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Abstract. It is known that there exists an ordered vector majorizing any ordered vector of pos-
sible multiplicities of eigenvalues of the star-patterned matrix. The same situation occurs in the
problem of small transverse vibrations of a star graph of Stieltjes strings. We show that for a
certain class of prolate trees of Stieltjes strings there exists an ordered vector majorizing any
ordered vectors of possible eigenvalue multiplicities of spectral problems on such trees.

1. Introduction

This paper is devoted to spectral problems associated with small transverse vibra-
tions of tree graphs, edges of which are Stieltjes strings [4, 9]. Such vibrations are
described by second-order difference equations. The same equations appear in various
fields of physics such as synthesis of electrical circuits [6, p. 129], and longitudinal
vibrations of point masses connected by springs [11]. Eliminating time dependence in
these equations, we arrive at a spectral problem for a tree patterned matrix (see [8]).
Such spectral problems can have multiple eigenvalues. The paper deals with estimating
multiplicities of these eigenvalues.

Massless elastic thread-bearing beads (point masses) are called Stieltjes string [4].
Small transverse vibrations of such a string are described by the equations

vk(t)− vk+1(t)
lk

+
vk(t)− vk−1(t)

lk−1
+mkv

′′
k (t) = 0 (k = 1,2, · · · ,n),

where vk(t) is the transverse displacement of the k th bead of mass mk and lk is the
distance between the beads of masses mk−1 and mk . We assume the number n of beads
to be finite.

Separating of variables vk(t) = ukeiλ t and z = λ 2 lead to

uk −uk+1

lk
+

uk −uk−1

lk−1
− zmkuk = 0 (k = 1,2, · · · ,n), (1)
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where z is the spectral parameter. It is known (see e.g. [4, Supplement II] or [18, p.
55]) that the eigenvalues of the spectral problem which consists of (1) and the Dirichlet
boundary conditions

u0 = un+1 = 0 (2)

are simple, and for any sequence of distinct positive numbers {zk}n
k=1 and any posi-

tive number l there exist sequences {mk}n
k=1 , {lk}n

k=0 of positive numbers such that
∑n

k=0 lk = l and {zk}n
k=1 is the spectrum of problem (1)–(2). A problem (1), (2) on an

interval we call Dirichlet problem.
Equations (1) on the edges of metric trees were considered in [5, 8, 10, 12]. The

corresponding spectral problems may have multiple eigenvalues. The number of multi-
ple eigenvalues and their possible multiplicities depend on the form of the tree and the
number of beads on the edges.

If the form of a tree is given together with the numbers of the beads on the edges,
then it implies restrictions on possible multiplicities of the eigenvalues. For a star
graph, such restrictions are known [24]: if {p↓i }r

i=1 is the vector of multiplicities in
decreasing order, and Nj is the number of edges for which the number of masses is
� j ( j = 1,2, · · · ,n1) . Then the vector {N1,N2, · · · ,Nn1} Hardy-Littlewood majorizes

{p↓1, p
↓
2, · · · , p↓r} . It should be mentioned that those restrictions on the multiplicities of

eigenvalues are similar to the ones obtained in [3, 16] for the so-called tree-patterned
matrices if the corresponding tree is a generalized star graph. The difference is that if
the beads in [24] are considered as the vertices of the corresponding generalized star
graph then we have to require a bead to be placed at the central vertex to have the same
situation as in [3, 16].

Unfortunately, there is no general answer about restrictions on eigenvalue multi-
plicities for a spectral problem on an arbitrary tree as well as for a spectral problem on
an arbitrary tree-patterned matrix despite many particular results (for generalized star
graphs, for double generalized stars) which have been established for tree-patterned
matrices (see [15, 16, 17].)

The objects of investigation in this paper are spectral problems on a particular case
of trees of Stieltjes strings (so-called prolate weighted trees). Since our tree is a metric
we measure lengths in meters while combinatorial length as usually means the number
of edges in a path. However, it is important to characterize a path by the number of
beads in it. So we consider trees of Stieltjes strings as weighted graphs meaning the
number of the beads on an edge to be the weight of the edge. We call this number
of beads the weight of the path. A prolate tree of Stieltjes strings T is rooted at the
beginning of the path P := v0 → v1 → ··· → vτ of the maximal weight. If a subtree
Tj is joined to P at a vertex vi , then the maximal weight of the paths in the subtree
Tj does not exceed the weight of any of the edges vi−1vi and vivi+1 (see Definition 3
below).

The organization of this paper is as follows. In Section 2 we start with auxiliary re-
sults on spectral problems on arbitrary trees. In Section 3, we consider prolate weighted
trees and we show that there exists an ordered vector majorizing the ordered vector of
multiplicities of eigenvalues of the spectral problem on such a tree and propose how to
find this majorizing vector.
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2. Auxiliary results

In this section, we state some auxiliary results which will be used subsequently.
Let T be a plane metric tree with q edges. We denote by vi the vertices, by d(vi)
their degrees, by e j the edges, and by l j their lengths. In this section, an arbitrary
pendant vertex v0 is chosen to be the root. Local coordinates for edges identify the
edge e j with the interval [0, l j] so that the local coordinate increases as the distance
to the root increases. Each edge e j is divided into n j + 1 subintervals of the lengths
l j
0, l

j
1, · · · , l j

n j by beads of masses mj
1,m

j
2, · · · ,mj

n j with l j
k > 0, mj

k > 0 and l j = ∑
n j
k=0 l j

k .
The beads and the subintervals are enumerated such that the upper index corresponds
to the index of the edge. Each pendant vertex, if it is not the root, is located at the end
of a subinterval of the length l j

n j where j is the index of the edge. The root is at the
beginning of a subinterval of the lengths lr0 on the edges er incident with v0 . Each
interior vertex vi has one incoming edge e j ending with a subinterval of the length l j

n j ,
while each outgoing edge er starts with a subinterval of length lr0 . It is assumed that the
tree is stretched and the pendant vertices are fixed. The tree can vibrate in the direction
orthogonal to the equilibrium position of the strings. We denote by v j

k(t) the transverse

displacement of the bead of mass mj
k at time t . If an edge e j is incoming into an

interior vertex vi , then the displacement of the incoming end of the edge is denoted
by v j

n j+1(t) , while if an edge er is outgoing from the vertex vi then the displacement

of the outgoing end of the edge is denoted by vr
0(t) . In virtue of the above notations,

vibrations of such a graph can be described by the system of equations

v j
k(t)− v j

k+1(t)

l j
k

+
v j
k(t)− v j

k−1(t)

l j
k−1

+mj
k

∂ 2v j
k

∂ t2
(t) = 0, (3)

where k = 1,2, · · · ,n j ; n j � 1, j = 1,2, · · · ,q . For each interior vertex with an incoming
edge e j and outgoing edges er , we impose the continuity conditions

vr
0(t) = v j

n j+1(t) (4)

for all r corresponding to outgoing edges. Balance of forces at such a vertex implies

∑
r

vr
1(t)− vr

0(t)
lr0

=
v j
n j+1(t)− v j

n j(t)

l j
n j

, (5)

where the sum in the left-hand side is taken over all the outgoing edges. We impose
Dirichlet boundary condition

v j
n j+1(t) = 0 (6)

at each edge e j incident with a pendant vertex (except for the root).
At the root we impose the Dirichlet condition

vr
0(t) = 0. (7)
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Substituting v j
k(t) = u j

ke
iλ t into (3)–(7) and denoting z = λ 2 , we obtain

u j
k −u j

k+1

l j
k

+
u j

k −u j
k−1

l j
k−1

+mj
kzu

j
k = 0, (8)

where k = 1,2, · · · ,n j and j = 1,2, · · · ,q , for each interior vertex with an incoming
edge e j and outgoing edges er , we infer

ur
0 = u j

n j+1, (9)

∑
r

ur
1−ur

0

lr0
=

u j
n j+1−u j

n j

l j
n j

, (10)

for each edge e j incident with a pendant vertex (except for the root):

u j
n j+1 = 0, (11)

and at the root:

ur
0 = 0. (12)

The problem (8)–(12) possesses a non-trivial solution for a discrete set of values of z
(see, e.g. [21], or Sec. 4.1. in [19]). These values νi are called eigenvalues. The
corresponding solutions are called eigenvectors.

Now we consider attaching edges to a tree. We attach an edge which we denote e0

at a pendant vertex v1 of the initial tree T and obtain a new tree T ′ (see Fig. 1).

Figure 1: Trees T , T ′ and T ′′ .

LEMMA 1. Let ν be an eigenvalue of multiplicity p of problem (8)–(12) on a
tree T . Among the eigenvectors corresponding to ν let one of them be such that its
projection {u1

1,u
1
2, · · · ,u1

n1
} on the edge e1 incident with v1 is not identically zero.

1. If ν is also an eigenvalue of the Dirichlet problem

u0
k −u0

k+1

l0k
+

u0
k −u0

k−1

l0k−1

−m0
kzu

0
k , k = 1,2, · · · ,n0, (13)

u0
0 = u0

n0+1 = 0, (14)
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then ν is an eigenvalue of problem (8)–(12) on T ′ of multiplicity p and the corre-
sponding eigenspace can be chosen such that all the linearly independent eigenvectors
attain zero value at the vertex v1 and all the eigenvectors have nonzero components on
the edge e0 .

2. If ν is not an eigenvalue of problem (13)–(14), then ν is an eigenvalue of
problem (8)–(12) on T ′ of multiplicity of p−1 .

Proof. Statement 1 was proved in [23, Lemma 2.1].
If ν is not an eigenvalue of problem (13)–(14), then all the eigenvectors of problem

(8)–(12) on T ′ corresponding to ν have identically zero component on e1 and on e0 .
The number of linearly independent eigenvectors of problem (8)–(12) on T ′ with zero
component on e1 and on e0 equals the number of linearly independent eigenvectors of
(8)–(12) on T with zero component on e1 . Since all the eigenvectors except for this
one can be continued by 0 onto e0 , the number of eigenvectors of problem (8)–(12) on
T ′ is p−1. �

REMARK 1. It follows from [4] that for any sequence of positive numbers 0 <
ν0

1 < ν0
2 < · · · < ν0

n0
and any l > 0, there exist sequences {m0

k}n0
k=1 and {l0k}n0

k=0 such
that ∑n0

k=0 l0k = l and {ν0
s }n0

s=1 coincides with the spectrum of problem (13)–(14).

In what follows, we need the notion of vector majorization which goes back to
Muirhead [7] for the case of vectors of integers and was generalized to vectors of non-
negative numbers by Hardy, Littlewood, and Pólya [13] (also see [20]).

DEFINITION 1. Let x = {x j}s
j=1 and y = {y j}t

j=1 be two vectors with nonnega-
tive entries ordered nonincreasingly, i.e., x1 � x2 � · · ·� xs � 0, y1 � y2 � · · ·� yt � 0.
If s = t , then x is said to majorize y , written x � y , if

t

∑
j=1

x j =
t

∑
j=1

y j,
τ

∑
j=1

x j �
τ

∑
j=1

y j (τ = 1,2, · · · , t−1).

If s �= t , we fill up the shorter vector with zeros, i.e., we set x̃ := {x j}max{s,t}
j=1 and

ỹ := {y j}max{s,t}
j=1 with x j = 0 for j = s + 1, · · · ,max{s,t} and y j = 0 for j = t +

1, · · · ,max{s, t} . Then x is said to majorize y , x � y , if x̃ majorizes ỹ , x̃ � ỹ .

NOTATION 1. 1. For a vector x = {x j}s
j=1 ∈ R

s we denote by x↓ = {x↓j}s
j=1 ∈ R

s

the vector with the same entries but ordered nonincreasingly, i.e.,

x↓1 � x↓2 � · · · � x↓s , x↓j = xπ( j), j = 1,2, · · · ,s,

for some permutation π of {1,2, · · · ,s} .

For example, by Definition 1 and Notation 1 we infer that if x = {3,1,2,5,2,4}
then x↓ = {5,4,3,2,2,1} .
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Now we consider the tree T ′′ consisting of the tree T with the edges E1,E2, · · · ,Eτ
attached at the vertex v1 (see Fig. 1). The masses of the beads on the edge Ej with
j = 1,2, · · · ,τ we denote by m̃ j

k (k = 1,2, · · · , ñ j ) and the lengths of the subintervals by

l̃ j
k (k = 0,1, · · · , ñ j ). We assume that ñ j � ñ0 for all j where ñ0 is the number of beads
on the edge e0 of T ′ .

LEMMA 2. [23, Lemma 2.4] Let {p↓1, p
↓
2, · · · , p↓r′ } be the ordered vector of multi-

plicities of eigenvalues of (8)–(12) on the tree T ′ = T ∪e0 and let ν↓
k be an eigenvalue

of multiplicity p↓k for all k ∈ {1,2, · · · ,r′} . Let ν0
k = ν↓

k for k = 1,2, · · · ,n0 , n0 � r′ ,
where {ν0

k }n0
k=1 is the spectrum of Dirichlet problem (13)–(14) on the edge e0 .

Then there exists a tree T ′′ = T ∪τ
j=1Ej such that the spectrum of problem (8)–(12)

on the tree T ′′ consists of the eigenvalues {ν↓
1 ,ν↓

2 , · · · ,ν↓
r′ } counted with multiplicities

{ p̃↓1, p̃
↓
2, · · · , p̃↓r′ } where p̃↓k = p↓k +max{Ñk−1,0} , and Ñk := #{ j ∈ {1,2, · · · ,τ} : ñ j �

k} . Here #{} means the number of elements in the set {} .

REMARK 2. From the proof of Lemma 2.5 and its proof in [23] it is clear that for
any of Ej and any eigenvalue ν0

k of problem (8)–(12) on the tree T ′′ , there is such an
eigenvector that its projection on Ej is not identically zero. This eigenvector is among
the linearly independent eigenvectors corresponding to the eigenvalue ν0

k .

REMARK 3. The condition ‘the spectrum of problem (8)–(12) on the tree T ′′ con-
sists of the eigenvalues {ν↓

1 ,ν↓
2 , · · · ,ν↓

r′ } ’ in Lemma 2 implies that any of the numbers
of the beads on the edges Ej do not exceed the number of beads on e0 . This follows
from the proof of Lemma 2.4 in [23] and from Theorem in [22].

3. Multiplicities of eigenvalues for a prolate weighted tree

In this section, we prove that there exists an ordered vector majorizing any ordered
vectors of possible eigenvalue multiplicities of the spectral problem on a so-called pro-
late weighted tree and we show how to find this majorizing vector. For convenience,
we slightly change the enumeration of edges and introduce the notion of the height of
a tree in the following:

DEFINITION 2. Let T be a tree of Stieltjes strings. We call the height of the tree
the maximal weight of the paths in this tree. We choose one of the two pendant vertices
of the path of maximal weight (or one of them if it is not unique) as the root and denote
it by v0 . We direct the edges away from the root.

DEFINITION 3. The simplest directed weighted tree is a path and we attribute this
tree to the class of prolate weighted trees. Let P = v0 → v1 → ···→ vm be the maximal
weight path of the tree T rooted at v0 . Let Ti, j ( j = 3,4, · · · ,d(vi)) be the subtrees
rooted at vi ∈ P ( i = 1,2, · · · ,vm−1 ) such that P∪∪i=1,2,···,m−1(∪ j=3,4,···,d(v j)Ti, j) = T
and Ti, j ∩Ti, j′ = {vi} for j �= j′ , Ti, j ∩Ti′, j′ = 0 for i �= i′ .
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Let for each i the root vi of the subtrees Ti, j be the starting vertex of the path of
the maximal weight in Ti, j . Denote by Li, j the height of Ti, j . If all Ti, j are prolate and
the numbers of beads on each of the edges vi−1vi and vivi+1 are not less than any of
Li, j ( j = 3,4, · · · ,d(vi)) then T is said to be prolate (an example of a prolate tree T
and its subtrees Ti, j is given at Fig. 2 where the beads are denoted by bullets).

Figure 2: Prolate tree T and its subtrees Ti, j .

REMARK 4. In the case of a snowflake graph considered in [23], the condition of
‘massive core’ (n1 < n0 ) guarantee that the snowflake graph is a prolate tree.

Using Definitions 2 and 3, we give the main result of this paper, we show that
there exists an ordered vector majorizing the ordered vectors of possible multiplicities
of eigenvalues of the spectral problem for an arbitrary prolate weighted tree.

THEOREM 1. Let T be a prolate weighted tree rooted at v0 the beginning of the
maximal weight path P with the side trees Ti, j ( j = 3,4, · · · ,d(vi); i = 1,2, · · · ,m−1) .
Let {Mi, j

1 ,Mi, j
2 , · · · ,Mi, j

Li, j
} be the majorizing vector for multiplicities of eigenvalues of

problem (8)–(12) on Ti, j and Li, j be the height of Ti, j . Then

1. The ordered vector {M̃1,M̃2, · · · ,M̃L} majorizes {p↓1, p
↓
2, · · · , p↓r} which is any

possible ordered vector for multiplicities of eigenvalues of problem (8)–(12) on T . Here

M̃k :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1+
m−1

∑
i=1

d(vi)

∑
j=3

Mi, j
k , if k � max

j=3,4,···,d(vi),i=1,2,···,m−1
Li, j,

1, if max
j=3,4,···,d(vi),i=1,2,···,m−1

Li, j < k � L,

0, if k > L,
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and L is the weight of P.
2. There exists a distribution of masses such that the number r of distinct eigen-

values equals the height of the tree T and the corresponding ordered vector of multi-
plicities

{ p̌↓1, p̌
↓
2, · · · , p̌↓r} = {M̃1,M̃2, · · · ,M̃L}.

3. In case of { p̌↓1, p̌
↓
2, · · · , p̌↓r} = {M̃1,M̃2, · · · ,M̃L} , for each eigenvalue there is

an eigenvector with the component on the edge incident with the root of T not zero
identically.

Proof. Let us start with the maximal weight path P = v0v1,v1v2, · · · ,vm−1vm . De-
note by ni the number of beads on the edge vi−1vi and define the number J by the

equation nJ = maxi∈{1,2,···,m} ni and choose any positive numbers ν(J)
1 ,ν(J)

2 , · · · ,ν(J)
nJ .

According to Remark 1, we may choose masses of the beads on the edge vJ−1vJ such

that the numbers ν(J)
1 ,ν(J)

2 , · · · ,ν(J)
nJ are eigenvalues of the Dirichlet problem on the

edge vJ−1vJ . Also we may choose the masses of the beads and the lengths of the

subintervals on the edges vi−1vi with i∈ {1,2, · · · ,m}\{J} such that ν(i)
1 = ν(J)

1 ,ν(i)
2 =

ν(J)
2 , · · · ,ν(i)

ni = ν(J)
ni for all i = 1,2, · · · ,m , where {ν(i)

k }ni
k=1 are eigenvalues of the

Dirichlet problem on the edge vi−1vi .
Now let us fix positive numbers j and i and attach the maximal weight path Pi, j :

vi =: v(i, j)
0 → v(i, j)

1 → ··· → v(i, j)
mi, j of the subtree Ti, j at the vertex vi . Denote by n(i, j)

s

the number of beads on the edge v(i, j)
s−1v(i, j)

s . Define the number Ji, j by the equation

nJi, j = maxs∈{1,2,···,mi, j} n(i, j)
s , where mi, j is the number of edges in Pi, j . Denote by

{ν(i, j,s)
k }n(i, j)

s
k=1 the eigenvalues of the Dirichlet problem on the edge v(i, j)

s−1 v(i, j)
s .

Since the path Pi, j is bead-shorter than vi−1vi and vivi+1 , in terms of Lemma 1 we
choose masses of the beads and the lengths of the subintervals on the edges of Pi, j such

that ν(i, j,s)
1 = ν(J)

1 ,ν(i, j,s)
2 = ν(J)

2 , · · · ,ν(i, j,s)

n
(i, j)
s

= ν(J)

n
(i, j)
s

are eigenvalues of the Dirichlet

problem on the edge v(i, j)
s−1 v(i, j)

s .
Applying Lemma 2 to the tree which consists of the paths P and Pi, j , we con-

clude that the ordered vector of multiplicities of eigenvalues of problem (8)–(12) can
be {2,2, · · · ,2︸ ︷︷ ︸

Li, j

,1,1, · · · ,1︸ ︷︷ ︸
L−Li, j

} . Since all the eigenvalues of Dirichlet problem of Pi, j are

distinct and the total number of eigenvalues of problem (8)–(12) on P∪Pi, j is L+Li, j ,
we conclude that {2,2, · · · ,2︸ ︷︷ ︸

Li, j

,1,1, · · · ,1︸ ︷︷ ︸
L−Li, j

} majorizes any ordered vector of multiplici-

ties of eigenvalues of problem (8)–(12) on P∪ Pi, j . If we attach all the paths Pi, j

( j ∈ {3,4, · · · ,d(vi)}; i ∈ {1,2, · · · ,m−1}) to P , then we obtain a caterpillar graph
(see [14] for the definition) P∪∪i=1,2,···,m−1(∪ j=3,4,···,d(v j)Pi, j) . Consequently, in the
same way as above we arrive at the following results:

1. The ordered vector {M1,M2, · · · ,ML} majorizes {p↓1, p
↓
2, · · · , p↓r} that is any

possible ordered vector of multiplicities of eigenvalues of the problem (8)–(12) on P∪
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∪i=1,2,···,m−1

(
∪ j=3,4,···,d(v j)Pi, j

)
. Here r is the number of distinct eigenvalues of the

problem (8)–(12) on the above caterpillar tree and

Mk :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1+
m−1

∑
i=1

Nk(i), if k � max
j=3,4,···,d(vi),i=1,2,···,m−1

ni, j,

1, if max
j=3,4,···,d(vi),i=1,2,···,m−1

Li, j < k � L,

0, if k > L.

2. There exists a distribution of masses such that the number r of distinct eigen-
values equals the height L of the tree P∪∪i=1,2,···,m−1(∪ j=3,4,···,d(v j)Pi, j) and the corre-
sponding ordered vector of multiplicities of eigenvalues satisfies

{ p̂↓1, p̂
↓
2, · · · , p̂↓L} = {M1,M2, · · · ,ML}. (15)

By the definition of [14], the graph of Fig. 3 obtained from the graph of Fig. 2 is a
caterpillar graph.

Figure 3: Prolate caterpillar subtree for T .

Now we apply the above procedure to the subtrees Ti, j and then to their subtrees
and so on. Finally we arrive at Statements 1 and 2 of our theorem. Statement 3 holds
clearly from construction of the tree T with { p̌↓1, p̌

↓
2, · · · , p̌↓L} = {M̃1,M̃2, · · · ,M̃L} . �

EXAMPLE 1. It is prolate weighted graph in Fig. 2 because n1 = n2 = n1,3 = 5 �
n1,4 and n2 > n3 = 4 = n2,3 = n2,4 > n2,5 = 3. Applying Theorem 1 to the tree of Fig.
2, we arrive at the following majorizing vector

{9,6,6,4,2,1,1,1,1,1,1,1,1,1}� {p↓1, p
↓
2, · · · , p↓r}.

Here {p↓1, p
↓
2, · · · , p↓r} is any possible ordered vector of multiplicities of eigenvalues of

the tree in Fig. 2 and r is the number of distinct eigenvalues of the problem on the tree.

REMARK 5. Since all ni > 0, it follows from Theorem 1 that M̃1 = ppen − 1,
where ppen is the number of pendant vertices which agrees with the result in [2].

It was proved in [22] that the number of distinct eigenvalues is not less than the
length of the maximal weight path in the tree. From Statement 3 of Theorem 1, we
obtain the following remark:



694 V. PIVOVARCHIK, G. WEI AND L. YANG

REMARK 6. According to Statement 2 of Theorem 1, there exists a distribution
of masses on the prolate weighted tree T such that the number of distinct eigenvalues
of problem (8)–(12) can be equal to the length L of maximal weight path (height) of
the tree T . If the tree of Stieltjes strings is not prolate then this statement is not true.
For example the height of the tree described on Fig. 4 is 2 but the minimal number
of distinct eigenvalues is 3. Similar situation is described in [1] for the case of acyclic
matrices.

Figure 4: Example of nonprolate tree.
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