.

(3.10)
Equation (3.2) now follows from equations (3.7) and (3.10). �

The following corollaries are very simple consequences of Theorem 3.1.

COROLLARY 3.4. Let G , A1 and A2 be as in Theorem 3.1. Let F be given
by (2.5) and let a functional K : B → C be given by K(x) = k(XG (x)) , where k is a
complex-valued Borel measurable function on Rn . Then

∫
B2

F
(
A1w−A2z

)
K

(
A2w+A1z

)
d(ν ×ν)(w,z)

=
∫

B
F

(
S(A1,A2)x

)
dν(x)

∫
B
K

(
S(A1,A2)y

)
dν(y).

(3.11)

COROLLARY 3.5. Let G , A1 , A2 , and K be as in Corollary 3.4. Then it follows
that ∫

B2
K

(
A1w+A2z

)
d(ν ×ν)(w,z) =

∫
B
K

(
S(A1,A2)x

)
dν(x).

Proof. Simply choose F ≡ 1 in equation (3.11). �
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