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ON THE SOLVABILITY OF GENERALIZED

SYLVESTER OPERATOR EQUATIONS

HUA WANG, XIAOLIN SUN AND JUNJIE HUANG ∗

(Communicated by B. Jacob)

Abstract. In this paper, some necessary and sufficient solvability conditions are established for
the generalized Sylvester operator equations AXB−CXD = E , AXB−CYD = E and AX +
YB+CZ = E on Hilbert spaces, respectively. Moreover, we give a solvability condition for the
∗ -Sylvester operator equation AX −X∗B = C , which holds for finite matrices due to Wimmer
(1994).

1. Introduction

The Sylvester matrix equation has broad applications in many fields such as neural
network, feed back control and robust control, which has attracted the interest of many
authors. Some methods have been developed to investigate solvability of the Sylvester
equation and generalized Sylvester equation, including the rank, generalized inverse,
equivalence and generalized singular-value decomposition of matrices [1, 2, 4, 10, 11,
20].

In 1952, Roth [15] proved that the Sylvester matrix equations AX −XB = C and

AX −YB = C have solutions if and only if

(
A C
0 B

)
and

(
A 0
0 B

)
are, respectively,

similar and equivalent, which are called Roth theorem. It has been extended to the
generalized Sylvester matrix equation and systems of matrix equations. For example,
Wimmer [22] obtained that the matrix equation X −AXB = C has a solution if and

only if

((
A C
0 I

)
,

(
I 0
0 B

))
and

((
A 0
0 I

)
,

(
I 0
0 B

))
are simultaneously equiva-

lent. In 1994, Wimmer [23] extended Roth theorem to a pair of generalized Sylvester
equations AiX −YBi = Ci (i = 1,2) , and the system has a simultaneous solution if

and only if

(
Ai Ci

0 Bi

)
and

(
Ai 0
0 Bi

)
are simultaneously equivalent. In 2012, by using

equivalence relations of the block matrices, Lee and Vu [10] investigated some solvabil-
ity conditions for systems of matrix equations AiX −XBi = Ci , AiX −YBi = Ci , and
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AiX −DXBi = Ci (i ∈ I ) , respectively. In 2015, Dmytryshyns [8] obtained Roth-type
theorem for systems of matrix equations including Sylvester and ∗ -Sylvester equa-
tions, which includes most of present results. Moreover, a necessary and sufficient
solvability condition is also given in the paper for the systems of matrix equations
AiXkKi −LiXjBi = Ci,Fi′Xk′Mi′ −Ni′X

∗
j′Gi′ = Hi′ . Finally, these results were extended

to the systems of complex matrix equations by Dmytryshyn [9] in 2017.
In [12, 14], counter-examples are given to show that Roth theorem does not hold

in the infinite dimensional space. However, Rosenblum [14] proved that Roth theorem
is valid when A and B are selfadjoint on Hilbert spaces. In 1982, Schweinsberg [16]
extended the result to normal operators and finite rank operators on Hilbert spaces.
In 1986, Tong [17] gave some necessary and sufficient solvability conditions of the
operator equation AXB−X = C for normal operators and finite rank operators, and
these conditions are different from Roth theorem. One of the results is that the operator
equation AXB−X = C has a solution if and only if there exists an invertible operator(

M N
P Q

)
such that

(
A C
0 I

)(
M N
P Q

)(
I 0
0 B

)
=

(
I 0
0 B

)(
M N
P Q

)(
A 0
0 I

)

for normal operators A and B on Hilbert spaces. For some more recent references
which study Sylvester equation, see [6, 7].

Motivated by Roth theorem and the paper [17], we investigate the generalized
Sylvester operator equations AXB−CXD= E , AXB−CYD = E and AX +YB+CZ =
E , respectively. In this paper, we first give some necessary and sufficient solvability
conditions for the operator equation AXB−CXD = E . Then, the solvability conditions
are also presented for the operator equations AXB−CYD = E and AX +YB+CZ =
E by using equivalence relations of block operator matrices, respectively. In 1994,
Wimmer [24] gave a necessary and sufficient solvability condition for the ∗ -Sylvester
equation AX − X∗B = C for finite matrices. Here, the result is extended to normal
operators on Hilbert spaces. On the study of the ∗ -Sylvester equation, we refer the
reader to [3, 5, 18, 19, 22] and their references.

Let H be a Hilbert space. The set B(H ) consists of all bounded linear operators
on H , A∗ is the adjoint of A ∈ B(H ) , and I is the identity operator on H .

We collect some lemmas, which are important in later proofs.

LEMMA 1.1. [13, Putnam-Fuglede theorem] Let A,B ∈ B(H ) be normal oper-
ators. If AX = XB for X ∈ B(H ) , then A∗X = XB∗ .

An extension of the Putnam-Fuglede theorem is as follows.

LEMMA 1.2. [21] Let A,B,C,D ∈ B(H ) be normal operators, A commutes
with C and B commutes with D. If AXB = CXD for X ∈ B(H ) , then A∗XB∗ =
C∗XD∗ .
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LEMMA 1.3. [16] Let M,N,P,Q ∈ B(H ) . If the operator matrix

(
M N
P Q

)
is

invertible, then PP∗ +QQ∗ and M∗M +P∗P are invertible.

2. Solvability of the operator equation AXB−CXD = E

In this section, we consider the solvability conditions of the generalized Sylvester
operator equation AXB−CXD = E .

THEOREM 2.1. Let A,B,C,D ∈ B(H ) be normal operators and E ∈ B(H ) .
Then the equation AXB−CXD = E has a solution X ∈ B(H ) if and only if there

exist invertible operators Ui =
(

Mi Ni

Pi Qi

)
∈ B(H ⊕H ) (i = 1,2,3) with M1 = M2

and P1 = P2 = P3 such that

U1

(
A E
0 D

)
=

(
A 0
0 D

)
U2, (2.1)

U1

(
C 0
0 I

)
=

(
C 0
0 I

)
U3, (2.2)

U3

(
I 0
0 B

)
=

(
I 0
0 B

)
U2. (2.3)

Proof. First, let X ∈B(H ) be a solution of AXB−CXD =E . Then the operators

U1 =
(

I CX
0 I

)
, U2 =

(
I XB
0 I

)
and U3 =

(
I X
0 I

)
are invertible and satisfy (2.1)–

(2.3).

Conversely, assume that Ui =
(

Mi Ni

Pi Qi

)
(i = 1,2,3) are invertible operators such

that (2.1)–(2.3) hold, where M1 = M2 and P1 = P2 = P3. Then we have

M1A = AM2, M1E +N1D = AN2, P1A = DP2, P1E +Q1D = DQ2, (2.4)

M1C = CM3, N1 = CN3, P1C = P3, Q1 = Q3, (2.5)

M3 = M2, N3B = N2, P3 = BP2, Q3B = BQ2. (2.6)

The Putnam-Fuglede theorem implies

M∗
1A = AM∗

1 , M∗
1C = CM∗

1 , P∗
1 D = AP∗

1 , P∗
1 = CP∗

1 , P∗
1 = P∗

1 B

by the first and third equalities in (2.4)–(2.6). So, from the second and fourth equalities
in (2.4)–(2.6), it follows that

M∗
1M1E = M∗

1AN2−M∗
1N1D

= M∗
1AN3B−M∗

1CN3D

= AM∗
1N3B−CM∗

1N3D
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and

P∗
1 P1E = P∗

1 DQ2−P∗
1 Q1D

= AP∗
1 Q2 −CP∗

1 Q1D

= AP∗
1 BQ2−CP∗

1 Q1D

= AP∗
1 Q1B−CP∗

1 Q1D.

Conseqently,

(M∗
1M1 +P∗

1 P1)E = A(M∗
1N3 +P∗

1 Q1)B−C(M∗
1N3 +P∗

1 Q1)D. (2.7)

Note that

P∗
1 P1A = P∗

1 DP2 = AP∗
1 BP2 = AP∗

1 P1,

P∗
1 P1C = P∗

1 P1 = CP∗
1 P1,

M∗
1M1A = M∗

1AM1 = AM∗
1M1,

M∗
1M1C = M∗

1CM1 = CM∗
1M1.

Obviously, M∗
1M1 +P∗

1 P1 commutes with A and C . In combination with the invert-
ibility of M∗

1M1 +P∗
1 P1 shown by Lemma 1.3, it is immediate that (M∗

1M1 +P∗
1 P1)−1

commutes with A and C . Therefore, from (2.7), we arrive at

E = A(M∗
1M1 +P∗

1 P1)−1(M∗
1N3 +P∗

1 Q1)B−C(M∗
1M1 +P∗

1 P1)−1(M∗
1N3 +P∗

1 Q1)D,

which means that X = (M∗
1M1 +P∗

1 P1)−1(M∗
1N3 +P∗

1 Q1) is a solution of the equation
AXB−CXD = E . �

If, in addition, B commutes with D in Theorem 2.1, then the equation will allow
more relaxed solvability conditions.

THEOREM 2.2. Let A,B,C,D ∈ B(H ) be normal operators, E ∈ B(H ) and
BD = DB. Then the equation AXB−CXD = E has a solution X ∈ B(H ) if and

only if there exist invertible operators Ui =
(

Mi Ni

Pi Qi

)
∈B(H ⊕H ) (i = 1,2,3) with

M1 = M2 and P1 = P3 such that (2.1)–(2.3) hold.

Proof. We only need to note the following fact. From the third equalities in (2.6)
and (2.4) and BD = DB , we infer that

DP1 = DBP2 = BDP2 = BP1A,

which shows that

P∗
1 D = AP∗

1 B

by Lemma 1.2. The rest of the proof proceeds similar to Theorem 2.1. �
In Theorem 2.2, it is clear that U1 =U3 for C = I , which is collected as a corollary.
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COROLLARY 2.1. Let A,B,D ∈ B(H ) be normal operators and BD = DB.
Then the equation AXB− XD = E has a solution X ∈ B(H ) if and only if there
exist invertible operators U1,U2 ∈ B(H ) such that

U1

(
A E
0 D

)
=

(
A 0
0 D

)
U2, U1

(
I 0
0 B

)
=

(
I 0
0 B

)
U2. (2.8)

Note that the condition (2.8) is equivalent to

U1

(
A−λ I E

0 D−λB

)
=

(
A−λ I 0

0 D−λB

)
U2,

i.e.,

(
A−λ I E

0 D−λB

)
and

(
A−λ I 0

0 D−λB

)
are equivalent for any complex num-

ber λ .

If B = C = I , then, from Theorem 2.1, the result in [16] is derived.

COROLLARY 2.2. [16] Let A,B ∈ B(H ) be normal operators. Then the equa-
tion AX −XD = E has a solution X ∈ B(H ) if and only if there exists an invertible

operator U ∈ B(H ) such that U

(
A E
0 D

)
=

(
A 0
0 D

)
U, i.e.,

(
A E
0 D

)
and

(
A 0
0 D

)

are similar.

In the following, we give other necessary and sufficient solvability conditions of
the equation AXB−CXD = E, which is different from Roth theorem.

THEOREM 2.3. Let A,B,C,D ∈ B(H ) be normal operators and BD = DB.
Then the equation AXB−CXD = E has a solution X ∈ B(H ) if and only if there

exists an invertible operator

(
M N
P Q

)
∈ B(H ⊕H ) with BP = P such that

(
I 0
0 B

)(
M CN
P Q

)(
A E
0 D

)
=

(
A 0
0 D

)(
M N
P Q

)(
I 0
0 B

)
, (2.9)

(
M CN
P Q

)(
C 0
0 I

)
=

(
C 0
0 I

)(
M N
P Q

)
. (2.10)

Proof. Let X ∈ B(H ) be a solution of AXB−CXD = E . Then the invertible

operator

(
I X
0 I

)
satisfies (2.9) and (2.10).

Conversely, assume that

(
M N
P Q

)
is an invertible operator such that (2.9) and

(2.10) hold and BP = P. Then

MA = AM, ME +CND = ANB, BPA = DP, (2.11)

BPE +BQD = DQB, MC = CM, PC = P.
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By the third equality in (2.11) and the assumption BD = DB , we infer from Lemma 1.2
that

P∗D = AP∗B.

Similar to the proof of Theorem 2.1, we conclude

E = A(M∗M +P∗P)−1(M∗N +P∗BQ)B−C(M∗M +P∗P)−1(M∗N +P∗BQ)D.

The proof is completed. �
According to Theorem 2.3, the following result is obvious for C = I .

COROLLARY 2.3. Let A,B,D ∈ B(H ) be normal operators and BD = DB.
Then the equation AXB− XD = E has a solution X ∈ B(H ) if and only if there

exists an invertible operator

(
M N
P Q

)
∈ B(H ⊕H ) with BP = P such that

(
I 0
0 B

)(
M N
P Q

)(
A E
0 D

)
=

(
A 0
0 D

)(
M N
P Q

)(
I 0
0 B

)
.

For the operator equation AXB−XD = E , we also have the following solvability
conditions.

THEOREM 2.4. Let A,B,D ∈ B(H ) be normal operators and BD = DB. Then
the equation AXB−XD = E has a solution X ∈ B(H ) if and only if there exists an

invertible operator

(
M N
P Q

)
∈ B(H ⊕H ) with BQ = QB and DP = P such that

(
A E
0 D

)(
M NB
P Q

)
=

(
M N
BP Q

)(
A 0
0 D

)
. (2.12)

Proof. Suppose that X ∈ B(H ) is a solution of AXB−XD = E . Then the in-

vertible operator

(
I −X
0 I

)
satisfies (2.12).

Conversely, assume that

(
M N
P Q

)
is an invertible operator such that (2.12) holds,

where BQ = QB and DP = P. Then

AM +EP = MA, ANB+EQ = ND, DP = BPA, DQ = QD.

Similar to the proof of Theorem 2.1, it turns out that

E = −A(NQ∗ +MAP∗)(PP∗ +QQ∗)−1B− (NQ∗+MAP∗)(PP∗ +QQ∗)−1D,

as a result. �
In Theorem 2.4, when D = I , we obtain the result in [17].
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COROLLARY 2.4. [17] Let A,B ∈ B(H ) be normal operators. Then the equa-
tion AXB−X = E has a solution X ∈ B(H ) if and only if there exists an invertible

operator

(
M N
P Q

)
∈ B(H ⊕H ) with BQ = QB such that

(
A E
0 I

)(
M NB
P Q

)
=

(
M N
BP Q

)(
A 0
0 I

)
.

Similar to Theorem 2.4, we have

THEOREM 2.5. Let A,B,D ∈ B(H ) be normal operators and BD = DB. Then
the equation AXB−XD = E has a solution X ∈ B(H ) if and only if there exists an

invertible operator

(
M N
P Q

)
∈ B(H ⊕H ) with BQ = QB and BP = P such that

(
M N
BP Q

)(
A E
0 D

)
=

(
A 0
0 D

)(
M BN
P Q

)
.

3. Solvability of the operator equation AXB−CYD = E

This section is devoted to the solvability conditions of the operator equations
AXB−CYD = E and AX +YB+CZ = E .

THEOREM 3.1. Let A,B,C,D ∈ B(H ) be normal operators and E ∈ B(H ) .
Then the equation AXB−CYD = E has a solution (X ,Y ) if and only if there exist

invertible operators Ui =
(

Mi Ni

Pi Qi

)
∈B(H ⊕H ) (i = 1,2,3,4) with M1 = M2 = M3

and P1 = P2 = P3 = P4 such that

U1

(
A E
0 D

)
=

(
A 0
0 D

)
U2, (3.1)

U1

(
C 0
0 I

)
=

(
C 0
0 I

)
U3, (3.2)

U4

(
I 0
0 B

)
=

(
I 0
0 B

)
U2, (3.3)

Proof. Similar to the proof of Theorem 2.1, we notice that (2.6) becomes

M4 = M2, N4B = N2, P4 = BP2, Q4B = BQ2. (3.4)

Then

E = A(M∗
1M1 +P∗

1 P1)−1(M∗
1N4 +P∗

1 Q4)B−C(M∗
1M1 +P∗

1 P1)−1(M∗
1N3 +P∗

1 Q1)D,

So, E = AXB−CYD for X = (M∗
1M1 +P∗

1 P1)−1(M∗
1N4 +P∗

1 Q4) and Y = (M∗
1M1 +

P∗
1 P1)−1(M∗

1N3 +P∗
1 Q1) , which completes the proof. �

In particular, we have the result as follows for B = C = I in Theorem 3.1.
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COROLLARY 3.1. Let A,D∈B(H ) be normal operators and E ∈B(H ) . Then
the equation AX −YD = E has a solution (X ,Y ) if and only if there exist invertible

operators Ui =
(

Mi Ni

Pi Qi

)
∈ B(H ⊕H ) (i = 1,2) with M1 = M2 and P1 = P2 such

that

U1

(
A E
0 D

)
=

(
A 0
0 D

)
U2.

According to the proof of Theorem 3.1, we can conclude the corresponding result
on the system of operator equations.

THEOREM 3.2. Let Ak,Bk,Ck,Dk ∈B(H ) be normal operators and Ek ∈B(H ) ,
k = 1,2, · · · ,n. Then the system of equations AkXBk −CkYDk = Ek has a solution

(X ,Y ) if and only if there exist invertible operators Ui =
(

Mi Ni

Pi Qi

)
∈ B(H ⊕H )

(i = 1,2,3,4) with M1 = M2 = M3 and P1 = P2 = P3 = P4 such that

U1

(
Ak Ek

0 Dk

)
=

(
Ak 0
0 Dk

)
U2,

U1

(
Ck 0
0 I

)
=

(
Ck 0
0 I

)
U3,

U4

(
I 0
0 Bk

)
=

(
I 0
0 Bk

)
U2.

We now consider solvability of the equation AX +YB+CZ = E . We first give a
lemma similar to Lemma 1.3.

LEMMA 3.1. If the operator A =

⎡
⎣M N R

P Q S
K L T

⎤
⎦ ∈ B(H ⊕H ⊕H ) is invertible ,

then PP∗+QQ∗ +SS∗ is invertible on H .

Proof. Suppose that PP∗ +QQ∗ + SS∗ is not invertible. Since PP∗ +QQ∗ + SS∗
is self-adjoint, we have

σ(PP∗ +QQ∗+SS∗) = σa(PP∗ +QQ∗+SS∗).

Then there exists a sequence {xn} ⊂ H such that

‖xn‖ = 1 and lim
n→+∞

‖(PP∗ +QQ∗+SS∗)xn‖ = 0.

Thus

lim
n→+∞

‖A (0⊕ xn⊕0)‖2

= lim
n→+∞

〈A A ∗(0⊕ xn⊕0),(0⊕ xn⊕0)〉
= lim

n→+∞
〈(PP∗ +QQ∗+SS∗)xn,xn〉

= 0,
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which shows that A is not invertible, a contradiction. �

THEOREM 3.3. Let A,B,C ∈ B(H) be normal operators and E ∈ B(H ) . Then
the operator equation

AX +YB+CZ = E (3.5)

has a solution (X ,Y,Z) if and only if there exist invertible operators Ui =

⎡
⎣Mi Ni Ri

Pi Qi Si

Ki Li Ti

⎤
⎦

(i = 1,2) with P1 = P2 = S2 and Q1 = Q2 such that

U1

⎡
⎣A 0 C

0 B 0
0 0 0

⎤
⎦ =

⎡
⎣A E C

0 B 0
0 0 0

⎤
⎦U2. (3.6)

Proof. Let (X ,Y,Z) be a solution of (3.5). Then the invertible operators U1 =⎡
⎣I Y 0

0 I 0
0 0 I

⎤
⎦ and U2 =

⎡
⎣I −X 0

0 I 0
0 −Z I

⎤
⎦ satisfy (3.6).

Conversely, assume that (3.6) holds, where U1 and U2 are invertible with P1 =
P2 = S2 and Q1 = Q2 . Then

M1A = AM2 +EP2 +CK2,

N1B = AN2 +EQ2 +CL2,

M1C = AR2 +ES2 +CT2,

P2A = BP2, Q2B = BQ2, S2C = BS2.

The Putnam-Fuglede theorem implies

AP∗
2 = P∗

2 B, BQ∗
2 = Q∗

2B, S∗2B = CS∗2.

Thus

E(P2P
∗
2 +Q2Q

∗
2 +S2S

∗
2)

=(M1A−AM2−CK2)P∗
2 +(N1B−AN2−CL2)Q∗

2 +(M1C−AR2−CT2)S∗2
=M1P

∗
2 B−AM2P

∗
2 −CK2P

∗
2 +N1Q

∗
2B−AN2Q

∗
2−CL2Q

∗
2 +M1S

∗
2B

−AR2S
∗
2−CT2S

∗
2

=−A(M2P
∗
2 +N2Q

∗
2 +R2S

∗
2)+ (M1P

∗
2 +N1Q

∗
2 +M1S

∗
2)B−C(K2P

∗
2

+L2Q
∗
2 +T2S

∗
2).

According to Lemma 3.1, P2P∗
2 +Q2Q∗

2 +S2S∗2 is invertible. Note that its inverse com-
mutes with B . So, we arrive at that AX +YB+CZ = E for

X = −(M2P
∗
2 +N2Q

∗
2 +R2S

∗
2)(P2P

∗
2 +Q2Q

∗
2 +S2S

∗
2)

−1,

Y = (M1P
∗
2 +N1Q

∗
2 +M1S

∗
2)(P2P

∗
2 +Q2Q

∗
2 +S2S

∗
2)

−1,

Z = −(K2P
∗
2 +L2Q

∗
2 +T2S

∗
2)(P2P

∗
2 +Q2Q

∗
2 +S2S

∗
2)

−1. �
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4. Solvability of the ∗ -Sylvester equation AX −X∗B = C

For the ∗ -Sylvester matrix equation AX −X∗B = C , Wimmer [24] obtained that
it has a solution if and only if there exist invertible matrices U1,U2 such that

U2

[
A C
0 B

]
=

[
A 0
0 B

]
U1 and U∗

2

[
0 I
−I 0

]
U1 =

[
0 I
−I 0

]
.

For the ∗ -Sylvester operator equation AX −X∗B = C , we find the result is valid
for normal operators subject to some constraint on U1 and U2 .

THEOREM 4.1. Let A,B ∈ B(H ) be normal operators and C ∈ B(H ) . Then
the equation AX −X∗B =C has a solution X ∈B(H ) if and only if there exist invert-

ible operators Ui =
(

Mi Ni

Pi Qi

)
∈ B(H ⊕H ) (i = 1,2) with M1 = M2 and P1 = P2

such that

U2

[
A C
0 B

]
=

[
A 0
0 B

]
U1, (4.1)

U∗
2

[
0 I
−I 0

]
U1 =

[
0 I
−I 0

]
. (4.2)

Proof. Let X ∈B(H ) be a solution of AX −X∗B =C . Then the invertible oper-

ators U1 =
(

I X
0 I

)
and U2 =

(
I X∗
0 I

)
satisfy (4.1)–(4.2).

Conversely, assume that there exist invertible operators Ui =
(

Mi Ni

Pi Qi

)
(i = 1,2)

such that (4.1)–(4.2) hold, where M1 = M2 and P1 = P2. Then, by (4.2),

U2 =
[

0 I
−I 0

]
(U∗

1 )−1
[
0 −I
I 0

]
. (4.3)

Substituting this into (4.1) gives[
0 −B
A C

]
= U∗

1

[
0 −B
A 0

]
U1, (4.4)

and hence [
0 A∗

−B∗ C∗

]
= U∗

1

[
0 A∗

−B∗ 0

]
U1.

This and the equality (4.4) lead to[
0 −B−λA∗

A+ λB∗ C−λC∗

]
= U∗

1

[
0 −B−λA∗

A+ λB∗ 0

]
U1

for any complex number λ , which yields[
0 −I
I 0

][
A+ λB∗ C−λC∗

0 B+ λA∗

]
= U∗

1

[
0 −I
I 0

][
A+ λB∗ 0

0 B+ λA∗

]
U1.
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Thus [
0 I
−I 0

]
(U∗

1 )−1
[
0 −I
I 0

][
A+ λB∗ C−λC∗

0 B+ λA∗

]
=

[
A+ λB∗ 0

0 B+ λA∗

]
U1,

which, together with the equality (4.3), implies that

U2

[
A+ λB∗ C−λC∗

0 B+ λA∗

]
=

[
A+ λB∗ 0

0 B+ λA∗

]
U1.

Applying Theorem 3.2, we then know that the system

AX1−X2B = C, (4.5)

−B∗X1 +X2A
∗ = C∗. (4.6)

has a solution (X1,X2) . From (4.6), it is clear that AX∗
2 −X∗

1 B = C . Combining with
(4.5), we conclude that

A(X1 +X∗
2 )− (X2 +X∗

1 )B = 2C,

Therefore X = 1
2 (X1 +X∗

2 ) is a solution of the equation AX −X∗B = C . �
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