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MEAN ERGODICITY OF MULTIPLICATION

OPERATORS ON THE BLOCH AND BESOV SPACES

F. FALAHAT AND Z. KAMALI ∗

(Communicated by G. Misra)

Abstract. In this paper, the power boundedness and mean ergodicity of multiplication operators
are investigated on the Bloch space B , the little Bloch space B0 and the Besov Space Bp . We
completely characterize power bounded, mean ergodic and uniformly mean ergodic multiplica-
tion operators on B and B0 .

1. Introduction

Let U = {z ∈ C : |z| < 1} be the unit disk in the complex plane C and H(U) be
the space of all holomorphic functions on U . The Bloch space B is defined to be the
space of all functions in H(U) such that

β f = sup
z∈U

(1−|z|2)| f ′(z)| < ∞.

The little Bloch space B0 is the closed subspace of B consisting of all functions
f ∈ B with

lim
|z|→1

(1−|z|2)| f ′(z)| = 0.

It is easy to check that the Bloch and little Bloch, B and B0 are Banach spaces under
the norm

|| f ||B = | f (0)|+ β f .

It is well known that B∗
0 = A1(U) and (A1(U))∗ = B under the complex integral

pairing 〈 f ,g〉 =
∫
U

f (z)g(z)dA(z) , where dA(z) is lebesgue area measure on U and
A1(U) is the space of all analytic functions f on U such that || f || = ∫

U
| f (z)|dA(z) <

∞ , see [4, Theorem 2.4].
Another space we dealt with in this paper is the Besov space Bp (1 < p < ∞)

which is defined to be the space of holomorphic functions f on U such that

γ p
f =

∫
U

| f ′(z)|p(1−|z|2)p−2dA(z)

=
∫

U

| f ′(z)|p(1−|z|2)pdλ (z) < ∞,
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where dλ (z) is the Möbius invariant measure on U, with definition

dλ (z) =
dA(z)

(1−|z|2)2 .

For p = 1, the Besov space B1 consists of all holomorphic functions f on U whose
second derivatives are integrable,

B1 = { f ∈ H(U) : || f ||B1 =
∫

U

| f ′′(z)|dA(z) < ∞}.

For 1 < p < ∞ , || f ||p = | f (0)|+ γ f is a norm on Bp which makes it a Banach space.
Bp is reflexive space (while B1 is not) and polynomials are dense in it, [26, Theorem
5.24]. Furthermore, for each 1 < q < p < ∞ , B1 ⊂ Bq ⊂Bp ⊂ B and B1 is a subset
of the little Bloch space B0 [28, Page 388]. Also remember that the Besov space B2 is
known as the classical Dirichlet Space D and B∞ is the Bloch space B , see [26, Page
115]. Moreover, the following two lemmas determine that norm convergence implies
pointwise convergence in the Bloch and Besov spaces Bp (1 < p < ∞) . We state them
here without proof.

LEMMA 1.1. For all f ∈ B and for each z ∈ U , we have

| f (z)| � || f ||B log
2

1−|z|2 .

Proof. See page 82, (3.5) of [27]. �

LEMMA 1.2. For each f ∈ Bp (1 < p < ∞) and for every z ∈ U , there is C � 0
(depends only on p) such that

| f (z)| � C|| f ||p(log
2

1−|z|2 )1−1/p.

Proof. See Theorem 8 of [25]. �
Bloch and Besov spaces and their properties specially from an operator and geo-

metric view were studied extensively in previous years in [6, 25, 27] and more recently
in [14, 17].

If ψ is a holomorphic function on U , the multiplication operator Mψ on H(U)
is defined by

Mψ ( f ) = ψ f .

We recall that for a set Ω , H∞(Ω) = { f ∈ H(Ω) : || f ||∞ = supz∈Ω | f (z)| < ∞} . For
every z ∈ Ω the linear operator ez : X → C which is defined by ez( f ) = f (z) for f ∈ X
is called a point evaluation at z . A set X of complex-valued functions on a set Ω is
called functional Banach space if each point evaluation is a bounded linear functional
and there is no point in Ω that all functions in X vanish.
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PROPOSITION 1.3. Let X be a functional Banach space on the set Ω and suppose
ψ is a complex-valued function on Ω such that ψX ⊂ X . Then the operator Mψ is a
bounded operator on X and |ψ(x)| � ||Mψ || for all x ∈ Ω . In particular, ψ ∈H∞(Ω) .

Proof. See page 57, Lemma 1.1 of [16]. �
According to Lemma 1.1. and Lema 1.2. in all three spaces, B , B0 and Bp every

point evaluations are bounded linear functionals, in fact in B , B0 we have ||ez|| �
log 2

1−|z|2 and in Bp , ||ez|| � C(log 2
1−|z|2 )

1− 1
p , for all z ∈ U . Since constant functions

are in three spaces, the second property is also valid and they are functional Banach
spaces so by above proposition in all of them we have the following inequality:

||ψ ||∞ � ||Mψ ||. (1.1)

Investigating the boundedness or compactness and other properties of multiplication
operators on the Bloch and Besov spaces have been done by many authors (see [6, 3,
28]). Arazy in [5] proved that the multiplication operator Mψ is bounded on the Bloch
space if and only if ψ ∈ H∞(U) and σψ < ∞ where

σψ := sup
z∈U

1
2
(1−|z|2)|ψ ′(z)| log

1+ |z|
1−|z| .

Also Brown and Shields in [12, Theorem 1], proved that Mψ is bounded on Bloch
space if and only if it is bounded on little Bloch space. In [3, Corollary 2.1], Allen and
Colonna showed that if ψ ∈ H(U) induces a bounded multiplication operator Mψ on
the Bloch space, then

max{||ψ ||B, ||ψ ||∞} � ||Mψ || � max{||ψ ||B, ||ψ ||∞ + σψ}. (1.2)

In the case of Besov Space, the situation is somewhat different and the issue is not
as straightforward as the Bloch Space. A function ψ ∈ H(U) is said to be multiplier
of Bp if Mψ(Bp) ⊆ Bp . If the space of multipliers on Bp in to itself represented by
M(Bp) , then by Closed Graph theorem ψ ∈ M(Bp) if and only if Mψ is a bounded
operator on Bp . Stegenga [22], Characterized multipliers of the Dirichlet space D in
to itself. Characterization of multipliers of the Besov space Bp (1 < p < ∞) , based on
capacities and Carleson measures type conditions was given by Wu [23] and Arcozzi
[7]. Zorboska in [28, Corollary 3.2] proved that for 1 < p < ∞ if ψ ∈ M(Bp) , then
ψ ∈ H∞(U) and

sup
z∈U

(1−|z|2)|ψ ′(z)|
(

log
2

1−|z|2
)1−1/p

< ∞.

Following proposition is another applied result of Zorboska about multiplication oper-
ators on the Besov spaces.

PROPOSITION 1.4. Suppose that 1 < p < ∞ and ψ ∈ H∞(U) .
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(i) If ψ ∈ M(Bp) and 0 < r < 1 , then

sup
ω∈D

∫
D(ω,r)

(1−|z|2)p−2|ψ ′(z)|p
(

log
2

1−|z|2
)p−1

dA(z) < ∞,

where D(ω ,r) = {z ∈ U : β (z,ω) < r} is the hyperbolic disk with radius r,

β (z,ω) = log 1+|ψz(ω)|
1−|ψz(ω)| and ψz(ω) = z−ω

1−zω for all z,ω ∈ U.

(ii) If
∫
U
(1−|z|2)p−2|ψ ′(z)|p(log 2

1−|z|2 )
p−1dA(z) < ∞ , then ψ ∈ M(Bp) .

Proof. See Theorem 3.1 of [28]. �

Notice that Galanopoulos in [17, Theorem 1.3] has shown the existence of ψ ∈
M(Bp) such that

∫
U
(1− |z|2)p−2|ψ ′(z)|p(log 2

1−|z|2 )
p−1dA(z) = ∞, i.e. the reverse of

(ii) in preceding proposition is not correct.
Let L(X) be the space of all linear bounded operators from locally convex Haus-

dorff space X into itself and T ∈ L(X) , the Cesáro means of T is defined by

T[n] :=
1
n

n

∑
m=1

Tm, n ∈ N.

An operator T is (uniformly) mean ergodic if {T[n]}∞
n=0 is a convergent sequence

in (norm) strong topology and is called power bounded if the sequence {Tn}∞
n=0 is

bounded in L(X) .
It is easy to check that for all n ∈ N , 1

nT n = T[n] − n−1
n T[n−1] , where T[0] = I

is the identity operator. From this we get if T is mean ergodic, then for all x ∈ X ,
limn→∞

1
nTnx = 0 and in the uniform mean ergodic case, limn→∞

1
n ||Tn|| = 0. The

study of mean ergodicity of linear operators on Banach spaces goes back to 1931, when
Von Neumann proved that for a unitary operator T on a Hilbert space H , there is a
projection P on H , such that T[n] converges to P in the strong operator topology. In
1939 Lorch demonstrated that for reflexive Banach spaces, power bounded operators
are mean ergodic, [1, Page 401]. Dunford in 1943 stated the connection between the
spectral properties of an operator and its uniform mean ergodicity, [15, Theorem 3.16].
There are a lot of references about dynamical properties of different linear bounded
operators on Banach, Fréchet and locally convex spaces. One of the best, is a book
written by Bayart and Matheron [9]. Additionally, [1, 2, 19] and the references therein
give more details about mean ergodic and power bounded operators on locally con-
vex spaces. Bonet and Ricker [11], characterized the mean ergodicity of multiplication
operators in weighted spaces of holomorphic functions and recently Bonet, Jordá and
Rodrı́guez-Arenas [10] extended the results to the weighted space of continuous func-
tions. In this paper, we look for conditions under which the multiplication operator Mψ
is power bounded and its Cesáro means is convergent or uniformly convergent on the
Bloch space B , little Bloch space B0 and the Besov Space Bp .
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2. The Bloch space B and The little Bloch space B0

The following Lemma provides the necessary condition for multiplication oper-
ators to be power bounded, uniform mean ergodic and mean ergodic on functional
Banach spaces and especially on B or B0 .

LEMMA 2.1. Let X be a functional Banach space and let ψ be a multiplier for X .

Then ||ψ ||∞ � 1 whenever {Mψn

n }n is a bounded sequence. Consequently, ||ψ ||∞ � 1
when Mψ is power bounded or mean ergodic on X .

Proof. Since in a functional Banach space for every z ∈ Ω and n ∈ N , |ψn(z)
n | �

||Mψn

n || the result follows immediately.

In the mean ergodic case, for all f ∈ X , ||Mψn f
n || → 0, as n → ∞ , see page 5 of

this paper. So by Uniform Boundedness Principle {Mψn

n } is a bounded sequence. In
the power bounded case, there is nothing to prove. �

The following Lemma is proved in [12, Lemma 1].

LEMMA 2.2. If { fn} ⊆ B0 then fn → 0 weakly if and only if fn(z) → 0 for all
z ∈ U and supn || fn||B < ∞ .

REMARK 2.3. Consider that for ψ ∈H∞(U) Schwarz-Pick Lemma [13, Theorem
2.39] implies that βψ � ||ψ ||∞ . In fact if ψ 
≡ 0, then for ϕ = ψ

||ψ|| we have:

βψ

||ψ ||∞ = βϕ = sup
z∈U

(1−|z|2)|ϕ ′(z)| � sup
z∈U

(1−|ϕ(z)|2) � 1.

THEOREM 2.4. Suppose ψ is a non-constant holomorphic function on U induc-
ing a bounded multiplication operator Mψ on B (B0) , if ||ψ ||∞ � 1 then {Mψn} is
convergent to zero in the weak operator topology on B0 . Hence Mψ is power bounded
B (B0) and mean ergodic on B0 .

Proof. We recall that B∗∗
0 = B [4, Theorem 2.4] and (Mψ |B0)

∗∗ = Mψ |B . (By
Mψ |B0 and Mψ |B we mean the multiplication on B0 and B , respectively). So
||(Mψ |B0)|| = ||Mψ |B|| and clearly power boundedness of Mψ on B implies it on
B0 and vice versa. For all z ∈U by Maximum Modules Principle, we have |ψ(z)|< 1.
Fix f ∈B0 and let L : B0 →C be a bounded linear functional. There exists g∈ A1(U)
such that L(Mψn f ) =

∫
U

ψn(z) f (z)g(z)dA(z) . Clearly, for all n ∈ N the function
ψn(z) f (z)g(z) is integrable and Since |ψn(z)| < 1, it converges pointwise to zero and
by Lebesgue Convergence Theorem, L(Mψn f ) → 0. By Lemma 2.2 and Uniform B
oundedness Principle Mψ is power bounded. Also by Yosida mean ergodic Theorem
[1, Theorem 2.2] it is mean ergodic. �

PROPOSITION 2.5. If ||ψ ||∞ < 1 and Mψ is a bounded multiplication operator
on B (B0 ), then Mψn is convergent to zero in operator norm on B (B0 ).
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Proof. Consider inequality (1.2). If for n ∈ N , ||Mψn || � ||ψn||B , then

||Mψn || � ||ψn||B = |ψn(0)|+ βψn

� |ψn(0)|+ ||ψn||∞
= |ψn(0)|+ ||ψ ||n∞, (2.1)

and if n ∈ N , ||Mψn || � ||ψn||∞ + σψn , then

||Mψn || � ||ψn||∞ +
n
2

sup
z∈U

(1−|z|2)|ψ ′(z)||ψ(z)|n−1 log
1+ |z|
1−|z|

� ||ψn||∞ +n||ψ ||n−1
∞

(
1
2

sup
z∈U

(1−|z|2)|ψ ′(z)| log
1+ |z|
1−|z|

)

= ||ψ ||n∞ +n||ψ ||n−1
∞ σψ . (2.2)

So by (2.1) and (2.2) for all n∈N , ||Mn
ψ ||� max{|ψn(0)|+ ||ψ ||n∞, ||ψ ||n∞+n||ψ ||n−1

∞ σψ} .
Both sequences in the right side are convergent to zero whenever ||ψ ||∞ < 1. �

THEOREM 2.6. Suppose that Mψ is a bounded operator on B (B0 ). If ψ ≡ ξ
where ξ ∈ ∂U , then Mψ is uniformly mean ergodic (and hence mean ergodic) on
B (B0 ).

Proof. Suppose ψ ≡ ξ , |ξ | = 1. If ξ = 1, then for all n ∈ N and f ∈ B ,
(Mψ)[n] f = f and clearly Mψ is uniformly mean ergodic on B (B0 ) and if ξ 
= 1,

then Mψn f = ψn f = ξ n f and (Mψ )[n] f = ξ+ξ 2+...+ξ n

n f = f
n

ξ (1−ξ n+1)
1−ξ .

In this case for f ∈ B (B0) with || f ||B � 1, we have

||(Mψ)[n] f ||B =
∣∣∣ f (0)

n
ξ (1− ξ n+1)

1− ξ

∣∣∣+ 1
n

sup
z∈U

(1−|z|2)| f ′(z)|
∣∣∣1− ξ n+1

1− ξ

∣∣∣
� 2

n|1− ξ | + || f ||B 2
n|1− ξ | � 4

n|1− ξ |,

so ||(Mψ)[n]|| → 0 when n → ∞ and Mψ is uniformly mean ergodic on B (B0 ). �

LEMMA 2.7. Let Mψ be a bounded operator on B (B0) , then I −Mψ is an
isomorphism of B (B0) if and only if 1

1−ψ ∈ H∞(U) .

Proof. If I−Mψ is invertible, then clearly, (I−Mψ)−1 = (M1−ψ)−1 = M 1
1−ψ

, so

by [6] we must have 1
1−ψ ∈ H∞(U) . Conversely, suppose 1

1−ψ ∈ H∞(U) .

σ 1
1−ψ

= sup
z∈U

1
2
(1−|z|2) |ψ ′(z)|

|1−ψ(z)|2 log
1+ |z|
1−|z| �

∣∣∣
∣∣∣ 1
1−ψ

∣∣∣
∣∣∣
∞

σψ < ∞,

so by [6], M 1
1−ψ

is bounded on B (B0) , i. e. I−Mψ is invertible. �
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PROPOSITION 2.8. Let ψ be a non constant analytic function on U with ||ψ ||∞ =
1 . If Mψ is bounded on B0 then it is mean ergodic. Moreover, it is uniformly mean
ergodic on B0 if and only if 1

1−ψ ∈ H∞(U) .

Proof. Fix f ∈B0 . By Theorem2.4, Mψ is power bounded. Let M = sup
n∈N

||Mψn || .
Then ||(Mψ )[n]|| � M and also limn→∞

1
nMψn f = 0. Maximum Modules Principle im-

plies that for all z ∈ U , |ψ(z)| < 1, so {(Mψ)[n]}n is a bounded sequence that con-
verges pointwise to zero. We show it converges weakly to zero. Let L ∈B∗

0 , fore some
g ∈ A1(U) , L((Mψ )[n] f ) =

∫
U
(Mψ )[n] f (z)g(z)dA(z) . By Lebesgue Convergence The-

orem we can deduce that L((Mψ )[n] f ) → 0. The proof of proposition is completed by
using [19, Theorem 1.1].

Suppose Mψ is uniformly mean ergodic. Via the above proof we must have
||(Mψ)[n]|| → 0. One can easily see that ker(I −Mψ) = 0 and since Mψ is power
bounded, 1

n ||Mψn || → 0. So by proposition 2.16 of [1], Mψ is uniformly mean er-
godic if and only if I −Mψ = M1−ψ is an isomorphism of B0 , which is equivalent to

1
1−ψ ∈ H∞(U) . �

PROPOSITION 2.9. Suppose ψ ∈ H(U) is non constant and ||ψ ||∞ = 1 and Mψ
is a bounded operator on B , then Mψ is mean ergodic if and only if it is uniformly
mean ergodic if and only if 1

1−ψ ∈ H∞(U) .

Proof. As we said before, ||(Mψ )[n]|B|| = ||(Mψ)[n]|B0 || , so by above proposition
Mψ is uniformly mean ergodic if and only if 1

1−ψ ∈ H∞(U) . On the other hand Bloch
space is a Grothendieck Banach space which satisfies the Dunford Pettis property (GDP
space) which Lotz in [21, Theorem 5] proved that mean ergodicity and uniform mean
ergodicity are equivalent in these spaces. �

The forthcoming example is a direct consequence of previous propositions.

EXAMPLE 2.10. Mz is power bounded operator on both B and B0 . But it is not
uniformly mean ergodic nor is it mean ergodic on B . It is mean ergodic on B0 , but it
is not uniformly mean ergodic. These statement are also true for Mψ , where ψ is an
automorphism of the unit disk.

The following theorems are direct consequences of this sections:

THEOREM 2.11. Let ψ be a non-constant analytic function on U and Mψ be a
bounded multiplication operator on B0 , then the following are equivalent:

1. ||ψ ||∞ � 1 .

2. Mψ is convergent to zero in the weak operator topology.

3. Mψ is power bounded.
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4. Mψ is mean ergodic.

THEOREM 2.12. Let Mψ be a boundedmultiplication operator on B (B0) , then
the following are equivalent:

1. ||ψ ||∞ < 1.

2. {Mψn} converges to zero in operator norm.

THEOREM 2.13. Let Mψ be a bounded multiplication operator on B , then the
following are equivalent:

1. ||ψ ||∞ � 1 and either, ψ ≡ ξ , where ξ ∈ ∂U or 1
1−ψ ∈ H∞(U) .

2. Mψ is mean ergodic.

3. Mψ is uniformly mean ergodic.

THEOREM 2.14. Let Mψ be a bounded multiplication operator on B0 , then the
following are equivalent:

1. ||ψ ||∞ � 1 and either, ψ ≡ ξ , where ξ ∈ ∂U or 1
1−ψ ∈ H∞(U) .

2. Mψ is uniformly mean ergodic.

3. Besov Space Bp (1 < p < ∞)

Before starting this section, it is necessary to remind that a Banach space X is
said to be mean ergodic if each power bounded operator is mean ergodic. Lorch by
extending the result of Rizes, showing that Lp spaces are mean ergodic, proved that the
reflexive spaces are also mean ergodic, see [1, Pages 401 and 402]. According to the
introduction, for 1 < p < ∞ Besov Spaces Bp are reflexive spaces and therefore power
boundedness of an operator implies mean ergodicity. In this section we only consider
the case 1 < p < ∞ .

THEOREM 3.1. Suppose ψ ∈ H(U) and Mψ is a bounded operator on Besov

space Bp . If {Mψn

n } is a bounded sequence, then ||ψ ||∞ � 1 . So ||ψ ||∞ � 1 whenever
Mψ is power bounded, mean ergodic or uniformly mean ergodic operator on Bp .

Proof. Since Bp is a functional Banach space, this theorem is a direct conse-
quence of Lemma 2.1. �

From now on, we assume that analytic function ψ holds in the following condi-
tion:

∫
U

(1−|z|2)p−2|ψ ′(z)|p
(

log
2

1−|z|2
)p−1

dA(z) < ∞. (3.1)
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Let B be an infinite Blaschke product whose zeros belong to a stolz angel with vertex
at 1 , then For all α � 2, ψ(z) = (1− z)αB(z) satisfies condition (3.1). For M > 1 the
stolz angle with vertex 1 is defined as the points of the unit disk satisfying |z− 1| <
M(1− |z|) , see Theorem 7.1 of [14]. Also by the Theorem 7.3 of previous reference
condition (3.1) is true for the function ψ(z) = (1− z)exp

(
z+1
z−1

)
.

THEOREM 3.2. Suppose that ψ ∈ H(U) and condition (3.1) is met. Mψ is a
bounded operator on the Besov space Bp . If Mψ is non-constant and ||ψ ||∞ � 1 , then
{Mψn}n is convergent to zero pointwise on Bp and Mψ is power bounded. Also if
||ψ ||∞ < 1 , then {Mψn}n converges to zero in operator norm, hence Mψ is uniformly
mean ergodic.

Proof. We have |ψ(z)| < 1 for all z ∈ U . Let f ∈ Bp with || f ||p � 1. In this
case, the followings can be deduced;

1. |ψn(0) f (0)| → 0 when n → ∞, since |ψ(0)| < 1.

2.
∫
U
| f ′(z)|p|ψn(z)|p(1− |z|2)p−2dA(z) → 0, as n → ∞, since | f ′(z)ψn(z)|p(1−

|z|2)p−2 � | f ′(z)p(1−|z|2)p−2, and f ∈ Bp gives us that
∫

U

| f ′(z)|p(1−|z|2)p−2dA(z) < ∞,

then | f ′(z)ψn(z)|p(1− |z|2)p−2 is integrable for all n ∈ N. By using Lebesgue
Convergence theorem the result is obtained.

3.
∫
U
|nψ ′(z)ψn−1(z) f (z)|p(1−|z|2)p−2dA(z) → 0, since by lemma (1.2):

|nψ ′(z)ψn−1(z) f (z)|p(1−|z|2)p−2

� npCp|| f ||pp(1−|z|2)p−2|ψ ′(z)|p
(

log
2

1−|z|2
)p−1

,

by hypothesis the right side of the last inequality is integrable for all n ∈ N and
so is |nψ ′(z)ψn−1(z) f (z)|p(1−|z|2)p−2 . Lebesgue Converges theorem gives the
desired result.

Consider that in the case ||ψ ||∞ < 1 the three above limits are independent from f so
||Mψn || → 0 when n → ∞ . �

COROLLARY 3.3. Suppose that ψ ∈ H(U) and condition (3.1) is met. Mψ is a
bounded operator on the Besov space Bp the following statements are equivalent:

(i) ||ψ ||∞ < 1 .

(ii) ||Mψn || → 0 when n → ∞ .

THEOREM 3.4. Suppose that ψ ∈ H(U) and condition (3.1) is met. If Mψ is a
bounded operator on the Besov space Bp , then the following statements are equivalent.
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(i) ||ψ ||∞ � 1 .

(ii) Mψ is power bounded.

(iii) Mψ is mean ergodic.

Proof. According to the initial interpretations of the section, it is sufficient to show
that (i) and (ii) are equivalent. Also by previous theorem we only consider the case
ψ(z) = λ where |λ | = 1. In this case ψ ′ ≡ 0. So for f ∈ Bp and || f ||p = 1 we have

||Mψn f ||p = |ψn(0) f (0)|+ γψn f

� | f (0)|+ γ f = || f ||p,

and Mψ is power bounded on Bp , in fact ||Mψn || � 1, for all n ∈ N . �
Recall that by σ(T ) (spectrum of T ) we mean the set of all λ ∈ C such that

T −λ I is not invertible.

LEMMA 3.5. Suppose ψ ∈ H(U) which satisfies condition (3.1) and Mψ is a
bounded operator on the Besov space Bp , then ψ(U) = σ(Mψ ), (ψ(U) means the
norm closure of ψ(U)).

Proof. First since Mψ − λ I = Mψ−λ , then λ ∈ σ(Mψ) if and only if Mψ−λ is
not invertible. If Mψ−λ is invertible, then (Mψ−λ )−1 = M(ψ−λ )−1 = M 1

ψ−λ
. So if

λ ∈ ψ(U) then there exists z0 ∈ U such that ψ(z0) = λ therefore 1
ψ−λ /∈ H∞(U) and

Mψ−λ is not invertible that means λ ∈ σ(Mψ ) and ψ(U) ⊆ σ(Mψ ) . But σ(Mψ )
is closed so ψ(U) ⊆ σ(Mψ ) . Now assume that (3.1) holds and λ /∈ ψ(U) , hence

1
ψ(z)−λ ∈ H∞(U) . By (3.1)

∫
U

|ψ ′(z)|p
|ψ(z)−λ |2p log

2
1−|z|2 )p−1(1−|z|2)p−2dA(z) < ∞.

Thus by proposition (1.4), M 1
ψ−λ

is bounded on Bp and Mψ−λ is invertible which

means λ /∈ σ(Mψ ) . �
Dunford in [15, Theorem 3.16] stated the connection between the spectral proper-

ties of an operator and its uniform mean ergodicity. The following Theorem represents
Lin and Dunford Theorems together.

THEOREM 3.6. If an operator T on a Banach space X is uniformly mean er-
godic, if and only if both (||Tn||/n)n converges to 0 and either 1 ∈ C\σ(T ) or 1 is a
pole of order 1 of the resolvent RT : C \σ(T ) → L(X),RT (λ ) = (T −λ I)−1 . Conse-
quently if 1 is an accumulation of σ(T ) , then T is not uniformly mean ergodic.

Proof. See [15, Theorem 3.16] and [20, Theorem 2.7]. �
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THEOREM 3.7. Suppose ψ ∈ H(U) which holds (3.1) and Mψ is a bounded
operator on the Besov space Bp , then Mψ is uniformly mean ergodic on Bp if and
only if ||ψ ||∞ � 1 and either ψ ≡ ξ for some ξ ∈ ∂U or 1

1−ψ ∈ H∞(U) .

Proof. Let ||ψ ||∞ � 1. Consider that (Mψ )[n] f (z) = f (z)
n ∑n

m=1(ψ(z))n . So if ψ ≡
1, we can easily see ||(Mψ )[n]−I||→ 0 when n→∞ , where I is the identity operator on

Bp . In the case ψ ≡ ξ , where ξ 
= 1, we have (Mψ )[n] = ξ+ξ 2+...+ξ n

n f = f
n

ξ (1−ξ n+1)
1−ξ

and clearly ||(Mψ )[n]|| → 0. If 1
1−ψ ∈ H∞(U), an apply of propositon (1.4) shows that

the function 1
1−ψ ∈ M(Bp) and M 1

1−ψ
is bounded on Bp , it means that 1 /∈ σ(Mψ )

and since Mψ is power bounded, Dunford-Lin Theorem guaranties the uniform mean
ergodicity of Mψ on Bp .

Conversely; assume that Mψ is uniformly mean ergodic on Bp . So by Theorems
(3.1) and (3.2) it is power bounded and ||ψ ||∞ � 1. Suppose ψ is not uni- modular
constant function, so |ψ(z)|< 1 for all z∈U , this get us that ||(Mψ )[n]||→ 0 as n→∞ .
Also ker(I−Mψ)= 0 and power boundedness of Mψ implies that limn→∞

1
n ||Mn

ψ ||= 0,

Proposition 2.16 of [1] confirms that I −Mψ is an isomorphism on Bp , i.e. M−1
1−ψ =

M 1
1−ψ

is bounded on Bp , thus 1
1−ψ ∈ H∞(U) . �
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