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NOTE ON BOUNDS FOR EIGENVALUES USING TRACES

R. SHARMA ∗ AND M. PAL

(Communicated by Y. Nakatsukasa)

Abstract. Some extensions of the results related to bounds for the eigenvalues and spreads of
matrices using traces are discussed here. We also obtain bounds for the eigenvalues of a positive
definite matrix in terms of its trace and trace of its inverse.

1. Introduction

In theory and its various applications it is of basic interest to locate the eigenvalues
of a matrix. The inequalities involving eigenvalues provide some information about
them and have been studied extensively in literature. We here focus on the bounds
for the eigenvalues using traces. In this context, Wolkowicz and Styan [14, 15] have
discussed the bounds for the eigenvalues of a matrix A in terms of traces of A and A2 .
They showed that if the eigenvalues of a matrix A are all real and arranged as

λ1 (A) � λ2 (A) � . . . � λn (A) , (1.1)

then for all k = 1,2, . . . ,n ,

trA
n −

√
n−k
k sA � 1

k ∑k
i=1 λi (A) � λk (A)

� 1
n−k+1 ∑n

i=k λi (A) � trA
n +

√
k−1

n−k+1sA

(1.2)

where trA denotes the trace of A and

sA =
√

trA2

n − ( trA
n

)2
. (1.3)

Note that (1.2) is based on [[14], Theorem 2.2] which is originally formulated for the
eigenvalues arranged in decreasing order.

In addition, corresponds to [[14], Theorem 2.1], we also have

λ1 (A) � trA
n − sA√

n−1
and λn (A) � trA

n + sA√
n−1

. (1.4)
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As pointed out by Wolkowicz and Styan [14], the inequalities (1.2) and (1.4) are
related to the statistical inequalities involving mean and variance, see [8]. The arith-
metic mean and variance of n real numbers x1,x2, . . . ,xn are defined as, respectively,

an = 1
n ∑n

i=1 xi and s2 = 1
n ∑n

i=1 (xi−an)2 . (1.5)

Further, the inequality for the spread due to Brauer and Mewborn [5],

spd(A) = λmax (A)−λmin (A) � 2
√

trA2

n − ( trA
n

)2 (1.6)

is related to the Popoviciu inequality [13],

s2 � (b−a)2

4 , (1.7)

where a = mini xi and b = maxi xi .
We here consider a more general case. Let {x1,x2, . . . ,xn} = X be the set of n

real numbers. Let i1, i2, . . . , in be some permutation of the indices 1,2, . . . ,n . Then,
xi1 ,xi2 , . . . ,xik is a k -combination of the set X consisting of k elements of X with
distinct indices. It is clear that the set X(k) consisting of the respective means of the
k -combinations from X has

(n
k

)
elements. Then, the arithmetic mean and variance of

the elements of X(k) are, respectively,

1
(n

k)
∑n

1�i1<i2<...<ik

xi1
+xi2

+...+xik
k = 1

n ∑n
i=1 xi = an (1.8)

and

s2
k = 1

(n
k)

∑n
1�i1<i2<...<ik

(
xi1

+xi2
+...+xik
k −an

)2
. (1.9)

Merikoski and Virtanen [12] have discussed the bounds for the eigenvalues using
determinant and trace of the matrix A . It is costly to calculate trA−1 . It is however
in interest to know if the bounds analogues to (1.2) can be derived in terms of trA and
trA−1 . We also consider here this problem and find the bounds for xi ’s in terms of
arithmetic mean an and harmonic mean

hn =
(

1
n ∑n

i=1
1
xi

)−1
(1.10)

of n positive real numbers xi ’s.
We show that sk is a constant multiple of s for fixed values of n and k and use

this fact to derive some upper bounds for the variance s2 (Theorem 1–2 and Corollary
1–2, below). The bounds for positive numbers xi ’s are obtained in terms of their arith-
metic mean and harmonic mean (Theorem 3–4). An extension of the inequality (1.6) is
obtained and a related inequality for the ratio spread is proved (Theorem 5–6). Some
easily evaluable estimates for the eigenvalues are obtained in terms of the extreme di-
agonal and absolute off-diagonal entries of the Hermitian matrix (Theorem 7, Corollary
3). We also discuss the bounds for the eigenvalues of a positive definite matrix in terms
of the traces of the matrix and its inverse (Theorem 8–9).
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2. Preliminary results

We begin with the following lemma, which we need to derive the relation between
s and sk in the next theorem.

LEMMA 1. Let y1,y2, . . . ,yn denote n numbers. Then

∑n
1�i1<i2<...<ik

(
yi1 + yi2 + . . .+ yik

)2 =
(n−1
k−1

)
∑n

i=1 y2
i +2

(n−2
k−2

)
∑n

i< j yiy j. (2.1)

Proof. We prove the lemma by using the principle of mathematical induction. For
n = k , (2.1) is obviously true. Suppose (2.1) holds for n . We then show that it also
holds for n+1. We write,

∑n+1
1�i1<i2<...<ik

(
yi1 + yi2 + . . .+ yik

)2
= ∑n

1�i1<i2<...<ik

(
yi1 + yi2 + . . .+ yik

)2
+∑n

1�i1<i2<...<ik−1

(
yi1 + yi2 + . . .+ yik−1 + yn+1

)2
= ∑n

1�i1<i2<...<ik

(
yi1 + yi2 + . . .+ yik

)2 + ∑n
1�i1<i2<...<ik−1

(
yi1 + yi2 + . . .+ yik−1

)2
+∑n

1�i1<i2<...<ik−1
y2
n+1 +2∑n

1�i1<i2<...<ik−1

(
yi1 + yi2 + . . .+ yik−1

)
yn+1.

(2.2)

On applying the induction hypothesis, we find from (2.2) that

∑n+1
1�i1<i2<...<ik

(
yi1 + yi2 + . . .+ yik

)2
=
((n−1

k−1

)
+
(n−1
k−2

))
∑n

i=1 y2
i + ∑n

1�i1<i2<...<ik−1
y2
n+1

+2∑n
1�i1<i2<...<ik−1

(
yi1 + yi2 + . . .+ yik−1

)
yn+1 +2

((n−2
k−2

)
+
(n−2
k−3

))
∑n

i< j yiy j.

(2.3)

Inserting
∑n

1�i1<i2<...<ik−1
y2
n+1 =

( n
k−1

)
y2
n+1,(n−1

k−1

)
+
(n−1
k−2

)
=
( n
k−1

)
,
(n−2
k−2

)
+
(n−2
k−3

)
=
(n−1
k−2

)
and the equation analogous to (1.8),

∑n
1�i1<i2<...<ik−1

(
yi1 + yi2 + . . .+ yik−1

)
=
(n−1
k−2

)
∑n

k=1 yk

in (2.3), we get that

∑n+1
1�i1<i2<...<ik

(
yi1 + yi2 + . . .+ yik

)2 =
( n
k−1

)
∑n+1

k=1 y2
i +2

(n−1
k−2

)
∑n+1

i< j yiy j.

The lemma then follows by the principle of mathematical induction. �
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THEOREM 1. Let x1,x2, . . . ,xn denote n numbers and let s2 and s2
k be defined as

in (1.5) and (1.9), respectively. Then, for all k = 1,2, . . . ,n, we have

s2
k = n−k

(n−1)k s2. (2.4)

Proof. By Lemma 1,

∑n
1�i1<i2<...<ik

(
xi1 + xi2 + . . .+ xik − kan

)2
=
(n−1
k−1

)
∑n

i=1 (xi −an)
2 +2

(n−2
k−2

)
∑n

i< j (xi−an)(x j −an)
(2.5)

and on using ∑n
i=1 (xi −an) = 0, we have

2∑n
i< j (xi −an) (x j −an) = −∑n

i=1 (xi −an)
2 . (2.6)

From (2.5) and (2.6), we find that

∑n
1�i1<i2<...<ik

(
xi1 + xi2 + . . .+ xik − kan

)2 =
(n−2
k−1

)
∑n

i=1 (xi −an)
2 . (2.7)

On inserting (2.7) in (1.9), we conclude that

s2
k = 1

(n
k)k2

(n−2
k−1

)
∑n

i=1 (xi −an)2 = n−k
(n−1)k s

2. �

On using Theorem 1, we can study various inequalities involving mean and vari-
ance of real numbers. We demonstrate some cases here.

The inequality (1.7) and its refinement

s2 � (an−a)(b−an) (2.8)

are the particular cases of the more general inequalities of interest in matrix analysis
due to Bhatia and Davis [2]. We now discuss some further extensions of the inequalities
(1.7) and (2.8).

THEOREM 2. Let n real numbers xi ’s be arranged as x1 � x2 � . . . � xn . Let an

and s2 be defined as in (1.5). Then, for all k = 1,2, . . . ,n−1, we have

s2 � k(n−1)
n−k (an−ak)(bk −an) , (2.9)

where ak = 1
k ∑k

i=1 xi and bk = 1
k ∑n

i=n−k+1 xi .

Proof. Note that an and s2
k are respectively the arithmetic mean and variance of

the
(n
k

)
numbers ∑n

1�i1<i2<...<ik

xi1+xi2+...+xik
k , 1� i1 < .. . < ik � n in the set X(k) . For

x1 � x2 � . . . � xn , the smallest and largest numbers in X(k) are ak and bk , respectively.
Then, on applying the inequality (2.8) to the

(n
k

)
numbers in X(k) , we get that

s2
k � (an−ak) (bk −an) . (2.10)

On combining (2.4) and (2.10), we immediately get (2.9). �
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COROLLARY 1. With notations and conditions as in Theorem 2, we have, for all
k = 1,2, . . . ,n−1 ,

s2 � k(n−1)
(n−k)

(bk−ak)
2

4 . (2.11)

Proof. It is clear that ak � an � bk . So, on using the arithmetic mean-geometric
mean inequality for two positive numbers, we get

(an−ak)(bk −an) � 1
4 (bk −ak)

2 . (2.12)

The inequality (2.11) then follows from (2.9) and (2.12). �
It may be noted that for k = 1, the inequalities (2.8) and (2.9) are identical and

same is true for (1.7) and (2.11).
In the following corollary, we extend the Brunk inequalities [6],

s2 � (n−1)(an−a)2 and s2 � (n−1)(b−an)2 .

COROLLARY 2. With notations and conditions as in Theorem 2, we have, for k �
n
2 ,

s2 � (n−1)(an−ak)
2 (2.13)

and
s2 � (n−1)(bk −an)

2 . (2.14)

Proof. For k � n
2 , we have

nan = ∑k
i=1 xi + . . .+ ∑n

i=n−k+1 xi � (n− k)ak + kbk

and therefore
bk −an � n−k

k (an−ak) . (2.15)

On combining (2.9) and (2.15), we immediately get (2.13).
Likewise, (2.14) follows from (2.9) and the fact that for k � n

2 ,

an−ak � n−k
k (bk −an) . �

Since ak � an � bk , by (2.13) and (2.14), we respectively have

ak � an− s√
n−1

and bk � an + s√
n−1

, (2.16)

for k � n
2 .

The inequalities (2.16) also yield the inequalities

bn−k � an + k
(n−k)

√
n−1

s and an−k � an− k
(n−k)

√
n−1

s, (2.17)

on using the fact that kak + (n− k)bn−k = (n− k)an−k + kbk = nan . The inequalities
(2.17) correspond to the inequalities [[14], Theorem 2.3]. Wolkowicz and Styan [14]
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have remarked that the inequalities in (2.16) and (2.17) also follow from the Corollary
6.1 of Mallows and Ritcher [8]. We here get the alternative and simple arithmetic proofs
of these inequalities.

Let x1,x2, . . . ,xn denote n real numbers. The weighted arithmetic mean and vari-
ance of these n numbers with corresponding weights p1, p2, . . . , pn are, respectively,

μ ′
1 = ∑n

i=1 pixi and σ2 = ∑n
i=1 pi

(
xi− μ ′

1

)2
, (2.18)

where pi � 0 and ∑n
i=1 pi = 1.

Let r numbers chosen from the n real numbers xi ’s be denoted as y1,y2, . . . ,yr

and let q1,q2, . . . ,qr be their respective weights. Let

γr = 1
∑r

j=1 q j
∑r

j=1 q jy j and σ2
r = 1

∑r
j=1 q j

∑r
j=1 q j (y j − γr)

2 . (2.19)

Denote the weighted arithmetic mean and variance of the remaining n−r numbers yi ’s
by γn−r and σ2

n−r , respectively.

LEMMA 2. Let μ ′
1 and σ2 be the weighted arithmetic mean and variance of n

real numbers xi ’s as defined in (2.18). Let γr and σ2
r (as defined in (2.19)) be the

arithmetic mean and variance of any r numbers (r < n) chosen from the numbers xi ’s,
respectively. Then,

σ2 = σ2
r ∑r

i=1 qi + σ2
n−r (1−∑r

i=1 qi)+ ∑r
i=1 qi

1−∑r
i=1 qi

(
μ ′

1− γr

)2
. (2.20)

Proof. We note that

n

∑
i=1

qi =
n

∑
i=1

pi = 1,
n

∑
i=1

qiyi = μ
′
1, μ

′
1− γr =

(
1−

r

∑
i=1

qi

)
(γn−r − γr) . (2.21)

Further, a little computation shows that

σ2 = ∑n
i=1 qi

(
yi − μ ′

1

)2
= ∑r

i=1 qiσ2
r +(1−∑r

i=1 qi)(yi − γr)2−
(

μ ′
1− γr

)2
(2.22)

and (
1−

r

∑
i=1

qi

)
(yi − γr)

2 =

(
1−

r

∑
i=1

qi

)(
σ2

n−r +(γn−r − γr)
2
)

. (2.23)

On inserting (2.23) into (2.22), we find that

σ2 =
r

∑
i=1

qiσ2
r +

(
1−

r

∑
i=1

qi

)
σ2

n−r +

(
1−

r

∑
i=1

qi

)
(γn−r − γr)

2 −
(

μ
′
1− γr

)2
.

(2.24)

On combining (2.21) and (2.24) and simplifying the resulting expression, we immedi-
ately get (2.20). �
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THEOREM 3. Let n positive real numbers xi ’s be arranged as x1 � x2 � . . . � xn .
Let an and hn be defined as in (1.5) and (1.10), respectively. Then

1
2k

(
α(k)−√β (k)

)
� k

∑k
i=1

1
xi

� xk � n−k+1
∑n

i=k
1
xi

� 1
2(n−k+1)

(
α(n−k+1)+

√
β (n−k+1)

)
(2.25)

where
α(r) = nan− (n−2r)hn, β (r) = α2(r)−4r2anhn (2.26)

for all k,r = 1,2, . . . ,n.

Proof. Consider n positive real numbers xi ’s with corresponding weights pi ’s.
Let xi ’s be arranged as x1 � x2 � . . . � xn and let γr = 1

∑r
i=1 pi

∑r
i=1 pixi , μ ′

1 = ∑n
i=1 pixi

and σ2 = ∑n
i=1 pi(xi − μ ′

1)
2 . For r < n , on using (2.20), it is easily seen that

σ2 � ∑r
i=1 pi

1−∑r
i=1 pi

(
μ ′

1− γr

)2
. (2.27)

Then, for pi = 1
xi

hn
n > 0, we have ∑r

i=1 pi = r
n

hn
hr

, γr = hr , μ ′
1 = hn and σ2 = hn(an −

hn) . Thus, by (2.27), we get

an−hn � r
nhr−rhn

(hn−hr)
2 . (2.28)

Since nhr − rhn > 0, we find from (2.28) that

rh2
r − (nan− (n−2r)hn)hr + ranhn � 0. (2.29)

With notations as in (2.26), the roots of the quadratic equation in (2.29) can be written
as

g1(r) = 1
2r

(
α(r)−√β (r)

)
and g2(r) = 1

2r

(
α(r)+

√
β (r)

)
. (2.30)

So, (2.29) holds if and only if

g1 (r) � hr � g2 (r) . (2.31)

From (2.31), for r = k , g1 (k) � hk . Therefore,

g1 (k) � k
∑k

i=1
1
xi

� xk. (2.32)

Likewise, for r = n− k+1, hn−k+1 � g2 (n− k+1) and

xk � n−k+1
∑n

i=k
1
xi

� g2 (n− k+1). (2.33)

On combining (2.32) and (2.33) and using (2.30), we immediately get (2.25) for k < n .
For k = n , the first three inequalities (2.25) are immediate. Further, for r = 1, γ1 =

xn and q1 = pn , we find from (2.27) that σ2 � pn
1−pn

(μ ′
1 − xn)2 . Then, the arguments

similar to the above yield the fourth inequality (2.25) for k = n . �
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THEOREM 4. With notations and conditions as in Theorem 3, we have

x1 � hn− 2(an−hn)hn

n(an−hn)+
√

β (1) (2.34)

and
xn � hn + 2(an−hn)hn√

β (1)−n(an−hn)
(2.35)

where β (1) = (nan− (n−2)hn)
2−4anhn .

Proof. For x1 � xi � xn , we have (xi− x1) (xi− xn) � 0, therefore for all i =
1,2, . . . ,n,

xi � (x1 + xn)− x1xn
xi

. (2.36)

On adding the n inequalities (2.36), and on using (1.5) and (1.10), we find that

an � (x1 + xn)− x1xn
hn

and hence
hn (an−hn) � (xn −hn)(hn− x1) . (2.37)

On the other hand, for k = n , the fourth inequality (2.25) gives

xn � 1
2

(
nan− (n−2)hn +

√
β (1)

)
, (2.38)

where β (1) = α2(1)−4anhn and α(1) = nan− (n−2)hn .
On combining (2.37) and (2.38) and simplifying the resulting expression, we im-

mediately get (2.34). Likewise, (2.35) follows on combining (2.37) and the inequality

x1 � 1
2

(
nan− (n−2)hn−

√
β (1)

)
. �

3. Main results

We mainly consider here Hermitian matrices and discuss some new inequalities
involving eigenvalues and the entries of the Hermitian matrix. These results are based
on (1.6), [[3], Theorem 3.7] and the reformulation of [[14], Theorem 2.2] in (1.2).
Further, some estimates obtained here might be interesting when applied to the approx-
imate evaluation of certain error bounds for Hermitian matrices such as those using a
vector-valued generalised spread, presented recently in Massey et. al. [10].

Let A = (ai j) be an n× n Hermitian matrix. Denote the k th smallest diagonal
entry of A by dk and let its eigenvalues be arranged as in (1.1). Then, the Schur
majorization inequalities say that, see [1],

∑k
i=1 λi(A) � ∑k

i=1 di and ∑n
i=n−k+1 λi(A) � ∑n

i=n−k+1 di. (3.1)

It is evident from (3.1) that

∑n
i=n−k+1 λi(A)−∑k

i=1 λi(A) � ∑n
i=n−k+1 di−∑k

i=1 di. (3.2)
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The left hand side expression (3.2) can be regarded as the generalised form of spread
(k = 1) . The inequalities (3.2) provide the extension of the well known theorem in
linear algebra that says that spd(A) = λn(A)−λ1(A) � maxi aii −mini aii , see [4]. We
now prove a similar extension of (1.6).

THEOREM 5. Let A be a complex n×n matrix with real eigenvalues λ1(A),λ2(A),
. . . ,λn(A), arranged as in (1.1). Then, for all k = 1,2, . . . ,n, we have

∑n
i=n−k+1 λi (A)−∑k

i=1 λi (A) � 2
√

k(n−k)
(n−1)n trB2, (3.3)

where B = A− trA
n I.

Proof. Note that the arithmetic mean of the eigenvalues of A is trA
n = an and

1
n ∑n

i=1 λ 2
i (A)− (1

n ∑n
i=1 λi (A)

)2
= trA2

n − ( trA
n

)2
= trB2

n = s2
A

is the variance of the eigenvalues of A . Also, if the eigenvalues of A are arranged as in
(1.1), then ak = 1

k ∑k
i=1 λi (A) and bk = 1

k ∑n
i=n−k+1 λi (A) . On applying the Corollary 1

to the n eigenvalues of A , we get

bk −ak � 2
√

n−k
(n−1)k

trB2

n ,

and this yields (3.3). �

It may be noted here that trB2

n also appears in [[14], (1.8)] for describing the vari-
ance of the eigenvalues of A .

The condition number of a positive definite Hermitian matrix is defined as c(A) =
λmax(A)
λmin(A) and is also known as the ratio spread of A . The Schur inequalities (3.1) implies
that for positive definite Hermitian matrix A ,

∑n
i=n−k+1 λi(A)

∑k
i=1 λi(A)

� ∑n
i=n−k+1 di

∑k
i=1 di

. (3.4)

A particular case of (3.4) gives c(A) � maxi aii
mini aii

, see [16]. Also, the inequality

λmax(A)
λmin(A) �

(
c1 +

√
1+ c2

1

)2
(3.5)

for c1 =
√

n trB2

trA is related to the inequality

b
a �

(
s
an

+

√
1+
(

s
an

)2
)2

(3.6)

which is a special case of a more general result, see Bhatia and Sharma [Theorem 3.7,
[3]]. We extend this result in the next theorem.
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THEOREM 6. Let the eigenvalues of a complex n×n matrix A be all positive and
arranged as in (1.1). Then,

∑n
i=n−k+1 λi(A)

∑k
i=1 λi(A)

�
(
ck +

√
1+ c2

k

)2
, (3.7)

where ck =
√

n(n−k)
(n−1)k

trB2

(trA)2 .

Proof. On using the arguments similar to those used in the proof of the Theorem
2, namely, by regarding an and s2

k as mean and variance and on using (3.6), we find
that

bk
ak

�
(

sk
an

+

√
1+
(

sk
an

)2
)2

and hence by (2.4),

bk
ak

�
(√

n−k
(n−1)k

s
an

+
√

1+ n−k
(n−1)k

s2

a2
n

)2
. (3.8)

As in Theorem 5, ak = 1
k ∑k

i=1 λi(A) , bk = 1
k ∑n

i=n−k+1 λi(A) , an = trA
n and s =

√
trB2

n .
On inserting these values in (3.8), we immediately get (3.7). �

It is always interesting to note easily evaluable estimates for the eigenvalues in
terms of the expressions involving one or two entries of the matrix. One such result due
to Hirsch [7] says that for a complex n×n matrix A = (ai j) , we have

|λk(A)| � n maxi, j|ai j| (3.9)

for all k = 1,2, . . . ,n . Also, see Marcus and Minc [9].
We here consider Hermitian matrices only and discuss the refinements of the in-

equality (3.9). The Cauchy interlacing principle of Hermitian matrices says that if P is
any r×r principal submatrix of A and eigenvalues of A and P are arranged as in (1.1),
then for 1 � i � r, see [1],

λi(A) � λi(P) � λn−r+i(A). (3.10)

It is immediate from (3.9) and (3.10) that for r = 1,2, . . . ,n,

λr(A) � λr(P) � |λr(P)| � rCr (3.11)

where Cr is the maximum of absolute values of entries of P . Then, (3.11) provides an
improvement in (3.9) for positive semidefinite matrices. Furthermore, a reformulation
of [[14], Theorem 2.2] for 1

k ∑k
i=1 λi(A) and 1

n−k+1 ∑n
i=k λi(A) in (1.2) approximately

locates the k th smallest eigenvalue of A by using traces of A and A2 . Applying this
to the principal submatrices (for Hermitian A) leads to simpler bounds depending on
fewer matrix entries. We demonstrate this in next theorem.
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THEOREM 7. Let A be an n×n Hermitian matrix and that P = (pi j) be any r×r
principal submatrix of A. Let λk(A) be the k th smallest eigenvalue of A. Then, for
1 � k � r � n, we have

λk(A) � 1
r−k+1 ∑r

i=k λi(A) � maxi pii +
√

(k−1)(r−1)
r−k+1 maxi�= j |pi j| (3.12)

and

λn−k+1(A) � 1
r−k+1 ∑n−k+1

i=n−r+1 λi(A) � mini pii −
√

(k−1)(r−1)
r−k+1 maxi�= j |pi j|. (3.13)

Proof. We first show that

λk(A) � 1
n−k+1 ∑n

i=k λi(A) � maxi aii +
√

(k−1)(n−1)
n−k+1 maxi�= j |ai j| (3.14)

for all k = 1,2, . . . ,n .
Let ai j ’s be the entries of A and let C = (ci j) be an n×n matrix such that c j j =

maxi aii and ci j = ai j for i �= j , i, j = 1,2, . . . ,n . It is clear that

trC
n = 1

n ∑n
j=1 c j j = maxi aii. (3.15)

Further, for any n× n Hermitian matrix A = (ai j) , the s2
A (as defined in (1.3)) can be

written as
s2
A = 1

n ∑n
i=1 a2

ii−
(

1
n ∑n

i=1 aii
)2 + 1

n ∑i�= j |ai j|2. (3.16)

For the matrix C , we have

1
n ∑n

i=1 c2
ii −
(

1
n ∑n

i=1 cii
)2

= 0, and
√

∑i�= j |ci j|2 �
√

n(n−1)maxi�= j |ai j|.

So, from (3.16) ,

sC =
√

1
n ∑i�= j |ci j|2 �

√
n−1 maxi�= j|ai j|. (3.17)

On using (3.15) and (3.17), the fourth inequality from (1.2) applied to C yields

1
n−k+1 ∑n

i=k λi(C) � maxi aii +
√

(k−1)(n−1)
n−k+1 maxi�= j |ai j|. (3.18)

It is clear that C−A is positive semidefinite and therefore by Weyl’s inequality λi(A) �
λi(C) for all i = 1,2, . . . ,n . So, (3.18) implies the second inequality (3.14). The first
inequality (3.14) is evident. On applying (3.18) to the principal submatrix P and using
the Cauchy interlacing inequalities (3.10), we immediately get (3.12).

Likewise, the first inequality (3.13) is evident and second is based on the inequality
analogous to that in (3.18) and follows on using similar arguments. �

COROLLARY 3. Under the conditions of the Theorem 7, for k � n
2 , we have

1
k ∑k

i=1 λi(A) � maxi aii −mini�= j |ai j|,
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1
n−k ∑n−k

i=1 λi(A) � maxi aii− k
n−k mini�= j |ai j|,

1
k ∑n

i=n−k+1 λi(A) � mini aii +mini�= j |ai j|,
and

1
n−k ∑n

i=k+1 λi(A) � mini aii + k
n−k mini�= j |ai j|.

Proof. The assertions of the corollary follow from the inequalities (2.16) and
(2.17) on using the arguments similar to those used in the proof of the Theorem 7.
Furthermore, the derivation of the inequalities in this corollary requires a lower bound
for sC which is analogous to (3.17). �

We finally consider the case when the eigenvalues of A are all positive as in case
of positive definite matrices. The trace of A−1 in this case provides an additional useful
information in estimating the eigenvalues of A . It is worth noting here that the ap-
proaches for an inverse-free approximation of trA−1 are also available in literature, for
example, see Meurant [11]. We now derive bounds for the eigenvalues of A in terms of
trA and trA−1 .

THEOREM 8. Let the eigenvalues of a complex n×n matrix A be all positive and
arranged as in (1.1). Then

1
2k

(
α1(k)−

√
β1(k)

)
� λk(A) � 1

2(n−k+1)

(
α1(n− k+1)+

√
β1(n− k+1)

)
(3.19)

where
α1(r) = trA− n(n−2r)

trA−1 and β1(r) = α2
1 (r)−4r2 trA

trA−1 (3.20)

for all k,r = 1,2, . . . ,n.

Proof. The eigenvalues of A are all positive real numbers. Then, the arithmetic
mean and harmonic mean of the eigenvalues of A can be written as, respectively,

1
n ∑n

i=1 λi(A) = trA
n = an and n

∑n
i=1

1
λi(A)

= n
trA−1 = hn. (3.21)

The assertions of the theorem now follow on using Theorem 3. �

THEOREM 9. With notations and conditions as in Theorem 8, we have

λ1(A) � n
trA−1 −

2
(

trA
n − n

trA−1

)
n

trA−1

trA− n2

trA−1 +
√

β1(1)
(3.22)

and

λn(A) � n
trA−1 +

2
(

trA
n − n

trA−1

)
n

trA−1√
β1(1)−trA+ n2

trA−1

(3.23)

where β1(1) =
(
trA− n(n−2)

trA−1

)2−4 trA
trA−1 .

Proof. The inequalities (3.22) and (3.23) follow respectively from the inequalities
(2.34) and (2.35) on using (3.21) and arguments similar to those used in the proof of
Theorem 8. �
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4. Examples

We consider some simple examples and compare our results favourably with those
in literature.

EXAMPLE 1. Let

E1 =

⎡
⎢⎢⎣

1 2 1 1
2 1 2 1
1 2 1 3
1 1 3 1

⎤
⎥⎥⎦ , E2 =

⎡
⎢⎢⎣

5 1 1 1
1 6 1 1
1 1 1 1
1 1 1 2

⎤
⎥⎥⎦ .

Denote ∑4
i=3 λi(Ej)−∑2

i=1 λi(Ej) by α(Ej) . Then, from (3.2) and (3.3), α(E1) �
0,α(E2) � 8 and α(E1) � 7.3030,α(E2) � 6.2183, respectively. The inequalities (3.2)
and (3.3) are therefore independent. The eigenvalues of E1 and E2 are approximately
−2.2806,−0.8373,1.0326,6.0853 and 0.3344,1.8180,4.4403,7.4072, respectively.

EXAMPLE 2. Let

E3 =

⎡
⎣ 2 −1 1
−1 2 1
1 1 2

⎤
⎦ , E4 =

⎡
⎣ 10 1 1

1 1 0
1 0 1

⎤
⎦ .

The matrices E3 and E4 are positive definite. Denote
λ2(Ej)+λ3(Ej)
λ1(Ej)+λ2(Ej)

by β (Ej) . Then,

from (3.4) and (3.7), we respectively have β (E3) � 1, β (E4) � 5.5 and β (E3) � 2,
β (E4) � 2.8585.

EXAMPLE 3. Let

E5 =

⎡
⎣ 3 1 0

1 2 1
0 1 3

⎤
⎦ ,

From (1.2) and (3.19), the eigenvalues of E5 lie in the interval [0.9028,4.4305] and
[0.9872,5.1181] . Also, from (1.4) and the Theorem 9, we have λ1(E5) � 1.7847,
λ3(E5) � 3.5486 and λ1(E5) � 1.4410 and λ3(E5) � 3.5064. Also, note that if the
eigenvalues of A are all positive and (trA)2 � (n−k)trA2 , then the first inequality (1.2)
is not useful as it gives negative lower bound for λk(A) but (3.19) will always give
positive lower bound. For example, for the diagonal matrix A = diag(1,1,2,10) , we
respectively have from (1.2) and (3.19), −0.2749 � λ2(A) � 5.6794 and 0.8797 �
λ2(A) � 4.4942.

EXAMPLE 4. (Example 4 and 5, [14]). Let

E6 =

⎡
⎢⎢⎣

4 0 2 3
0 5 0 1
2 0 6 0
3 1 0 7

⎤
⎥⎥⎦ and E7 =

⎡
⎢⎢⎢⎢⎣

4 1 1 2 2
1 5 1 1 1
1 1 6 1 1
2 1 1 7 1
2 1 1 1 8

⎤
⎥⎥⎥⎥⎦ .
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The Theorem 7 yield the better estimates 3 � λ2(E6) � 5 and λ3(E6) � 6, respectively,
on chosing P to be ⎡

⎣ 5 0 1
0 6 0
1 0 7

⎤
⎦ ,

[
4 0
0 5

]
and

[
6 0
0 7

]
.

Likewise, we have λ1(E7) � 4, λ2(E7) � 6, 4 � λ3(E7) � 8, λ4(E7) � 6. The remain-
ing estimates for the eigenvalues of E6 and E7 are better in [Example 4 and 5, [14]]. We
conclude that the estimates in our Theorem 7 are also independent of the corresponding
estimates in [[14], Theorem 2.2.]. In addition, by Theorem 8, λ1(E6) � 1.3565 and
λ1(E7) � 2.1061.

EXAMPLE 5. Let A = (ai j) be a 10×10 real symmetric matrix with ai j = min(i, j) .
Then, A is positive definite, trA = 55, trA2 = 2035 and trA−1 = 19. The inequality
(1.2) gives a negative lower bound −33.987 for the smallest eigenvalue of A while
(3.19) yields a better estimate, λ1(A) � 0.057. From (1.4) and (3.22), we respectively
have λ1(A) � 1.1125 and λ1(A) � 0.47418. Further, from (1.2) and (3.19), we have
λ10(A) � 44.987 and λ10(A) � 50.732, respectively. The inequalities (1.4) and (3.22)
respectively give λ10(A) � 9.8875 and λ10(A) � 6.1048.

We conclude from the above examples that our bounds for the eigenvalues derived
here are all independent of the corresponding bounds in literature.
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