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STABILITY BOUNDS FOR RECONSTRUCTION

FROM SAMPLING ERASURES

TYLER GONZALES AND SAM SCHOLZE ∗

(Communicated by D. Han)

Abstract. The Shannon-Whittaker Sampling Theorem states that a frequency bounded signal
can be completely determined by its sampled values at a countable number of points. Thus, the
theorem allows us to convert analog signals to digital signals by sampling (or evaluating) the
signal at these points. In prior work, it was shown that if a signal is oversampled, and if some
of the sampled values are lost when transmitting the signal, then it is still possible to reconstruct
the signal. However, in certain situations, the reconstruction algorithm is very unstable. In this
paper, we provide stability bounds on the reconstruction algorithm and determine when it is not
feasible to perform the reconstruction.

1. Introduction

The Shannon-Whittaker Sampling Theorem allows us to reconstruct frequency
bounded signals from their sampled values on a lattice. If we consider the space
PW (π) (all band-limited signals with frequency band [−π ,π ]) then we can recon-
struct the signal from its sampled values on pZ = {. . . ,−2p,−p,0, p,2p, . . .} provided
that p ∈ (0,1] . When p = 1, we are sampling at the Nyquist rate, and the underlying
frame is a Riesz basis. When p∈ (0,1) , we are oversampling, and the underlying frame
is a redundant tight frame. Because of this redundancy, we can still reconstruct a signal
when some of the sampled values are lost or erased.

In the frame theory literature, there are several papers that deal with erasures.
Frames which minimize signal error due to erasures were studied in [3] and [12] for one
and two erasures, respectively. In [9] and [13], efficient algorithms for reconstructing
signals from erasures were discovered. In this paper, we obtain stability bounds for the
Reduced Direct Inversion algorithm from [13] applied to Shannon-Whittaker Sampling
Theory. For other good references on frame erasures, and reconstruction stability, see
[5], [10], [14], [15], and [16].

While the reconstruction algorithms mentioned above give perfect reconstruction,
it is possible that a signal may be corrupted by noise (cf. [2]), or quantization error (cf.
[1]). Moreover, the Shannon-Whittaker sampling theorem requires an infinite sequence
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of sampled values. In practice, since we cannot transmit infinitely many sampled values
over a channel, we must truncate this data stream. This also contributes to the error
term. If the reconstruction process is not stable, these unavoidable errors can be blown
up, sometimes to the extent that it is worse to perform the reconstruction process than
to perform no reconstruction from erasures at all.

In Section 3, we provide operator theoretic bounds on the various pieces that make
up the partial reconstruction operator – the linear operator that must be inverted to
reconstruct from erasures. If this operator is poorly behaved a good reconstruction is
not possible. However, if the erasure set is relativley separated, we can find a good
bound for the partial reconstruction operator.

Since we can only transmit finitely many sampled values, there is always trunca-
tion error involved in Shannon-Whittaker Sampling Theory. In Section 4, we bound
this truncation error. We provide a bound for this error term for signals whose Fourier
transforms belong to Sobolev spaces of a particular order. We show that the higher the
regularity of the Fourier transform, the faster the convergence rate of the partial recon-
struction. Thus, for signals with Fourier transforms of high regularity, fewer sampled
values need to be transmitted.

In Section 5, we combine the results of Sections 3 and 4 to provide a total, overall
bound for the error in the reconstruction. We also discuss the effects of channel noise
on our reconstruction. Based on the theoretical results, qualitative guidelines are pro-
vided in Section 6 to characterize situations in which a good reconstruction is possible,
and situations in which a poor reconstruction is inevitable. Numerical experiments are
provided to demonstrate our theoretical results and to back up our qualitative character-
izations.

2. Preliminaries

2.1. Frames and Shannon-Whittaker sampling theory

A frame for a Hilbert space H is a collection of vectors { f j} j∈J ⊂ H for which
there exist constants 0 < A � B < ∞ such that

A‖ f‖2 � ∑
j∈J

|〈 f , f j
〉 |2 � B‖ f‖2, ∀ f ∈ H . (1)

A frame is called tight if we can take A = B in equation (1). Associated to any frame
are three operators – the analysis, synthesis, and frame operators. The analysis operator
Θ : H → �2(J) maps a vector f to its sequence of frame coefficients:

Θ f = (
〈
f , f j

〉
) j∈J.

The synthesis operator Θ∗ : �2(J) → H is the adjoint of the analysis operator and it
sums a sequence of coefficients against the frame vectors:

Θ∗(c j) j∈J = ∑
j∈J

c j f j.



STABILITY BOUNDS FOR RECONSTRUCTION FROM SAMPLING ERASURES 795

When the frame is not understood from context, we use subscripts on Θ and Θ∗ for
clarity. The composition of these two operators forms the frame operator S : H → H
defined by

S f = ∑
j∈J

〈
f , f j

〉
f j.

The frame operator for a frame is an invertible operator, and the sequence {S−1 f j} j∈J

– called the standard dual of { f j} j∈J – satisfies:

f = ∑
j∈J

〈
f , f j

〉
S−1 f j = ∑

j∈J

〈
f ,S−1 f j

〉
f j, ∀ f ∈ H . (2)

In general, we say any frame G = {g j} j∈J satisfying

f = ∑
j∈J

〈 f ,g j〉 f j = ∑
j∈J

〈 f , f j〉g j

for all f ∈ H is called a dual frame to F = { f j} j∈J . The pair (F,G) is called a dual
frame pair. For more on frames, see [4], [7], and [8].

Throughout this paper, we use the Fourier transform as defined by

F{ f (x)} = f̂ (ξ ) =
∫

R

f (x)e−ixξ dx.

A function f ∈ L2(R) is said to be band-limited with band Ω if spt.( f̂ ) ⊂ [−Ω,Ω] .
We denote the space of all band-limited functions with band Ω as PW (Ω) . Within
the space PW (π) , pointwise evaluation functionals are continuous and given by inner
products:

f (a) = 〈 f (x),sinc(π(x−a))〉 , ∀ f ∈ PW (π), (3)

where sinc(x) = x−1 sin(x) for x 
= 0 and sinc(0) = 1. Using Parseval’s equality, it is
straightforward to show that Gp = {sinc(π(x− p j))} j∈Z is a tight frame for PW (π)
with frame bound A = 1

p for any p ∈ (0,1] . When p = 1, this frame is actually an
orthogonal basis because we are sampling at the Nyquist rate. For 0 < p < 1, we are
oversampling the signal, and thus the collection forms a redundant tight frame. The
standard dual to Gp is Fp = {psinc(π(x− p j))} j∈Z .

2.2. Reduced direct inversion

The Reduced Direct Inversion algorithm is a technique which can be used to re-
construct signals in a Hilbert space when part of the signal is erased. Suppose Alice
wishes to send a signal f ∈ H to Bob. Given a dual frame pair (F,G) , Alice can
compute the coefficients (〈 f ,g j〉) j∈J and then send them to Bob over some channel.
Bob can then compute the recovery of the signal f :

f = ∑
j∈J

〈 f ,g j〉 f j.

This, of course, can be expressed in terms of the standard frame operators discussed in
the previous section, i.e. ∑ j∈J〈 f ,g j〉 f j = Θ∗

FΘG f .
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We are interested in reconstructing a signal when some of the data is erased. Sup-
pose that some of the data, indexed by an erasure set Λ , are lost in the channel. The
partial reconstruction operator, RΛ : H →H , which gives the partial reconstruction
fR , is defined as

fR = RΛ f = ∑
j∈Λc

〈 f ,g j〉 f j.

The error operator, EΛ : H → H , is defined as

EΛ f = (I−RΛ) f = ∑
j∈Λ

〈 f ,g j〉 f j = Θ∗
FΛ

ΘGΛ f .

Notice that EΛ f is the erased portion of the signal. Pay close attention to the subscripts,
which tell us which frames and operators we are considering. For example, ΘGΛ de-
notes the analysis operator for the reduced collection {g j} j∈Λ , and Θ∗

FΛ
is the synthesis

operator for { f j} j∈Λ .
Since the partial reconstruction operator gives rise to the partial reconstruction in

the sense that fR = RΛ f , recovering the signal f would amount to inverting RΛ . It can
be shown that RΛ is invertible if and only if I−ΘGΛΘ∗

FΛ
is invertible, with inverse

R−1
Λ = I + Θ∗

FΛ
(I−ΘGΛΘ∗

FΛ
)−1ΘGΛ .

We would then be able to recover f by the formula

f = R−1
Λ fR = [I + Θ∗

FΛ
(I−ΘGΛΘ∗

FΛ
)−1ΘGΛ ] fR. (4)

Given a vector x = (xk)L
k=1 and an erasure set Λ = {nk}L

k=1 , it can be shown that

ΘGΛ Θ∗
FΛ

x = p

[
L

∑
k=1

xksinc(pπ(n j −nk))

]L

j=1

= MΛx,

where

MΛ = p

⎡⎢⎢⎢⎣
1 sinc(pπ(n1−n2)) · · · sinc(pπ(n1−nL))

sinc(pπ(n2−n1)) 1 sinc(pπ(n2−nL))
...

...
. . .

...
sinc(pπ(nL−n1)) sinc(pπ(nL−n2)) · · · 1

⎤⎥⎥⎥⎦ . (5)

Substituting this matrix representation into (4) allows us to rewrite the reconstruction
as the following formula:

f = R−1
Λ fR = [I + Θ∗

FΛ
(I−MΛ)−1ΘGΛ ] fR. (6)

Directly inverting RΛ , which is an infinite dimensional operator, is not possible.
However, inverting the L×L matrix I−MΛ is possible in most cases.
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2.3. Sobolev spaces

Sobolev spaces consist of integrable functions whose weak derivatives are also
integrable up to some order. More specifically, for s ∈ N and 1 � p � ∞ , the Sobolev
space Ws

p(Ω) is defined as the space of all functions u ∈ Lp(Ω) whose α -th weak

derivatives, u(α) , exist and also belong to Lp(Ω) for all α � s. That is,

Ws
p(Ω) = {u ∈ Lp(Ω) : u(α) ∈ Lp(Ω) for all α � s}.

For p = 2, we often write Hs(Ω) = Ws
2 (Ω) , for the well known fact that these spaces

are Hilbert spaces.
Given a function f ∈ L2(Ω) , we define its Fourier coefficients by

ck =
1

2Ω

∫ Ω

−Ω
f (x)e−

ikπx
Ω dx.

For a function f ∈ Hs(Ω) , it can be shown using Parseval’s equation for f and f (s)

that

∑
�∈Z

(|c�|(1+ |�|s))2 < ∞.

The following simple observation relates decay of Fourier coefficients to the order of
weak-differentiability a function obtains.

PROPOSITION 2.1. If f ∈ Hs(Ω) , then |ck| = O(|k|−s) .

Proof. If f ∈ Hs(Ω) , then

∑
�∈Z

(|c�|(1+ |�|s))2 < ∞.

For each k , |k|2s|ck|2 � ∑�∈Z |c�|2|�|2s � ∑�∈Z |c�|2(1+ |�|2s) . It follows that

|k|s|ck| �
(

∑
�∈Z

|c�|2(1+ |�|2s)

)1/2

�
(

∑
�∈Z

|c�|2(1+ |�|s)2

)1/2

=

(
∑
�∈Z

(|c�|(1+ |�|s))2

)1/2

< ∞.

Therefore, |k|s|ck| � C =
(
∑�∈Z(|c�|(1+ |�|s))2

)1/2
, so |ck| = O(|k|−s) . �
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3. Stability bounds for the partial reconstruction operator

The first step in bounding the reconstruction error is to bound the operator norm
of the partial reconstruction operator, RΛ . The smaller the norm is, the more stable our
reconstruction will be. To do this, we will individually bound all of the operators in
equation (6). The most challenging piece to bound is ‖MΛ‖ , so this is where we will
start.

In preliminary experiments, we noticed a very clear trend. The more separated the
erasure set is, the better the reconstruction. By contrast, when a sequence of consecutive
sampled values is erased, then a very poor reconstruction seemed inevitable. Thus, the
separation constant will play a key role in our analysis going forward. For an erasure
set Λ = {n j}L

j=1 ⊂ Z the separation constant is defined as

δ = inf{|n j −nk| : j 
= k and 1 � j,k � L}.

The bound on ‖MΛ‖ in the next theorem is a function of the separation constant and
the erasure set size.

THEOREM 3.1. Let δ be the separation constant for the erasure set Λ = {n j}L
j=1 .

If MΛ is defined as in equation (5), then

‖MΛ‖ � p+
2

πδ
(1+ log(L−1)) . (7)

Proof. Since MΛ is a self-adjoint operator, we have the following:

‖MΛ‖ = sup
‖x‖=1

|〈MΛx,x〉|= sup
‖x‖=1

∣∣∣∣∣∣
〈

p

[
L

∑
k=1

xksinc(pπ(n j −nk))

]L

j=1

,(x j)L
j=1

〉∣∣∣∣∣∣
� sup

‖x‖=1
p

L

∑
j=1

L

∑
k=1

|xkx jsinc(pπ(n j −nk))|.

By splitting the sum between j = k and j 
= k we obtain

‖MΛ‖ � sup
‖x‖=1

p

(
L

∑
j=1

|x j|2sinc(0)+ ∑
j 
=k

|xkx j||sinc(pπ(n j −nk))|
)

� sup
‖x‖=1

p

(
1+ ∑

j 
=k

|xkx j| 1
pπ |n j −nk|)

)

� sup
‖x‖=1

(
p+

1
2π ∑

j 
=k

|xk|2 + |x j|2
|n j −nk|

)

= p+
1
2π

sup
‖x‖=1

∑
j 
=k

|xk|2 + |x j|2
|n j −nk| .
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(Note the use of the inequality 2ab � a2 +b2 in the second to the last inequality above.)
Without loss of generality, we can assume that Λ = {n j}L

j=1 is an ordered set.
Then, by arranging these points in ascending order on a number line, we can see that
|n j+1 − n j| � δ . More generally, by the triangle inequality, we see that |n j − nk| �
δ | j− k| . So,

1
δ | j− k| � 1

|n j −nk| .

Thus, from above, we have

‖MΛ‖ � p+
1
2π

sup
‖x‖=1

∑
j 
=k

|xk|2 + |x j|2
|n j −nk| � p+

1
2πδ

sup
‖x‖=1

∑
j 
=k

|xk|2 + |x j|2
| j− k| . (8)

The right most sum in (8) can be seen as the sum of the off-diagonal terms of the
following matrix:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 |x1|2+|x2|2
1

|x1|2+|x3|2
2

|x1|2+|x4|2
3 · · · |x1|2+|xL|2

(L−1)
|x2|2+|x1|2

1 1 |x2|2+|x3|2
1

|x2|2+|x4|2
2 · · · |x2|2+|xL|2

(L−2)
|x3|2+|x1|2

2
|x3|2+|x2|2

1 1 |x3|2+|x4|2
1 · · · |x3|2+|xL|2

(L−3)

|x4|2+|x1|2
3

|x4|2+|x2|2
2

|x4|2+|x3|2
1 1

. . .
...

...
...

...
. . . 1 |xL−1|2+|xL|2

1
|xL|2+|x1|2

(L−1)
|xL|2+|x2|3

(L−2)
|xL|2+|x3|3

(L−3) · · · |xL|2+|xL−1|2
1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Since the matrix is symmetric about the main diagonal, we can just double the sum over
the upper triangle (excluding the diagonal) of the matrix to get

∑
j 
=k

|xk|2 + |x j|2
| j− k| = 2 ∑

k< j

|xk|2 + |x j|2
| j− k| .

Since |x j|2 appears at most twice along the mth diagonal, we can convert to a sum over
the mth diagonal:

2 ∑
k< j

|xk|2 + |x j|2
| j− k| � 2

L−1

∑
m=1

2‖x‖2

m
= 4‖x‖2

L−1

∑
m=1

1
m

. (9)

Therefore, replacing the sum ∑ j 
=k
|xk |2+|x j |2

| j−k| in (8) with (9), we obtain

‖MΛ‖ � p+
2

πδ
sup
‖x‖=1

‖x‖2
L−1

∑
m=1

1
m

= p+
2

πδ

L−1

∑
m=1

1
m

.

We complete the proof by using the integral test to bound the sum:

‖MΛ‖ � p+
2

πδ

(
1+

∫ L−1

1

1
x

dx

)
= p+

2
πδ

(1+ log(L−1)) . �
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In analyzing the bound from Theorem 3.1 we see that the norm of MΛ is small
provided δ = O(logL) . If the separation constant δ is large relative to logL , the
operator MΛ is well behaved.

Similar to geometric series, if ‖T‖ < 1 for a linear operator T : H → H , then

(I−T )−1 =
∞

∑
k=0

Tk,

with convergence in the sense of the operator norm. Such a series is called a Neumann
series. We will use Neumann series to extend the bound in Theorem 3.1 to a bound on
the term (I−MΛ)−1 in equation (6).

COROLLARY 3.2. Let δ be the separation constant for the erasure set Λ = {n j}L
j=1 .

If L < 1+ exp(πδ (1−p)
2 −1) , then ∑∞

k=0 ‖MΛ‖k , converges and

‖(I−MΛ)−1‖ � πδ
πδ (1− p)+2(log(L−1)+1)

.

Proof. Note that ∑∞
k=0 ‖MΛ‖k converges whenever ‖MΛ‖ < 1. It is straightfor-

ward to show this is true provided

L < 1+ exp

(
πδ (1− p)

2
−1

)
.

Applying a Neumann series gives

‖(I−MΛ)−1‖ =

∥∥∥∥∥ ∞

∑
k=0

Mk
Λ

∥∥∥∥∥�
∞

∑
k=0

‖MΛ‖k.

Using our expression for ‖MΛ‖ from Theorem 3.1 we have

∞

∑
k=0

‖MΛ‖k � 1

1−
(

pπδ+2 log(L−1)+2
πδ

) =
πδ

πδ (1− p)+2(log(L−1)+1)
. �

In the next lemma, we will compute the bounds on the remaining terms in equation
(6) on our way to a total bound for ‖R−1

Λ ‖ .

LEMMA 3.3. Let Λ = {n j}L
j=1 . Then,

‖ΘGΛ‖ �
√

1
p
, ‖Θ∗

FΛ
‖ � √

p, and ‖Θ∗
FΛc‖ � √

p.
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Proof. Since Gp is a tight frame for PW (π) with frame bound 1
p , we have

‖ΘGΛ‖2 = sup
‖ f‖=1

‖ΘGΛ f‖2 = sup
‖ f‖=1

‖(〈 f ,g j〉) j∈Λ‖2
�2(Λ)

= sup
‖ f‖=1

∑
j∈Λ

|〈 f ,g j〉|2 � sup
‖ f‖=1

∑
j∈Z

|〈 f ,g j〉|2 = sup
‖ f‖=1

1
p
‖ f‖2 =

1
p
.

Thus, ‖ΘGΛ‖ �
√

1
p .

Since f j = pg j , we have√
1
p

� ‖ΘGΛ‖ = ‖Θ∗
GΛ

‖ =
∥∥∥∥ 1

p
Θ∗

FΛ

∥∥∥∥=
1
p
‖Θ∗

FΛ
‖. (10)

Hence, ‖Θ∗
FΛ
‖ � p

√
1
p =

√
p .

The same technique can be used to show that ‖Θ∗
FΛc‖ � √

p . (Just repeat the
computation with Λc in place of Λ .) �

In Theorem 3.4, we knit together our individual bounds from Corollary 3.2 and
Lemma 3.3 to obtain an overall bound for R−1

Λ .

THEOREM 3.4. Let δ be the separation constant for the erasure set Λ = {n j}L
j=1 .

Define γ by

γ := π(1− p)+
2
δ

(log(L−1)+1). (11)

If p ∈ (0,1) and L < 1+ exp(πδ (1−p)
2 −1) , then

‖R−1
Λ ‖ � 1+

π
γ

.

Proof. From the reduced direct inversion algorithm, R−1
Λ = I+Θ∗

FΛ
(I−MΛ)−1ΘGΛ .

The triangle inequality, Corollary 3.2, and Lemma 3.3 then yield

‖R−1
Λ ‖ � 1+‖Θ∗

FΛ
‖‖(I−MΛ)−1‖‖ΘGΛ‖

� 1+
√

p

(
πδ

πδ (1− p)+2(log(L−1)+1)

)√
1
p

= 1+
πδ

πδ (1− p)+2(log(L−1)+1)

= 1+
π
γ

. �
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4. Error in the N -term approximation

We now consider the error associated with the partial reconstruction, fR , which
may arise from approximations to an infinite sum. Any errors in fR can be blown up
when computing f = R−1

Λ fR , so it is important that these errors are small. The primary
source of error is truncation error, since the infinite sum fR(t)= p∑ j∈Λc f (p j)sinc(π(t−
p j)) can only be approximated with a finite sum:

f (N)
R (t) = p

N

∑
j=−N
j∈Λc

f (p j)sinc(π(t− p j)). (12)

In reality, since we are only considering coefficients indexed from j = −N, . . . ,N , we
use the convention Λ ⊂ {−N, . . . ,N} . We define the j th Fourier frame coefficient to be

ĉ j =
1
2π

∫ π

−π
f̂ (ξ )eip jξ dξ . (13)

We now provide a bound on the error in the partial reconstruction resulting from
taking an N -term approximation.

LEMMA 4.1. Let f ∈ PW (π) and fR denote the partial reconstruction of the
signal f . Then the error in the partial reconstruction is given by

‖ fR − f (N)
R ‖L2(R) � p ∑

| j|>N

|ĉ j|.

Proof. For any t ∈ R we have the following:

( fR − f (N)
R )(t) = p ∑

j∈Λc
f (p j)sinc(π(t− p j))− p ∑

| j|�N
j∈Λc

f (p j)sinc(π(t− p j))

= p ∑
| j|>N

f (p j)sinc(π(t− p j)),

so taking L2 -norms results in

‖ fR − f (N)
R ‖L2(R) � p ∑

| j|>N

| f (p j)|‖sinc(π(t− p j))‖L2(R)

= p ∑
| j|>N

∣∣∣∣ 1
2π

∫
R

f̂ (ξ )eip jξ dξ
∣∣∣∣‖sinc(π(t− p j))‖L2(R).

By equation (3),

‖sinc(π(t− p j))‖L2(R) =
√
〈sinc(π(t− p j)),sinc(π(t− p j))〉

=
√

sinc(0) = 1.
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So,

‖ fR − f (N)
R ‖L2(R) � p ∑

| j|>N

∣∣∣∣ 1
2π

∫
R

f̂ (ξ )eip jξ dξ
∣∣∣∣

= p ∑
| j|>N

|ĉ j|. �

Lemma 4.1 shows that the rate at which f (N)
R converges to fR is proportional to the

decay rate of the Fourier coefficients of f̂ . From basic Fourier analysis, we know that
this decay rate is dependent on the smoothness, or regularity of f̂ . This relationship is
formalized in Lemma 4.2 below.

LEMMA 4.2. Suppose f̂ ∈ Hs(R) and f ∈ PW (π) , then |ĉ j| = O(| j|−s) .

Proof. Since p ∈ (0,1) , spt.( f̂ ) ⊂ [−π ,π ] ⊂
[
− π

p , π
p

]
. The Fourier basis for

L2
[
− π

p , π
p

]
is
{√

p
2π eipkξ

}
k∈Z

. Since f̂ ∈ Hs(π
p ) , its Fourier coefficients

ĉk =
1
2π

∫ π

−π
f̂ (ξ )eipkξ dξ

=
1
2π

∫ π
p

− π
p

f̂ (ξ )eipkξ dξ

satisfy ĉk ∈ O(|k|−s) by Proposition 2.1. �
In Theorem 4.3, we combine Lemmas 4.1 and 4.2 to determine the rate at which

the N -term approximation, f (N)
R converges to the true partial reconstruction, fR .

THEOREM 4.3. Suppose f̂ ∈ Hs(R) for s > 1 and f ∈ PW (π) . Then

‖ fR − f (N)
R ‖L2(R) = O(|N|1−s).

Proof. By Lemma 4.2, |ĉ j| = O(| j|−s) . So we can find a constant K > 0 such
that |ĉ j| < K

| j|s . Using Lemma 4.1, we see that

‖ fR − f (N)
R ‖ � p ∑

| j|>N

|ĉ j| � pK ∑
| j|>N

1
| j|s

= 2pK
∞

∑
j=N+1

1
js

� 2pK
∫ ∞

N

1
xs dx

=
2pK
s−1

N1−s.

Therefore, ‖ fR − f (N)
R ‖ = O(N1−s) . �
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5. Total error in the reconstruction

In this section, we tie our error bounds together to establish overall bounds on
the error resulting from the reconstruction algorithm. In doing so, we can determine
when the reconstruction is feasible. We also consider estimates resulting from error
introduced into the coefficients.

The first result gives an upper bound on the error in the reconstruction resulting
from truncation. We recall that f = R−1

Λ fR , and define the N-term approximation in the

reconstruction by f̃ = R−1
Λ f (N)

R . Also, recall that γ , as a function of p , δ , and L , is
given in (11).

THEOREM 5.1. Let f ∈ PW (π) and p ∈ (0,1) . If L < 1 + exp(πδ (1−p)
2 − 1)

and f̂ ∈ Hs(R) for s > 1 , then there exists K > 0 such that

‖ f − f̃‖ � K

(
1+

π
γ

)
N1−s.

Proof. The true reconstruction can be obtained as f = R−1
Λ fR . Consider

‖ f − f̃‖ = ‖R−1
Λ ( fR − f (N)

R )‖
� ‖R−1

Λ ‖‖ fR − f (N)
R ‖.

By Theorem 3.4,

‖R−1
Λ ‖ � 1+

π
γ

and, by Theorem 4.3, there is some K > 0 such that ‖ fR− f (N)
R ‖ � KN1−s. Combining

these results, we find

‖ f − f̃‖ � ‖R−1
Λ ‖‖ fR − f (N)

R ‖

� K

(
1+

π
γ

)
N1−s. �

The previous result is an overall error estimate on the possible reconstruction f̃
with the theoretically defined reconstruction f . However, it is also possible that there
could be error introduced into the coefficients of the signal. In this case, we need a way
to look at these more specific error terms. Recall that

fR(t) = p ∑
j∈Λc

f (p j)sinc(π(t− p j))

= Θ∗
FΛc ( f (p j)) j∈Λc .

Suppose the signal is subject to an error εεεεε = (ε j) j∈Λc in the coefficients, which may
be a result of quantization error or channel noise [1, 6]. Then Alice would com-
pute f (p j) , and Bob would receive f (p j)+ ε j . So, during the reconstruction phase,
Θ∗

FΛc ( f (p j)) j∈Λc would become Θ∗
Fc

Λ
( f (p j)+ ε j) j∈Λc .
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Now, let us return to the reconstruction, considering error in the coefficients. De-
fine Δ = R−1

Λ Θ∗
FΛc so that our reconstruction would be Δ( f (p j)+ ε j) j∈Λc . Since Δ is

a linear operator,

Δ( f (p j)+ ε j) j∈Λc = Δ( f (p j)) j∈Λc + Δ(ε j) j∈Λc

= Δ( f (p j)) j∈Λc + Δεεεεε
= f + Δεεεεε.

Thus, the error in the reconstruction is Δεεεεε . The next result gives a bound on the coeffi-
cient error in the reconstruction, given by ‖Δεεεεε‖ .

COROLLARY 5.2. Let f ∈ PW (π) and p ∈ (0,1) . If L < 1+ exp(πδ (1−p)
2 −1)

and f̂ ∈ Hs(R) for s > 1 , then

‖Δεεεεε‖ �
(

1+
π
γ

)√
p ‖εεεεε‖.

Proof. From Lemma 3.3, ‖Θ∗
FΛc‖ � √

p . Therefore, by Theorem 3.4,

‖Δεεεεε‖ � ‖R−1
Λ ‖‖Θ∗

FΛc‖‖εεεεε‖

�
(

1+
π
γ

)√
p ‖εεεεε‖. �

Though theoretically defined, in order to actually compute the reconstruction for
applications, we again need an N -term approximation. Let Ω = Λc ∩ {−N, . . . ,N}
denote the N -term approximation of Λc . Define ΔΩ = R−1

Λ Θ∗
FΩ

and εεεεεΩ = (ε j) j∈Ω .
Then the N -term approximation to the reconstruction, with coefficient error, is given
by ˜̃f = ΔΩ( f (p j)+ ε j) j∈Ω.

The following theorem presents a final bound for the norm of the error associated with
this reconstruction.

THEOREM 5.3. Let f ∈PW (π) and p∈ (0,1) . Suppose L < 1+exp(πδ (1−p)
2 −

1) and f̂ ∈ Hs(R) for s > 1 . Then there exists K > 0 such that

‖ f − ˜̃f ‖ �
(

1+
π
γ

)
(KN1−s +

√
p‖εεεεεΩ‖).

Proof. Since ΔΩ = R−1
Λ Θ∗

FΩ
, we may write f̃ = R−1

Λ f (N)
R = ΔΩ( f (p j)) j∈Ω . There-

fore,

‖ f − ˜̃f ‖ � ‖ f − f̃‖+‖ f̃ − ˜̃f ‖
= ‖ f − f̃‖+‖ΔΩ( f (p j)) j∈Ω −ΔΩ( f (p j)+ ε j) j∈Ω‖
= ‖ f − f̃‖+‖ΔΩεεεεεΩ‖.
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Since Ω ⊆ Λc , we can use Corollary 5.2 to conclude that

‖ΔΩεεεεεΩ‖ �
(

1+
π
γ

)√
p ‖εεεεεΩ‖.

Also, by Theorem 5.1,

‖ f − f̃‖ � K

(
1+

π
γ

)
N1−s.

Putting this together, we obtain the desired result:

‖ f − ˜̃f ‖ �
(

1+
π
γ

)
(KN1−s +

√
p‖εεεεεΩ‖). �

6. Numerical experiments and concluding remarks

The theoretical results obtained in this work allow us to make some important
observations relating to feasibility of reconstructions. We see that a large separation in
erasures (δ ) tells us that smaller partial sum numbers (N ) will suffice in order to obtain
a good reconstruction. However, small separations in erasures requires the partial sum
number to be large in order to obtain a good reconstruction. These observations are
made clear in the next three figures.

Figure 1: Reduced direct inversion algorithm for f (x) = sinc(πx) (pictured in black solid
line) with p = 1

2 and N = 10 . For the left figure (consecutive erasures), δ = 1 and Λ =
{0, 1

2 ,1, 3
2 ,2, 5

2 ,3, 7
2} . For the right figure (erase every other sampled value), δ = 2 and

Λ = {0,1,2,3,4,5,6,7} . The dashed line graph represents the reconstruction from erasures.
We see that the larger δ gives a better reconstruction.

In the next experiment, we will run the same tests on a function that has a Fourier
transform with a higher degree of regularity. It is not too difficult to show that the
Fourier transform of
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Figure 2: Reduced direct inversion algorithm for f (x) = sinc(πx) with p = 1
2 and N = 100 .

For the left figure (consecutive erasures), δ = 1 and Λ = {0, 1
2 ,1, 3

2 ,2, 5
2 ,3, 7

2} . For the right
figure (erase every other sampled value), δ = 2 and Λ = {0,1,2,3,4,5,6,7} . For increased N ,
a better reconstruction is obtained.

τ(x) =

{
π −|x| −π � x � π
0 otherwise

(14)

is τ̂(ξ ) = −π2sinc2
(

πξ
2

)
. Using this and the identity ˆ̂f (x) = 2π f (−x) , we see that

the Fourier transform of h(x) = sinc2
(πx

2

)
is − 2

π τ(ξ ) . That is, h(x) ∈ PW (π) , and
ĥ(ξ ) is of a higher regularity than the function from the previous example since it is
continuous.

Figure 3: Reduced direct inversion algorithm for f (x) = sinc(πx) with p = 1
2 and N = 1,000.

For the left figure (consecutive erasures), δ = 1 and Λ = {0, 1
2 ,1, 3

2 ,2, 5
2 ,3, 7

2} . For the right
figure (erase every other sampled value), δ = 2 and Λ = {0,1,2,3,4,5,6,7} .
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Figure 4: This is a repeat of the experiment from Figure 1 with h(x) = sinc2
( πx

2

)
. Again, a

larger δ gives a better reconstruction. Moreover, we see that a smaller N value is less detrimen-
tal when dealing with a function of a higher regularity.

Figure 5: This is a repeat of the experiment from Figure 2 with h(x) = sinc2
( πx

2

)
. Again we see

that a more regular function, h(x) requires a smaller N value to acheive a good reconstruction.
In both figures, we see very little difference in dashed line (reconstructed signal) and black solid
line (true signal) graphs meaning that the reconstruction process is highly stable. This should be
contrasted with the left image in Figure 3 where even N = 1,000 is insufficient to obtain a good
reconstruction when the separation constant δ is small.
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[2] E. CÀNDES AND T. TAO, Decoding by Linear Programming, IEEE Trans. Inform. Theory, 51 no. 12
(2005), 4203–4215.
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