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SINGULAR VALUE STRUCTURE OF REAL MATRICES
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COMBINATION OF TWO ORTHOGONAL MATRICES
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(Communicated by E. Poon)

Abstract. Can every real matrix be expressed as a linear combination of a certain number of
orthogonal matrices? What is the smallest number of these orthogonal matrices? These elegant
and interesting questions were initially raised by Zhan [7]. Soon afterwards, Li and Poon [4]
proved that kmin , the smallest number of these orthogonal matrices, is not greater than 4. These
classic results inspire us to further explore the improvement or supplement of this theory.

We investigate some fundamental properties of An(k) , which is the set of all n× n real
matrices that can be expressed as a linear combination of k orthogonal matrices. Furthermore,
we characterize the singular value structure of matrices in set An(2) and the block structure of
related orthogonal matrices. We obtain an equivalent condition and some sufficient or necessary
conditions of A ∈ An(2) . Based on these results, we demonstrate the existence of matrices that
are not in set An(2) , and prove that kmin > 2 (for n � 3).

1. Introduction

Additive decomposition (or called matrix splitting) of a matrix A is to decompose
A into the sum of some special types of matrices. This technique is fundamental and
usually useful in the analysis of matrix computation or other applications of matrix
theory.

Let Mn(R) and Mn(C) be the spaces of n×n real matrices and complex matrices,
respectively. Wu [6] and Zhan [7] have pointed out that every matrix in Mn(C) is a lin-
ear combination of two unitary matrices. However, the situation in Mn(R) is different.
Zhan [7, Observation 7] initially proposed the following result.

THEOREM 1.1. [7] Every matrix in Mn(R) is a linear combination of n real
orthogonal matrices.

At the same time, an elegant and interesting question was raised as follows.
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QUESTION 1.1. [7, Question 3] Does there exist a fixed positive integer k , inde-
pendent of the matrix order n , such that every matrix in Mn(R) is a real linear combi-
nation of at most k orthogonal matrices?

Soon after that, Li and Poon [4, Proposition 1] gave a sharper result, which has
been included in [8, Page 12, Exercise 13], as follows.

THEOREM 1.2. [4, 8] Every matrix A ∈ Mn(R) is a linear combination of four
orthogonal matrices.

Let kmin denote the minimum value of k mentioned in Question 1.1, then Theorem
1.2 essentially reveals that kmin � 4. Naturally, the following question arose.

QUESTION 1.2. [9, page 232, Question 14] Is the number 4 of the terms in the
above expression least possible?

So far as we know, Question 1.2 is still an open problem.
The remaining sections of this paper are organized as follows. In Section 2 we in-

troduce some terms and basic lemmas. In Section 3, we investigate some fundamental
properties of An(k) , the set of all n×n real matrices that can be expressed as a linear
combination of k orthogonal matrices. In Section 4, we study set An(2) . Specifically,
in Lemma 4.1 and Lemma 4.3, via some elementary analysis, we characterize the sin-
gular value structures of nonsingular diagonal matrices and singular diagonal matrices
in set An(2) and the block structure of related orthogonal matrices. Based on these
results, in Proposition 4.4 we obtain an equivalent condition of A ∈ An(2) . Further-
more, we give some sufficient or necessary conditions as the specific criteria to identify
whether A ∈ An(2) or not. Subsequently, we reveal that set An(2) is not closed with
respect to matrix addition, and demonstrate the existence of matrices that are not in
An(2) , which essentially prove that kmin > 2 (for n � 3). In Section 5, we briefly
summarize the work of this paper.

2. Preliminaries

Let m, n ∈ N . The set of all m× n real matrices is denoted by Mm, n(R) , or
abbreviated as Mm, n without ambiguity. In particular, the set Mn, n is abbreviated as
Mn , and Rn := Mn, 1 .

DEFINITION 2.1. Let A ∈ Mn (or Mm, n , which is not covered in this article).

• The multiplicity of a singular value α of A is denoted by μ [α] . The singular
value α is called a simple singular value if μ [α] = 1, or a multiple singular value
if μ [α] � 2. The singular value α is called an odd singular value when it has an
odd multiplicity, or an even singular value when it has an even multiplicity.

• The set of all singular values of A is denoted by σ(A) . The maximum singular
value of A is denoted by σmax(A) . The sets of all simple singular values, multiple
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singular values, odd singular values, and even singular values of A are denoted
by σs(A) , σm(A) , σo(A) and σe(A) respectively.

• For any set B with finite elements, its cardinality is denoted by Card(B) .

For example, let A = diag(1, 1, 1, 2, 3, 3, 4, 5) ∈ M8 , then σmax(A) = 5, and
σ(A) = {1, 2, 3, 4, 5} , Card(σ(A)) = 5; σs(A) = {2, 4, 5} , Card(σs(A)) = 3;
σm(A) = {1, 3} , Card(σm(A)) = 2; σo(A) = {1, 2, 4, 5} , Card(σo(A)) = 4;
σe(A) = {3} , and Card(σe(A)) = 1.

Let On denote the set of all n×n orthogonal matrices (in particular, O1 = {1, -1}),
then a well-known result is as follows.

LEMMA 2.1. (Unitary equivalence of the singular values) [3, 8] Let A ∈ Mn .
Then

σ(UAV ) = σ(A), ∀U, V ∈ On.

Let the symbol O always represent zero matrices (which may have different sizes
in different occasions), and ‖ · ‖ the Euclidean norm of vectors or matrices. We have
the following lemma.

LEMMA 2.2. Let

P =
(

P11 P12

P21 P22

)
∈ On1+n2 ,

where P11 ∈ Mn1 , and P22 ∈ Mn2 . Then the following four conclusions are equivalent.
(i) P12 = O. (ii) P21 = O. (iii) P11 ∈ On1 . (iv) P22 ∈ On2 .

Proof. The fact that each row vector or column vector of matrix P is normalized
yields

‖P11‖2 +‖P12‖2 = n1 = ‖P11‖2 +‖P21‖2, (2.1)

and

‖P22‖2 +‖P12‖2 = n2 = ‖P22‖2 +‖P21‖2, (2.2)

which show that conclusions (i) and (ii) are equivalent, and they are equivalent to

P =
(

P11 O
O P22

)
. (2.3)

Equality (2.3) and the orthogonality of P immediately lead to conclusions (iii) and (iv).
Conversely, if condition (iii) holds, then ‖P11‖2 = n1 , and (2.3) can be deduced

from (2.1). Similarly, condition (iv) yields ‖P22‖2 = n2 , while (2.3) can also be derived
from (2.2). �
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3. Some fundamental properties of set An(k)

We use the notation X ⊂ Y to indicate that X is a subset of Y , including the case
X = Y . Let It represent the t × t identity matrix (in particular, I1 = 1). Based on
some basic concepts and theoretical results such as Theorem 1.1 and Theorem 1.2, we
summarize some fundamental properties of set An(k) as follows.

PROPOSITION 3.1. For any given n, k ∈N , the set An(k) has the following prop-
erties.

1. O ∈ An(k) .

2. On ⊂ An(k) ⊂ Mn . In particular, In ∈ An(k) ⊂ Mn .

3. An(k1) ⊂ An(k2) , for k1, k2 ∈ N and k1 < k2 .

4. If k � 4 , then An(k) = An(k+ k1) = Mn , ∀ k1 ∈ N .

5. If c ∈ R and A ∈ An(k) , then cA ∈ An(k) .

6. A ∈ An(k) if and only if UAV ∈ An(k) , ∀U, V ∈ On .

7. Let k1, k2, n1, n2 ∈ N . If A ∈ An1(k1) and B ∈ An2(k2) , then

A⊗B∈ An1n2(min{k1k2, 4}),

where ⊗ denotes the Kronecker product (or called tensor product) of matrices.

Proof. Properties 1-5 can be directly derived from Theorem 1.2 and the definition
of An(k) . The details are omitted. For any U, V ∈ On , we have

A ∈ An(k) ⇐⇒ A =
k

∑
i=1

ciQi, where ci ∈ R, Qi ∈ On, i = 1, . . . , k.

⇐⇒UAV =
k

∑
i=1

ciUQiV, where ci ∈ R, UQiV ∈ On, i = 1, . . . , k.

⇐⇒UAV ∈ An(k),

which leads to Property 6.
If A ∈ An1(k1) and B ∈ An2(k2) , then A = ∑k1

i=1 ciPi , where ci ∈ R , Pi ∈ On1 ,

i = 1, . . . , k1 , and B = ∑k2
j=1 t jQ j , where t j ∈ R , Qj ∈ On2 , j = 1, . . . , k2 . Thus we

have

A⊗B =

(
k1

∑
i=1

ciPi

)
⊗
(

k2

∑
j=1

t jQ j

)
=

k1

∑
i=1

k2

∑
j=1

cit jPi⊗Qj,

where Pi⊗Qj ∈On1n2 , i = 1, . . . , k1 , j = 1, . . . , k2 , (see [2, 8]) which indicates A⊗B∈
An1n2(k1k2) . Combining this result with Property 4, we obtain Property 7. �
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Property 5 of Proposition 3.1 shows that set An(k) is a cone (see [5] for the defi-
nition) in Mn .

Throughout this paper, let the symbol T express the transpose of vectors or matri-
ces, and symbol |·| the absolute value function. Some further properties of An(k) are
presented as follows.

PROPOSITION 3.2. Let n ∈ N and A ∈ Mn . Then A ∈ An(1) if and only if

Card(σ(A)) = 1.

Proof. “⇒”. Assume A ∈ An(1) , and A = cQ with c ∈ R and Q ∈ On . It is
evident that

ATA = c2QT Q = c2I,

which implies that A contains a unique singular value |c| . Thus the necessity is proved.
“⇐”. Let Card(σ(A)) = 1. Applying singular value decomposition (SVD) (see

[1, 3]), we can choose matrices U, V ∈ On such that

D = UAV = diag(σ1, σ2, . . . , σn),

where σ j ∈ σ(D) , j = 1, . . . , n . Lemma 2.1 and the assumption “Card(σ(A)) = 1”
yield σ(A) = σ(D) and σ1 = σ2 = . . . = σn = c , which means UAV = cI . From
Properties 2, 5 and 6 of Proposition 3.1, it is concluded that A ∈ An(1) . Hence the
sufficiency of this proposition is proved. �

REMARK 3.1. The proof of Proposition 3.2 takes advantage of SVD. This tech-
nique has been applied in many references, such as [7, 4], and enlighten us that it is
usually sufficient to focus only on diagonal matrices.

Proposition 3.2 gives a clear characterization of set An(1) . Some characterizations
of An(2) will be presented in the next section. To begin with, let rank(·) denote the
rank of the matrix, and for any two vectors x = (x1, . . . , xn)T , y = (y1, . . . , yn)T ∈ Rn ,
define their inner product as

〈x, y〉 =
n

∑
i=1

xiyi, (3.1)

and we prepare the following useful results.

PROPOSITION 3.3. Suppose k ∈ N , k � 2 , and A ∈ An(k) with A = ∑k
i=1 ciQi ,

where Qi ∈ On , ci ∈ R , i = 1, . . . , k . Let

λ (c1, . . . , ck) =
k

∑
i=1

c2
i −2

k

∑
i, j=1
i< j

|cic j|. (3.2)

If λ (c1, . . . , ck) > 0 , then rank(A) = n.
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Proof. For arbitrary nonzero x ∈ Rn , we have

‖Ax‖2 =

〈(
k

∑
i=1

ciQi

)
x,

(
k

∑
j=1

c jQj

)
x

〉

=

(
k

∑
i=1

c2
i

)
‖x‖2 +

k

∑
i, j=1
i< j

2cic j
〈
Qix, Qjx

〉
. (3.3)

Cauchy-Schwartz inequality and the orthogonal invariance of the Euclidean-norm yield

|〈Qix, Qjx
〉 | � ‖Qix‖‖Qjx‖ = ‖x‖2.

Hence (3.3) leads to the fact that

xT AT Ax = ‖Ax‖2 � λ (c1, . . . , ck)‖x‖2, (3.4)

where λ (c1, . . . , ck) is defined by (3.2). If λ (c1, . . . , ck) > 0, then from (3.4) it follows
that xT AT Ax > 0, which indicates that matrix AT A is positive definite, and implies
rank(A) = n . �

COROLLARY 3.4. Suppose A ∈ An(2) , and A = c1Q1 + c2Q2 , where Q1, Q2 ∈
On , and c1, c2 ∈ R . If |c1| �= |c2| , then rank(A) = n.

Proof. Consider the case k = 2 of Proposition 3.3. Now

λ (c1, c2) = c2
1 + c2

2−2|c1||c2| = (|c1|− |c2|)2.

Therefore, λ (c1, c2) > 0 if (and only if) |c1| �= |c2| . Thus the proof is completed. �

REMARK 3.2. An equivalent statement of the conclusion of Corollary 3.4 is:

If rank(A) < n , then |c1| = |c2| .

In the previous discussion on A = ∑k
i=1 ciQi , where Qi ∈On , we often assume that

the coefficients ci ∈ R , for i = 1, . . . , k . However, noticing the fact that Q ∈ On if and
only if −Q ∈ On , and let

R+
0 := {x ∈ R| x � 0}, and R+ := {x ∈ R| x > 0}.

we shall only investigate the case ci ∈ R+
0 (sometimes ci ∈ R+ ), for i = 1, . . . , k , in

the upcoming discussion in Section 4.
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4. Singular value structure of matrices in set An(2) and block structure
of related orthogonal matrices

LEMMA 4.1. For a nonsingular diagonal matrix D ∈ Mn , let ns = Card(σs(D)) ,
nm = Card(σm(D)) , σs(D) = {d1, . . . , dns} ⊂ R+ , σm(D) = {d̃ns+1, . . . , d̃ns+nm} ⊂
R+ , and D = diag(d1, . . . , dn) with the block structure as

D = diag
(
d̃1, . . . , d̃ns , d̃ns+1Iμ[d̃ns+1], . . . , d̃ns+nmIμ[d̃ns+nm ]

)
, (4.1)

where d̃ j = d j for j = 1, . . . , ns , and μ [d̃l] � 2 for l = ns +1, . . . , ns +nm . If

D = c1P+ c2Q, where c1, c2 ∈ R+, and P = (pi j), Q = (qi j) ∈ On, (4.2)

then the following conclusions are true.
(i)

p j j =
d2

j + c2
1− c2

2

2d jc1
, q j j =

d2
j + c2

2− c2
1

2d jc2
, for j = 1,2, . . . , n; (4.3)

pi j =
−c2

c1
qi j, pi j = −p ji, qi j = −q ji, for i, j = 1, . . . , n, and i �= j. (4.4)

(ii) Matrices P and Q have the block structures as{
P = diag(P̃1 . . . , P̃ns , P̃ns+1, . . . , P̃ns+nm),

Q = diag(Q̃1 . . . , Q̃ns , Q̃ns+1, . . . , Q̃ns+nm), (4.5)

where P̃j, Q̃ j ∈ O1 for j = 1, . . . , ns , and P̃l, Q̃l ∈ Oμ[d̃l ]
with μ [d̃l] � 2 for l =

ns +1, . . . , ns +nm .
(iii)

Card(σs(D)) � 2.

Proof. The assumption in (4.2) immediately yields

c1pi j = −c2qi j, i, j = 1, 2, . . . , n, and i �= j, (4.6)

c1p j j + c2q j j = d j, j = 1, 2, . . . , n. (4.7)

Define

p̂ j = (p1, j, . . . , p j−1, j, p j+1, j, . . . , pn, j)T ∈ Rn−1,

q̂ j = (q1, j, . . . , q j−1, j, q j+1, j, . . . , qn, j)T ∈ Rn−1,

then (4.6) is equivalent to

c1 p̂ j = −c2q̂ j, j = 1, . . . , n. (4.8)

Since all columns of P and Q are normalized, it follows that

‖ p̂ j‖2 = 1− p2
j j, ‖q̂ j‖2 = 1−q2

j j. (4.9)
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Substituting (4.8) into (4.9), we have

c2
1(1− p2

j j) = c2
2(1−q2

j j). (4.10)

Then substitute (4.7) into (4.10) and after some reduction, we obtain (4.3).
Moreover, for any matrix W , let W (i , :) denote the i-th row vector, and W (: , i)

the i-th column vector. Then from the orthogonality among the respective column
vectors of matrices P and Q , it follows that for any i �= j , we have

0 = 〈P(: , i) , P(: , j)〉 =
n

∑
k=1

k �=i, j

pki pk j + piipi j + p jip j j, (4.11)

and

0 = 〈Q(: , i) , Q(: , j)〉 =
n

∑
k=1

k �=i, j

qkiqk j +qiiqi j +q jiq j j. (4.12)

From (4.3), (4.6) and via some deduction, equality (4.12) can be rewritten as

0 = c1

n

∑
k=1

k �=i, j

pki pk j − pi j
d2

i + c2
2− c2

1

2di
− p ji

d2
j + c2

2− c2
1

2d j
. (4.13)

Meanwhile, after substituting (4.3) into (4.11) and multiplying both sides of equation
(4.11) by c1 , we get

0 = c1

n

∑
k=1

k �=i, j

pki pk j + pi j
d2

i + c2
1− c2

2

2di
+ p ji

d2
j + c2

1− c2
2

2d j
. (4.14)

Subtract both sides of equation (4.14) from that of equation (4.13) we obtain

pi jdi + p jid j = 0. (4.15)

In addition, from the orthogonality among the respective row vectors of matrices P and
Q , for any i �= j , we have

0 = 〈P(i, :) , P( j, :)〉 =
n

∑
k=1

k �=i, j

pik p jk + piip ji + pi j p j j, (4.16)

0 = 〈Q(i, :) , Q( j, :)〉 =
n

∑
k=1

k �=i, j

qikq jk +qiiq ji +qi jq j j, (4.17)

Similar to the discussion from (4.11) to (4.15), we can also obtain

pi jd j + p jidi = 0. (4.18)
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For every coordinate (i, j) with i �= j , the solutions of equalities (4.15) and (4.18) have
two cases, i.e.,

pi j = −p ji (may be 0 or not), (symmetrically, qi j = −q ji), if di = d j; (4.19)

or
pi j = p ji = 0, (symmetrically, qi j = q ji = 0), if di �= d j. (4.20)

Therefore, conclusion (i) is true for any case of (4.19) or (4.20).
For any given j ∈ {1, . . . , ns} , since d j = d̃ j ∈ σs(D) , then d j �= di for i =

1, . . . , n , and i �= j . By (4.20) this means

pi j = p ji = 0, for j = 1, . . . , ns, i = 1, . . . , n, and i �= j, (4.21)

and the orthogonality of matrix P leads to

|p j j| = 1, (symmetrically, |q j j| = 1), for j = 1, . . . , ns. (4.22)

On the other hand, for any given l ∈ {ns + 1, . . . , ns + nm} , there is a unique value
d̃l ∈ σm(D) and some d j ( j ∈ {ns +1, . . . , n} ) with multiplicity μ [d̃l] such that

d j = d̃l, for j =
l−1

∑
r=1

μ [d̃r]+1,
l−1

∑
r=1

μ [d̃r]+2, . . . ,
l

∑
r=1

μ [d̃r].

(We note that ∑l
r=1 μ [d̃r]−∑l−1

r=1 μ [d̃r] = μ [d̃l] . In particular, ∑l−1
r=1 μ [d̃r] = 0 if l = 1,

which means σs(D) = ∅ in this case, where the symbol ∅ always denotes the empty
set throughout this paper.) Thus (4.19) and (4.20) force the entries of columns ns + 1
to n of matrices P and Q to satisfy the following conditions:⎧⎪⎪⎨

⎪⎪⎩
pi j = −p ji,
qi j = −q ji,

}
i, j =

l−1
∑

r=1
μ [d̃r]+1,

l−1
∑

r=1
μ [d̃r]+2, . . . ,

l
∑

r=1
μ [d̃r],

pi j = p ji = 0,
qi j = q ji = 0,

}
else,

(4.23)

for every l = ns + 1, ns + 2, . . . , ns + nm . Therefore, combining (4.21)–(4.23) with
Lemma 2.2, we see that matrices P and Q have the structures as (4.5), and obtain the
conclusion (ii).

For d j ∈ σs(D) , since (4.22) holds, then equality (4.3) yields

d2
j + c2

1− c2
2 = ±2d jc1, d2

j + c2
2− c2

1 = ±2d jc2, (4.24)

or equivalently
(d j ± c1)2 = c2

2, (d j ± c2)2 = c2
1. (4.25)

Because d j, c1, c2 are all assumed to be positive numbers, there are at most two possi-
bilities for the solutions of all the d j ∈ σs(D) , i.e., d j = c1 +c2 , or d j = |c1−c2| . This
implies that matrix D contains at most two simple singular values. Hence we prove the
conclusion (iii). �
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LEMMA 4.2. Under the assumptions of Lemma 4.1, if c1 = c2 , then the following
conclusions are true.

(i) Matrix P has the same structure as (4.5) with each block P̃j satisfying

P̃j =
d j

2c
Iμ[d̃ j ] +Xj, with XT

j = −Xj, j = 1, . . . , ns +nm, (4.26)

and matrix Q satisfies Q = PT .
(ii) Card(σs(D)) � 1 .

Proof. The proof of Lemma 4.1 can be roughly copied here. Now that c1 = c2 = c ,
from (4.3) we immediately get the conclusion (i).

If d j ∈ σs(D) , since c (= c1 = c2) , d j ∈ R+ , then equation (4.25) has at most a
positive solution d j = 2c . Thus conclusion (ii) is proved. �

Based on Lemma 4.2, we prepare a similar result for singular matrices.

LEMMA 4.3. Suppose τ, n∈N satisfying 1 � τ � n−1 , and a singular diagonal

matrix D ∈ Mn with the form D =
(

Dτ O
O O

)
, where Dτ ∈ Mτ is nonsingular diago-

nal. Let ns = Card(σs(Dτ)) , nm = Card(σm(Dτ )) , σs(Dτ) = {d1, . . . , dns} ⊂ R+ ,
σm(Dτ ) = {d̃ns+1, . . . , d̃ns+nm} ⊂ R+ , and Dτ = diag(d1, . . . , dτ) with the block struc-
ture as

Dτ = diag
(
d̃1, . . . , d̃ns , d̃ns+1Iμ[d̃ns+1], . . . , d̃ns+nmIμ[d̃ns+nm ]

)
,

where d̃ j = d j for j = 1, . . . , ns , and μ [d̃l] � 2 for l = ns +1, . . . , ns +nm . If

D = c1P+ c2Q, where c1, c2 ∈ R+, and P, Q ∈ On, (4.27)

then the following are true.
(i) c1 = c2 , and Dτ ∈ Aτ(2) .
(ii) Card(σs(D)) � 2 , and matrices P and Q have the structures as{

P = diag
(
P̃1, . . . , P̃ns , P̃ns+1, . . . , P̃ns+nm , P̃ns+nm+1

)
,

Q = diag
(
Q̃1, . . . , Q̃ns , Q̃ns+1, . . . , Q̃ns+nm , Q̃ns+nm+1

)
,

(4.28)

where P̃j, Q̃ j ∈Oμ[d̃ j ] with Q̃ j = P̃T
j , and P̃T

j satisfy (4.26) for j = 1, . . . , ns +nm , and

P̃ns+nm+1 = −Q̃ns+nm+1, where P̃ns+nm+1, Q̃ns+nm+1 ∈ On−τ . (4.29)

Proof. Since rank(D) < n , from Corollary 3.4 it follows that

c1 = c2 = c ∈ R+. (4.30)

Matrices P and Q can be written as

P = (p1, . . . , pτ , Pn−τ), and Q = (q1, . . . , qτ , Qn−τ),
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where p j, q j, j = 1, . . . , τ , are the first τ columns of matrices P and Q , respectively,
while blocks Pn−τ and Qn−τ are composed of the last n− τ columns of matrices P
and Q , respectively. Let e j denote the j -th canonical (column) vector. From (4.27)
and (4.30) it follows that

p j +q j = (d j/c)e j, for j = 1, 2, . . . ,τ; (4.31)

Pn−τ = −Qn−τ . (4.32)

Combining (4.32) with (4.31), and from the orthogonality of matrices P and Q we get

PT
n−τe j =

c
d j

(
PT

n−τ p j −QT
n−τq j

)
=

c
d j

(0−0) = 0 ∈ Rn−τ , for j = 1, . . . , τ, (4.33)

where 0 denotes the zero column vector. Equation (4.33) means the block Pn−τ has the

form Pn−τ =
(

O
Pn−τ

)
, where Pn−τ ∈ Mn−τ . Consequently Qn−τ =

(
O

Qn−τ

)
, where

Qn−τ ∈ Mn−τ . Thus according to Lemma 2.2, matrices P and Q have the forms as

P =
(

Pτ O
O Pn−τ

)
, Q =

(
Qτ O
O Qn−τ

)
,

where Pτ , Qτ ∈ Oτ and Pn−τ , Qn−τ ∈ On−τ . Therefore, (4.27) and (4.30) lead to
equations

Dτ = cPτ + cQτ , where Pτ , Qτ ∈ Oτ , (4.34)

Pn−τ = −Qn−τ , where Pn−τ , Qn−τ ∈ On−τ . (4.35)

Equation (4.34) shows that Dτ ∈ Aτ(2) . Thus conclusion (i) is proved.
Meanwhile, equation (4.34) and Lemma 4.2 yield ns ≡Card(σs(Dτ )) � 1. There-

fore, including singular value 0, the number of simple singular values of matrix D
should not exceed 2, i.e.,

Card(σs(D)) � 2.

Similar to the discussion of Lemma 4.2, blocks Pτ and Qτ have the same structures as
described in conclusion (i) of Lemma 4.2. The result (4.29) can be obtained directly
from (4.35). �

Summarizing above discussion, we obtain an equivalent condition of A ∈ An(2) .

PROPOSITION 4.4. Suppose n ∈ N , n � 3 , and A ∈ Mn . Let ns = Card(σs(A)) ,
nm = Card(σm(A)) , σs(A) = {σ1, . . . ,σns} , and σm(A) = {σns+1, . . . ,σns+nm} . Then
A ∈ An(2) if and only if the following conditions hold.

(i) Card(σs(A)) � 2 ;

(ii) There exist c1, c2 ∈ R+
0 , Pj, Qj ∈

ns+nm⋃
t=1

Oμ[σt ] , j = 1, . . . , ns + nm , such that

the coefficients c1 and c2 are common to all the following equations:

σ jIμ[σ j ] = c1Pj + c2Qj, where Pj, Qj ∈ Oμ[σ j ], j = 1, . . . , ns +nm. (4.36)
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Moreover, equalities (4.3) and (4.4) hold if rank(A) = n, or⎧⎨
⎩

Pj = QT
j , with Pj satis f ying (4.26), for σ j �= 0,

Pj = −Qj, for σ j = 0,
c1 = c2,

(4.37)

holds if rank(A) < n.

Proof. “⇐=”. If (4.36) holds, applying SVD we choose U, V ∈ On such that

D = UAV = diag
(

σ1, . . . , σns , σns+1Iμ[σns+1], . . . , σns+nmIμ[σns+nm ]

)
. (4.38)

Let P = diag(P1, . . . , Pns+nm) , and Q = diag(Q1, . . . , Qns+nm) , where Pj, Qj ∈ O1 for
j = 1, . . . , ns , and Pj, Qj ∈Oμ[σ j ] for j = ns+1, . . . , ns +nm , then obviously P, Q∈On

and D = c1P+c2Q . Thus from Property 6 of Proposition 3.1 it follows that A∈An(2) ,
and the sufficiency is proved.

“=⇒”. If A ∈ An(2) , then there exist P, Q ∈On such that A = c1P+c2Q . Using
SVD we have D = UAV with the structure as (4.38). From Property 6 of Proposition
3.1 we see D ∈ An(2) . Therefore, according to the conclusion (ii) of Lemma 4.1 or
Lemma 4.3, matrices P and Q have the structures as in (4.5) (if A is non-singular)
or (4.28) (if A is singular). Thus (4.36) holds. Conclusion (i) of this proposition and
the properties of Pj and Qj described in (4.37) can also be obtained directly from the
results of Lemma 4.1 or Lemma 4.3. �

Some potentially useful criteria are stated as follows.

COROLLARY 4.5. Let A ∈ Mn . If Card(σ(A)) � 2 , then A ∈ An(2) .

Proof. The case Card(σ(A)) = 1 has been proved in Proposition 3.2. Next, we
suppose σ(A) = {σ1, σ2} where σ1, σ2 ∈ R+

0 and σ1 < σ2 . For equations{
σ1Iμ[σ1] = c1P1 + c2Q1, where P1, Q1 ∈ Oμ[σ1],
σ2Iμ[σ2] = c1P2 + c2Q2, where P2, Q2 ∈ Oμ[σ2],

(4.39)

we can always choose

P1 = Q1 = Iμ[σ1], P2 = Iμ[σ2], Q2 = −Iμ[σ2], c1 = (σ1 + σ2)/2, c2 = (σ1−σ2)/2,

such that the equations in (4.39) hold. Thus from Proposition 4.4 we complete this
proof. �

COROLLARY 4.6. Let n∈N and n � 3 . If A∈An(2) and A = c1P+c2Q, where
P, Q ∈ On , and c1, c2 ∈ R+

0 , then
(i)

Card(σ(A)) �
{

n/2+1, if n is even,
(n+1)/2, if n is odd.

(4.40)
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(ii)
c1 + c2 � σmax(A). (4.41)

In particular, if c = c1 = c2 , then

c � σmax(A)/2. (4.42)

Proof. Let ns =Card(σs(A)) and nm =Card(σm(A)) . It is evident that the largest
Card(σ(D)) occurs when μ [σ j] = 2 for all σ j ∈ σm(A) , and ns = 2 if n is even, or
ns = 1 if n is odd. Thus we have{

2nm +2 = n, if n is even,
2nm +1 = n, if n is odd,

and obtain (4.40). Let ‖·‖2 denote the spectral norm of matrices. Under the assumption
of this corollary, it follows that

σmax(A) = ‖A‖2 � c1‖P‖2 + c2‖Q‖2 = c1 + c2,

which yields (4.41). Inequality (4.42) consequently holds. �

Next we will show that the upper bounds described in (4.40) are sometimes attain-
able.

LEMMA 4.7. If r ∈ N is an even number, then for identity matrix I ∈ Mr and any
given α ∈ [0, 1] ⊂ R , there exist P, Q ∈ Or such that

αI =
1
2
P+

1
2
Q. (4.43)

Proof. Define

H(θ ) =
(

cosθ sinθ
−sinθ cosθ

)
∈ O2, and H(θ )T =

(
cosθ −sinθ
sinθ cosθ

)
∈ O2, (4.44)

with θ = arccos(α) . Let

P = diag(H(θ ), . . . , H(θ )︸ ︷︷ ︸
r/2

), Q = PT , (4.45)

then we obtain (4.43). �

COROLLARY 4.8. Let n ∈ N , n � 3 and A ∈ Mn . If σo(A) ⊂ {0, σmax(A)} , then
A ∈ An(2) .

REMARK 4.1. Recall that σo(A) is a superset of σs(A) , while σe(A) ⊂ σm(A) .
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Proof of Corollary 4.8. The case of A = O is trivial. Next, the discussion will be
carried out under the assumption of A �= O .

For the case
σo(A) = {0, σmax(A)}, (4.46)

Since σmax(A/‖A‖2) = 1, then by SVD we can choose U, V ∈ On such that

D = U(A/‖A‖2)V = diag(d1, d2, d̃3I2, . . . , d̃n/2+1I2), (4.47)

where d1 = 0, d2 = 1∈σo(A/‖A‖2) and d̃ jI2 ∈M2 with d̃ j ∈ [0, 1] for j = 3, . . . , n/2+
1 (There may be some d̃ j such that d̃ j = d1 or d̃ j = d2 .) We can set the orthogonal
matrices P and Q as{

P = diag
(
1, 1, H(θ3), . . . , H(θn/2+1)

)
,

Q = diag
(−1, 1, H(θ3)T , . . . , H(θn/2+1)T

)
,

(4.48)

with θ j = arccos(d̃ j) , j = 3, . . . , n/2+1, and each H(θ j) defined as in (4.44). Then
according to Lemma 4.7 we have

D =
1
2
P+

1
2
Q ∈ An(2). (4.49)

For the case σo(A) = {0} , after a SVD similar to the above discussion, we can
reset the orthogonal matrices P and Q in (4.48) to{

P = diag
(
1, H(θ2), . . . , H(θ(n+1)/2)

)
,

Q = diag
(−1, H(θ2)T , . . . , H(θ(n+1)/2)T

)
,

with θ j = arccos(d̃ j) , j = 2, . . . , (n+1)/2.
For the case σo(A) = {σmax(A)} , similarly we can reset the orthogonal matrices

P and Q in (4.48) to {
P = diag

(
1, H(θ2), . . . , H(θ(n+1)/2)

)
,

Q = diag
(
1, H(θ2)T , . . . , H(θ(n+1)/2)T

)
,

with θ j = arccos(d̃ j) , j = 2, . . . , (n+1)/2.
And for the case σo(A) = ∅ , we can reset the orthogonal matrices P and Q in

(4.48) to {
P = diag

(
H(θ1), . . . , H(θn/2)

)
,

Q = diag
(
H(θ1)T , . . . , H(θn/2)T

)
,

with θ j = arccos(d̃ j) , j = 1, . . . , n/2.
Obviously, equation (4.49) always holds for all the above cases. Hence from Prop-

erty 6 of Proposition 3.1, it follows that A ∈ An(2) under the assumption of this corol-
lary. �

However, the following result shows that conclusion (i) of Corollary 4.6 is only
necessary rather than sufficient in general.
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COROLLARY 4.9. Let n ∈ N , n � 7 , and A ∈ Mn . If rank(A) < n, and there
exist at least two distinct singular values σ1, σ2 of A satisfying σ1, σ2 ∈ R+ with
μ [σ1] = μ [σ2] = 3 , then A /∈ An(2) .

Proof. Suppose A ∈ An(2) . Since rank(A) < n , then according to equalities
(4.37) and (4.26), we directly suppose there exist P1 , P2 ∈ O3 and c ∈ R+ such that

σ1I3 = cP1 + cPT
1 , where P1 =

σ1

2c
I3 +X1, and XT

1 = −X1, (4.50)

and
σ2I3 = cP2 + cPT

2 , where P2 =
σ2

2c
I3 +X2, and XT

2 = −X2. (4.51)

From (4.50) we have

I = PT
1 P1 =

σ2
1

4c2 I +
σ1

2c
(XT

1 +X1)+XT
1 X1 =

σ2
1

4c2 I−X2
1 . (4.52)

Let P1 = (pi j) ∈ M3 , and

X1 =

⎛
⎝ 0 p12 p13

−p12 0 p23

−p13 −p23 0

⎞
⎠ ,

then (4.52) indicates that the entries at the non-diagonal part of X2
1 are all 0 , which

yields
p13p23 = p12p23 = p12p13 = 0. (4.53)

Equalities in (4.53) imply that at least two of the three entries p12 , p13 and p23 should
be 0, which leads to that at least one of the diagonal entries of P1 should be ±1 from
the orthogonality of P1 . Since σ1, c ∈ R+ , then the diagonal entries of P1 cannot be
negative. So we obtain that p11 = p22 = p33 = 1 since all diagonal entries of P1 are
equal to a constant σ1/(2c) (This also means that P1 = I3 ), and immediately get

c = σ1/2. (4.54)

However, from (4.51) and via a similar analysis on another matrix P2 , we can also get

c = σ2/2, (4.55)

which contradicts (4.54) since σ1 �= σ2 . Thus equations (4.50) and (4.51) cannot syn-
chronously hold. Hence from Proposition 4.4 we assert that the assumption “A ∈ A2 ”
is not true. �

The above theoretical results can be applied to some specific procedures.

PROCEDURE 4.1. Given a matrix A ∈ Mn , the following procedure identifies
whether A ∈ An(2) .
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1. If Card(σ(A)) � 2, then A ∈ An(2) , goto End;

2. Else if Card(σs(A)) > 2, then A /∈ An(2) , goto End;

3. Else if σo(A) ⊂ {0, σmax(A)} , then A ∈ An(2) , goto End;

4. Else if rank(A) < n and there exist σ1, σ2 ∈ σ(A) such that μ [σ1] = μ [σ2] = 3,
then A /∈ An(2) , goto End;

5. Else, apply Proposition 4.4 or other criteria to identify whether A ∈ An(2) .

6. End.

According to Procedure 4.1, we give some concrete examples as follows.

EXAMPLE 4.1. According to Corollary 4.5,

A =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ∈ A4(2), B =

⎛
⎜⎜⎝

0 0 0 0
0 2 0 0
0 0 2 0
0 0 0 0

⎞
⎟⎟⎠ ∈ A4(2).

However, from the conclusion (i) of Proposition 4.4 we see that

A+B =

⎛
⎜⎜⎝

1 0 0 0
0 3 0 0
0 0 2 0
0 0 0 0

⎞
⎟⎟⎠ /∈ A4(2)

since Card(σs(A+B)) = 4 > 2.

EXAMPLE 4.2. Corollary 4.6 or the conclusion (i) of Proposition 4.4 tells us that

C =

⎛
⎝1 0 0

0 2 0
0 0 3

⎞
⎠ /∈ A3(2), D =

⎛
⎝2 0 0

0 1 0
0 0 3

⎞
⎠ /∈ A3(2),

but Corollary 4.5 and Corollary 4.8 indicate that

C+D =

⎛
⎝3 0 0

0 3 0
0 0 6

⎞
⎠ ∈ A3(2), F =

⎛
⎝ I2 0 0

0 2I2 0
0 0 3I2

⎞
⎠ ∈ A6(2).

EXAMPLE 4.3. According to Corollary 4.5 and Corollary 4.9, we see that

G =
(

I3 0
0 2I3

)
∈ A6(2), but T =

⎛
⎝ I3 0 0

0 2I3 0
0 0 0

⎞
⎠ /∈ A7(2).



SINGULAR VALUE STRUCTURE OF MATRICES IN An(2) 791

All of above examples reveal the complicacy of An(2) . Example 4.1 specially
shows that generally the set An(2) (n � 3) is not closed with respect to matrix addition.
These examples also demonstrate that An(2) � Mn , i.e., there exist matrices in Mn but
not in An(2) (for n � 3).

Based on Theorem 1.2 and the results discussed above, we conclude the following
assertion.

PROPOSITION 4.10. Let n be the order index of space Mn , and kmin the small-
est number of which every matrix in Mn can be expressed as a linear combination of
orthogonal matrices. If n � 3 , then 2 < kmin � 4 .

5. Conclusion

In this paper, via some elementary analysis we obtain an equivalent condition of
A ∈ An(2) (Proposition 4.4) and some sufficient or necessary conditions (Corollaries
4.5, 4.6, 4.8 and 4.9), which can be used as specific criteria to judge whether A ∈
An(2) . Based on these results, we reveal that cone An(2) is not closed with respect to
matrix addition, and demonstrate the existence of matrices that are not in An(2) , which
indicates that kmin > 2 (for n � 3).

We have to realize that the work in this article is only a preliminary research on set
An(2) . The criteria in step 5 of Procedure 4.1 need to be further improved. More exact
and comprehensive characterizations of An(2) are expected.

The last outstanding question “Whether kmin = 3 (for n � 4)?” seems more chal-
lenging and need further study. Some results of this article may be helpful for future
research.
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