THE STRONG LIMITED *p*-SCHUR PROPERTY IN BANACH LATTICES

H. Ardakani* and Kh. Taghavinejad

(Communicated by L. Molnár)

Abstract. The concept of the strong limited *p*-Schur property ($1 \le p \le \infty$); that is, spaces on which every weakly *p*-compact and almost limited set is relatively compact is introduced and studied. Next, the weak DP^{*} property of order *p* is defined and spaces with this property are characterized. As an application of these results, by the class of disjoint *p*-convergent operators, some characterizations of Banach lattices with the weak DP^{*} property of order *p* are given.

1. Introduction and preliminaries

Throughout this paper X will denote a Banach space, E will denote a Banach lattice, $E^+ = \{x \in E : x \ge 0\}$ refers to the positive cone of E, $B_E :=$ is the closed unit ball of E and the solid hull of a subset A of E is the set $sol(A) = \{y \in E : |y| \le |x|, for some x \in A\}$.

The concept of limited sets has been widely studied by different authors and some characterizations have been given. If A is a norm bounded subset of a Banach space X and for each weak^{*} null sequence (x_n^*) in X^* ,

$$\lim_{n\to\infty}\sup_{a\in A}|\langle a,x_n^*\rangle|=0,$$

then we say that A is *limited* and Banach spaces whose limited sets are relatively compact are called Gelfand-Phillips (GP) spaces. A Banach space X has the DP* property if each relatively weakly compact set in X is limited [8, 10, 3].

A norm bounded subset A of a Banach lattice E is said to be an *almost limited* set, if every disjoint weak^{*} null sequence (x_n^*) in E^* converges uniformly to zero on A. A Banach lattice E has the weak DP^{*} property if all relatively weakly compact subsets are almost limited. The weak DP^{*} property in terms of disjoint sequences is characterized in [5].

According to the definition of almost limited sets, the stronger version of GP property is considered and the class of Banach lattices with the *strong GP property* is introduced which is shared by those Banach lattices whose almost limited subsets are

^{*} Corresponding author.

Mathematics subject classification (2020): Primary 46B42; Secondary 46B50, 47B65.

Keywords and phrases: Almost limited set, Schur property, weak DP* property, weakly p-summable sequence, p-convergent operator.

relatively compact. The reader is referred to [2] for the definition and an extensive discussion of the strong GP property in Banach lattices.

For each $1 \le p < \infty$, a sequence (x_n) of a Banach space *X* is called *weakly p*summable if for each $x^* \in X^*$, $(x^*(x_n)) \in \ell_p$ and (x_n) is said to be *weakly p*-convergent to an $x \in X$ if the sequence $(x_n - x) \in \ell_p^w(X)$, where $\ell_p^w(X)$ is the space of all weakly *p*summable sequences in *X*. The weakly ∞ -convergent sequences are simply the weakly convergent sequences. A bounded set *A* in a Banach space *X* is called *relatively weakly p*-compact, $1 \le p \le \infty$, if each sequence in *A* has a weakly *p*-convergent subsequence. If the limit point of each weakly *p*-convergent subsequence is in *A*, then we call *A* a weakly *p*-compact set. Also a Banach space *X* is *weakly p*-compact, $1 \le p \le \infty$, if the closed unit ball B_X is a weakly *p*-compact set. The reader can find some useful and additional properties about these concepts in [4].

Recently in [6], the concept of the *limited p-Schur property*; that is, Banach spaces whose all limited weakly *p*-compact subsets are relatively compact $(1 \le p \le \infty)$ is introduced and some conditions under which some operator spaces have the limited *p*-Schur property is established. Clearly, each Banach space with the GP property has the limited *p*-Schur property.

In the first part of this note, we introduce a stronger form of the limited *p*-Schur property for Banach lattices (Definition 2.1) and characterize the class of spaces with this property. Then, using weakly *p*-summable sequence techniques we consider the positive Schur property of order *p* (i.e., the *p*-positive Schur property) in Banach lattices and investigate spaces in which *p*-positive Schur property is equivalent to the positive Schur property. A Banach lattice *E* has the *positive Schur property* if each positive weakly null sequence in *E* is norm null [17]. Finally, we introduce the weak DP* property of order *p* (i.e. *p*-weak DP* property), which is a generalization of the classical weak DP* property and by a class of disjoint *p*-convergent operators, research Banach lattices with the *p*-weak DP* property. The reader should see [5, 17] for the weak DP* and positive Schur properties in Banach lattices. Throughout the paper, *p'* denotes the conjugate number of *p* for 1 ; if <math>p = 1, $\ell_{p'}$ plays the role of c_0 . We refer the reader to references [1, 15] for the theory of operators and Banach lattices.

2. Strong limited *p*-Schur property

Recently, the notion of the *p*-Schur property $(1 \le p < \infty)$ as a generalization of the Schur property is introduced. In fact, a Banach space *X* has the *p*-Schur property if every weakly *p*-summable sequence in *X* is norm null (i.e., converges to zero). Moreover, it has been shown that *X* has the 1-Schur property if and only if *X* contains no copy of c_0 . As we said before, a Banach space *X* has the limited *p*-Schur property if each weakly *p*-compact limited set in *X* is relatively compact; or equivalently, every limited sequence $(x_n) \in \ell_p^{w}(X)$ is norm null. Every Banach space with the Schur property has the *p*-Schur and so the limited *p*-Schur property, but the converse is false. As an example, for 1 and <math>1 < q < p', all ℓ_q spaces have the *p*-Schur property, but it does not have the Schur property [20, 7, 6]. Throughout this article we assume that $1 \le p < \infty$, unless otherwise stated.

DEFINITION 2.1. A Banach lattice E has the *strong limited p-Schur property* if each almost limited weakly *p*-compact subset of E is relatively compact.

It can be easily shown that, a Banach lattice *E* has the strong limited *p*-Schur property if and only if each almost limited sequence $(x_n) \in \ell_p^w(E)$ is norm null. It is easy to see that, if $1 \leq p < q$ and *E* has the strong limited *q*-Schur property, then *E* has the strong limited *p*-Schur property. Notice that, the strong limited *p*-Schur property implies the limited *p*-Schur property, but the following example shows that the converse is false, in general.

EXAMPLE 2.2. $L^1[0,1]$ has the limited *p*-Schur property, but it does not have the strong limited *p*-Schur property, for $p \ge 2$.

Proof. Since $L^1[0,1]$ is separable, then it has the limited *p*-Schur property. But $L^1[0,1]$ does not have the strong limited *p*-Schur property, for $p \ge 2$. In fact, the *Rademacher sequences* (r_n) in $L^1[0,1]$ are weakly 2-summable (see [16, Proposition 3.6]) and almost limited, by the weak DP* property, but $||r_n|| = 1$ for all n. \Box

Actually, $L^{1}[0,1]$ has the 1-Schur property, since it contains no copy of c_{0} .

Each Banach lattice with the strong GP property, such as the classical Banach lattices c_0 , ℓ_p , Schur spaces and more generally discrete Banach lattices with order continuous norm, have the strong limited *p*-Schur property (see [2, Theorem 2.1]). The following example shows that the converse is not true, in general.

EXAMPLE 2.3. For each compact metric space K, C(K) has the strong limited p-Schur property, but it does not have the strong GP property.

Proof. It is a well-known fact that every weakly *p*-summable sequence is weakly null. By [2, Theorem 2.12], every weakly null almost limited sequence in C(K) is norm null, which implies that C(K) has the strong limited *p*-Schur property. But C(K) does not have the strong GP property. Indeed, there is an almost limited *Rademacher sequences* equivalent to the unit vector basis of ℓ_1 in C(K) which is not relatively compact. \Box

Let us recall that an element $e \in E$ is a *weak unit* if $E = B_e$, where B_e is the band generated by e. For example, C[0,1] has the weak unit u(t) = t, but M[0,1] and ℓ_{∞}^* , do not have any weak unit.

PROPOSITION 2.4. If E has order continuous norm or E^* has a weak unit, then the strong limited Schur (i.e., the strong limited ∞ -Schur) and strong GP properties are equivalent.

Proof. It is clear that the strong GP property implies the strong limited Schur property. For the converse, by the strong limited Schur property, each almost limited weakly null sequence in E is norm null. Then by hypothesis on E and [2, Theorem 2.15], E has the strong GP property. \Box

Note that, each discrete Banach lattice with order continuous norm has the strong limited p-Schur property, but the converse is not true. Indeed, discrete Banach lattice c has the strong limited p-Schur property, but it does not have order continuous norm (see [2, Theorem 2.4]). Now for the proof of the Theorem 2.7, we need the following two lemmas.

LEMMA 2.5. Continuous linear image of an almost limited set in a Banach lattice *E* under a positive linear projection is almost limited.

Proof. Assume that U is a closed sublattice of a Banach lattice E, P is a linear positive projection of E onto U and A is an almost limited set in E. To finish the proof, we have to show that P(A) is an almost limited set in U; that is, for each disjoint weak* null sequence (f_n) in U^* , $\sup_{x \in A} |\langle f_n, Px \rangle| \to 0$.

By [15, 1.4. E4], P^* is a lattice homomorphism and so (P^*f_n) is a disjoint weak^{*} null sequence in E^* . Since A is an almost limited set in E, then $\sup_{x \in A} |\langle f_n, Px \rangle| = \sup_{x \in A} |\langle P^*f_n, x \rangle| \to 0$, as $n \to \infty$ and so P(A) is an almost limited set. \Box

LEMMA 2.6. Let Y be a complemented subspace of a Banach space X and $A \subseteq Y$ is a limited set in X. Then A is a limited set in Y.

Proof. Since Y is a complemented subspace of X, then there is an onto positive projection $P: X \to Y$. If (x_n^*) is a weak* null sequence in Y^* , then we can also extend each x_n^* to the whole of X by putting $u_n^* = x_n^* \circ P$. It is clear that (u_n^*) is a weak* null sequence in X^* . Since A is a limited set in X, then

$$\sup_{a\in A} |\langle x_n^*,a\rangle| = \sup_{a\in A} |\langle x_n^* \ o \ P,a\rangle| = \sup_{a\in A} |\langle u_n^*,a\rangle| \to 0. \quad \Box$$

It is a well-known result that a Banach space X has the Schur (resp. p-Schur) property if and only if each closed separable linear subspace of X has the Schur (resp. p-Schur) property.

THEOREM 2.7. For each $1 \leq p \leq \infty$, the following are equivalent:

- (a) E has the strong limited p-Schur property,
- *(b) every closed separable sublattice of E is contained in a complemented sublattice Z of E with the strong limited p-Schur property,*
- (c) E is the direct sum of two spaces with the strong limited p-Schur property.

Proof. $(a) \Rightarrow (b)$. It is obvious. In fact, the strong limited *p*-Schur property is inherited by closed sublattices.

 $(b) \Rightarrow (a)$. Suppose that *A* is a weakly *p*-compact almost limited subset of *E* and that $(x_n) \subseteq A$. Then there is a subsequence (x_{n_k}) of (x_n) that is almost limited weakly *p*-convergent to some $x \in A$. Consider the closed linear span of (x_n) . By hypothesis,

it is contained in a complemented sublattice Z of E with the strong limited p-Schur property. By Lemma 2.6, (x_n) is an almost limited sequence in Z. Since Z has the strong limited p-Schur property, then (x_{n_k}) is norm convergent to x.

 $(a) \Rightarrow (c)$. Consider $E = E \oplus \{0\}$.

 $(c) \Rightarrow (a)$. Let $E = Y \oplus Z$ such that Y and Z have the strong limited p-Schur property. Consider the positive linear projections $P_Y : E \to Y$ and $P_Z : E \to Z$ and assume that A is a weakly p-compact almost limited subset of E. So by Lemma 2.5, two sets $P_Y(A)$ and $P_Z(A)$ are weakly p-compact almost limited. Then for each sequence $(x_n) \subseteq A$ there is $y_n \in P_Y(A)$ and $z_n \in P_Z(A)$ such that $x_n = y_n + z_n$. Since $P_Y(A)$ and $P_Z(A)$ have the strong limited p-Schur property, so the sequences (y_n) and (z_n) have convergent subsequences (y_{n_k}) and (z_{n_k}) ; that is, there are $y \in P_Y(A)$ and $z \in P_Z(A)$ such that $y_{n_k} \to y$ and $z_{n_k} \to z$. Since A is a weakly p-compact set, then $x_{n_k} \to y + z \in A$. Hence A is compact and so E has the strong limited p-Schur property. \Box

Note that the complemented ness of the lemma 2.6 cannot be removed. In fact, the unit vector basis (e_n) of c_0 , as a closed separable sublattice of ℓ_{∞} , is limited in ℓ_{∞} , but it is not limited (almost limited) in c_0 .

It can be easily shown that, a Banach space *X* has the *p*-Schur property if and only if *X* has the limited *p*-Schur and DP^{*} properties. So one can conclude that, ℓ_{∞} does not have the limited *p*-Schur property. In fact, ℓ_{∞} has the DP^{*} property, but it does not have the *p*-Schur property. So, we can say more:

COROLLARY 2.8. If a Banach space X contains a sublattice isomorphic to ℓ_{∞} , then X does not have the limited p-Schur property.

For each σ -Dedekind complete Banach lattice, we have the following theorem.

THEOREM 2.9. If *E* is a σ -Dedekind complete Banach lattice, then the following are equivalent:

- (a) E has the strong GP property,
- (b) E is discrete with the strong limited p-Schur property,
- (c) E is discrete with the limited p-Schur property.

Proof. $(a) \Rightarrow (b)$. It is clear that *E* has the strong limited *p*-Schur property. Also from [2, Theorem 2.3], *E* is discrete.

 $(b) \Rightarrow (c)$. It is clear.

 $(c) \Rightarrow (a)$. Since *E* has the limited *p*-Schur property, then by Corollary 2.8, *E* contains no sublattice isomorphic to ℓ_{∞} and so *E* has order continuous norm [15, Corollary 2.4.3]. Also *E* is discrete and then by [2, Theorem 2.1], *E* has the strong GP property. \Box

Each weakly *p*-compact set is weakly compact, but the converse is not true. In fact, non-discrete Banach lattice $L^{1}[0,1]$ has the 1-Schur property and so there is an

order interval in $L^1[0,1]$ which is not weakly 1-compact (see [1, Proposition 3.6]). But $L^1[0,1]$ has order continuous norm and so each order interval in $L^1[0,1]$ is weakly compact.

LEMMA 2.10. Every order bounded disjoint sequence in a Banach lattice E is weakly p-summable, for all $1 \le p \le \infty$.

Proof. It is useful to know that, every order bounded disjoint sequence in a Banach lattice *E* converges weakly to zero (see [1, p. 192]). Actually, it has been shown that, this sequence is weakly 1-summable. Since $\ell_p^w(X) \subset \ell_q^w(X)$ for all $1 \le p \le q$, then every weakly 1-summable sequence is weakly *p*-summable and this finishes the proof. \Box

It is proved in [18] that, a σ -Dedekind complete Banach lattice has order continuous norm if and only if it has the GP property. In the following theorem, we obtain the same result with the limited *p*-Schur property that is weaker than the GP property. Recall that a Banach lattice *E* has the *property* (*d*) if the sequence $(|f_n|)$ is weak^{*} null for every disjoint weak^{*} null sequence (f_n) in E^* . Cleraly, each σ -Dedekind complete Banach lattice has the property (*d*), but the converse is false, in general. In fact, ℓ_{∞}/c_0 has the property (*d*), but it is not σ -Dedekind complete [14].

THEOREM 2.11. Let E be a Banach lattice. Then for the following assertions:

- (a) E has the property (d) and the strong limited p-Schur property,
- (b) E has order continuous norm,

(c) E is σ -Dedekind complete with the limited p-Schur property,

the implications $(a) \Rightarrow (b) \Leftrightarrow (c)$ *are valid.*

Proof. $(a) \Rightarrow (b)$. Let (x_n) be an order bounded disjoint sequence in *E*. Then (x_n) is weakly *p*-summable and almost limited by the property (d) (see [14, Proposition 2.1]). Also *E* has the strong limited *p*-Schur property and then (x_n) is norm null. Hence by [1, Theorem 4.14], *E* has order continuous norm.

 $(b) \Rightarrow (c)$. Each Banach lattice with order continuous norm has the GP (and so the limited *p*-Schur) property. It is clear that *E* is σ -Dedekind complete.

 $(c) \Rightarrow (b)$. Let (x_n) be an order bounded disjoint sequence in *E*. Then (x_n) is weakly *p*-summable and limited in a σ -Dedekind complete Banach lattice *E* (see [12, Lemma 3.7]). Also *E* has the limited *p*-Schur property and then (x_n) is norm null. Hence by [1, Theorem 4.14], the norm of *E* is order continuous. \Box

It can be concluded that, a σ -Dedekind complete Banach lattice *E* has the limited *p*-Schur property if and only if *E* has the GP property. If *E* is discrete, then all the statements of the Theorem 2.11 are equivalent. From Corollary 2.8, we have the following two corollaries:

COROLLARY 2.12. If a Banach lattice E contains a sublattice isomorphic to ℓ_1 , then its dual E^* does not have the limited p-Schur property.

Proof. If *E* contains a sublattice isomorphic to ℓ_1 , then by [15, Proposition 2.3.12], E^* contains a sublattice isomorphic to ℓ_{∞} and so E^* does not have the limited *p*-Schur property. \Box

COROLLARY 2.13. If a Banach space X contains a complemented copy of ℓ_1 , then X^{*} does not have the limited p-Schur property.

Proof. If X contains a complemented copy of ℓ_1 , then by [8, Theorem 10], X^* contains an isomorphic copy of ℓ_{∞} and so X^* does not have the limited p-Schur property.

Note that the converse of Corollary 2.13 is true for Banach lattices. In fact, By [8, Theorem 10], if a Banach lattice E contains no complemented copy of ℓ_1 , then E^* contains no copy of c_0 . By [15, Theorem 2.5.6], E^* is a KB-space and so it has order continuous norm. Hence E^* has the limited p-Schur property.

PROPOSITION 2.14. If a Banach space X contains no copy of ℓ_1 , then X^* has the 1-Schur property.

Proof. If X contains no copy of ℓ_1 , then by [8, Theorem 10], X^{*} contains no copy of c_0 and so by [20, Proposition 3.2.3], X^{*} has the 1-Schur property. \Box

PROPOSITION 2.15. For each Banach lattice E, the following assertions hold:

(a) If E has the p-Schur property, then it has the GP property.

(b) If E is discrete with the p-Schur property, then it has the strong GP property.

Proof. To prove that (a), it suffice to note that if E has the p-Schur property, then E contains no copy of c_0 ; that is, E is a KB-space. Hence E has order continuous norm and so it has the GP property.

The second part can be deduced from [2, Theorem 2.3]. In fact, in this case E is a discrete KB-space. \Box

3. *p*-positive Schur and *p*-weak DP* properties

A Banach lattice E has the positive Schur property if each positive weakly null sequence in E is norm null [17, 18]. It has been shown, for discrete Banach lattices and also for Banach lattices with the strong GP property the positive Schur and Schur properties are equivalent [18, 2].

Using weakly p-summable sequences, the notion of the p-positive Schur property has been introduced. A Banach lattice E has the p-positive Schur property if

every sequence $(x_n) \in \ell_p^w(E)_+$ is norm null, alternatively, *E* has the *p*-positive Schur property if and only if every disjoint sequence $(x_n) \in \ell_p^w(E)_+$ is norm null.

Clearly, the positive Schur property implies the *p*-positive Schur property, but the converse is not true. In fact, ℓ_p spaces (1 , weakly sequentially complete (wsc) Banach lattices and reflexive spaces do not have the positive Schur property, but all of them have the 1-Schur property [20].

In the following theorem, we show that the positive Schur and p-positive Schur properties coincide in each Banach lattice with the finite type. In Chapter 16 of [9] one finds a discussion of type and cotype in Banach lattices. Moreover, we introduce and study the concept of the p-weak DP* property and then by disjoint p-convergent operators, characterize some Banach lattices with the p-weak DP* property.

THEOREM 3.1. Let *E* be a Banach lattice with the type q (with $1 < q \le 2$) and let $p \ge q'$. Then the following are equivalent:

- (a) E has the p-positive Schur property,
- (b) E has the positive Schur property.

Proof. $(a) \Rightarrow (b)$. From [15, Corollary 3.6.8], it is enough to show that every relatively weakly compact set *A* in *E* is an *L*-weakly compact set (i.e., $||x_n|| \rightarrow 0$ for every disjoint sequence (x_n) in the *sol*(*A*)). For this, let (x_n) be a disjoint sequence in *sol*(*A*). Then by [20, Lemma 4.2.1, Proposition 3.1.5], two sequences (x_n) and $(|x_n|)$ are weakly *p*-summable. Hence by the *p*-positive Schur property of *E*, the sequence $(|x_n|)$ (and hence (x_n) itself) is norm null. Therefore *A* is an *L*-weakly compact set, as desired.

 $(b) \Rightarrow (a)$. It is evident. \Box

A Banach lattice *E* is *weak p*-*consistent* if it follows from $(x_n) \in \ell_p^w(E)$ that $(|x_n|) \in \ell_p^w(E)$. If *E* is a weak *p*-consistent Banach lattice (for instance an AM-space with unit), then *E* has the *p*-positive Schur property if and only if *E* has the *p*-Schur property [20]. In the following theorem, we show that the same result holds for some Banach lattices with the strong limited *p*-Schur property, too.

THEOREM 3.2. Let *E* be a Banach lattice with the type q (with $1 < q \le 2$) and let $p \ge q'$. Then the following are equivalent:

- (a) E has the p-Schur property,
- (b) E has the strong limited p-Schur and p-positive Schur properties.

Proof. $(a) \Rightarrow (b)$. It is obvious.

 $(b) \Rightarrow (a)$. Let A be a weakly p-compact set in E. Clearly A is a relatively weakly compact set. Since E has the p-positive Schur property, so by Theorem 3.1 A is L-weakly compact. Then from [5, Theorem 2.6], A is an almost limited set in E. On the other hand, E has the strong limited p-Schur property and then A is relatively compact. Hence E has the p-Schur property. \Box

PROPOSITION 3.3. Every Banach lattice E with the p-positive Schur property has the 1-Schur property.

Proof. Note that c_0 does not have the *p*-positive Schur property. So if a Banach lattice *E* has the *p*-positive Schur property, then *E* contains no copy of c_0 and by [20, Proposition 3.2.3], *E* has the 1-Schur property. \Box

Similar to the DP^{*} property, the so-called *weak DP*^{*} property of a Banach lattice is introduced in [5]. In fact, a Banach lattice *E* has the weak DP^{*} property if all relatively weakly compact subsets are almost limited. In other words, *E* has the weak DP^{*} property if and only if for every weakly null sequence (x_n) in *E* and every disjoint weak^{*} null sequence (x_n^*) in E^* , $x_n^*(x_n) \to 0$.

THEOREM 3.4. If E^* has the limited *p*-Schur property and a weak unit, *Y* is a Banach space and $T : E \to Y$ is an operator, then we have:

- (a) If Y is wsc, then T is a weakly compact operator.
- (b) If Y has the Schur property, then T is a compact operator.
- (c) If Y has the DP^* property, then T is a limited operator.
- (d) If Y has the weak DP^* property, then T is an almost limited operator.

Proof. Since E^* has the limited *p*-Schur property, then E^* does not contain any sublattice isomorphic to ℓ_{∞} and by [15, Theorem 2.4.14] E^* is a *KB*-space. On the other hand, E^* has a weak unit and so by [15, 2.5.E1] the closed unit ball B_E is weakly conditionally compact. Hence each of the statements of the theorem can be concluded easily. \Box

From [11], a Banach space X is said to have the DP^* property of order p or briefly the p-DP* property, whenever every weakly p-compact set in X is limited. So, it is natural to study the Banach lattices E satisfying the p-weak DP* property. Thereby, we have a scale of properties, in the sense that all Banach lattices have the 1-weak DP* property and if p < q and E has the q-weak DP* property then it has the p-weak DP* property. The strongest property, the ∞ -weak DP* property coincides with the weak DP* property. We characterize some Banach lattices with the p-weak DP* property, discuss some examples and then consider some applications of disjoint p-convergent operators on Banach lattices.

DEFINITION 3.5. A Banach lattice *E* has the *p*-weak DP^* property if all weakly *p*-compact subsets are almost limited.

It can be easily shown that, each Banach lattice with the positive Schur property is a *KB*-space with the *p*-weak DP^{*} property. Also, the *p*-weak DP^{*} property is equivalent to, for every sequence $(x_n) \in \ell_p^w(E)$ and every disjoint weak^{*} null sequence (x_n^*) in E^* , $x_n^*(x_n) \to 0$. The weak DP^{*} property implies the *p*-weak DP^{*} property, but the converse is false. THEOREM 3.6. Every discrete Banach lattice E with the p-Schur and without the Schur property has the p-weak DP^* property, but it does not have the weak DP^* property.

Proof. If *E* has the *p*-Schur property, then it is clear that *E* has the *p*-weak DP^{*} property. Moreover, *E* contains no copy of c_0 ; that is, *E* is a *KB*-space. Also *E* is discrete and so *E* has the strong GP property. But *E* does not have the weak DP^{*} property, since *E* does not have the Schur property [2]. \Box

For examples, for each 1 and <math>1 < q < p', all the spaces ℓ_q have the *p*-Schur (and so the *p*-weak DP^{*}) and strong GP properties. But, none of them have the weak DP^{*} property (see [2, Corollary 2.7]). Of course, none of the spaces ℓ_q have the Schur property.

The following result is easily verified:

PROPOSITION 3.7. For a Banach lattice E, the following assertinos are equivalent:

- (a) E has the p-DP^{*} and limited p-Schur properties,
- (b) E has the p-weak DP^* and strong limited p-Schur properties,
- (c) E has the p-Schur property.

THEOREM 3.8. Let *E* be a σ -Dedekind complete Banach lattice with the type q (with $1 < q \leq 2$) and let $p \geq q'$. Then the following are equivalent:

- (a) E has the p-weak DP^* property,
- (b) for every disjoint sequence $(x_n) \in \ell_p^w(E)$ and every disjoint weak* null sequence (x_n^*) in E^* , $x_n^*(x_n) \to 0$,
- (c) for every disjoint sequence $(x_n) \in \ell_p^w(E)_+$ and every disjoint weak^{*} null sequence (x_n^*) in E_+^* , $x_n^*(x_n) \to 0$,
- (d) the solid hull of a weakly p-compact set in E is almost limited.

Proof. We only prove $(c) \Rightarrow (d)$. Let W be a weakly p-compact set in E and let B := sol(W). Then by [20, Lemma 4.2.1] each disjoint sequence in B is weakly p-summable. So by hypothesis, for every disjoint sequence (x_n) in $B \cap E^+$ and every disjoint weak^{*} null sequence (x_n^*) in E_+^* , $x_n^*(x_n) \to 0$. Hence by [5, Theorem 2.5], B is almost limited. \Box

Now, we define the *p*-bi-sequence property and then we characterise Banach lattices with this property. Also, we provide an example of a Banach lattice on which the *p*-weak DP^{*} and *p*-bi-sequence properties are equivalent. DEFINITION 3.9. A Banach lattice *E* has the *p*-*bi*-sequence property if for every disjoint sequence $(x_n) \in \ell_p^w(E)_+$ and every weak * null sequence (x_n^*) in E_+^* , $x_n^*(x_n) \rightarrow 0$.

If a Banach lattice has the *p*-weak DP^{*} property, then it has the *p*-bi-sequence property, but the converse is false in general. In fact, Banach lattice *c* of all convergent sequence of scalars has the bi-sequence property, but it does not have the *p*-weak DP^{*} property. Note that, *c* is a Banach lattice with the strong limited *p*-Schur property and without the *p*-Schur property and so by Theorem 3.7, it does not have the *p*-weak DP^{*} property.

THEOREM 3.10. Let *E* be a Banach lattice with the type q (with $1 < q \le 2$) and let $p \ge q'$. Then these are equivalent:

- (a) for each disjoint sequence $(x_n) \in \ell_p^w(E)$ and every disjoint weak^{*} null sequence (x_n^*) in E^* , $x_n^*(x_n) \to 0$,
- (b) E has the p-bi-sequence property,
- (c) for every sequence $(x_n) \in \ell_p^w(E)_+$ and every disjoint weak* null sequence (x_n^*) in E^* , $x_n^*(x_n) \to 0$,
- (d) for every sequence $(x_n) \in \ell_p^w(E)_+$ and every weak* null sequence (x_n^*) in E_+^* , $x_n^*(x_n) \to 0$.

Proof. $(a) \Rightarrow (b)$. It follows from [19, Proposition 2.4].

 $(b) \Rightarrow (d)$. Let $(x_n) \in \ell_p^w(E)$ be a positive sequence and let (x_n^*) be a positive weak* null sequence of E^* . Then the set $A = \{x_n : n \in \mathbb{N}\} \cup \{0\}$ is weakly *p*-compact and so it is relatively weakly compact. Hence by [20, Lemma 4.2.1], every disjoint sequence (y_n) in *sol*(*A*) is weakly *p*-summable. Since *E* has the *p*-bi-sequence property, then $\sup_{k \in A} |\langle x_k^*, y_n \rangle| \to 0$ and so for an operator $T : E \to c_0$ defined by

$$Tx = (\langle x, x_n^* \rangle), \qquad x \in E,$$

we have $||Ty_n|| \to 0$. Now by the same method in [19, Proposition 2.4], we conclude that $x_n^*(x_n) \to 0$.

 $(d) \Rightarrow (c) \Rightarrow (a)$ Obvious. \Box

In the following theorem we show that, for some Banach lattices with the property (d), the *p*-weak DP^{*} and *p*-bi-sequence properties are equivalent. We state the following result without proof and refer the reader to [14, Theorem 3.1]. Also it describes another characterisation for the *p*-weak DP^{*} property.

THEOREM 3.11. Let *E* be a Banach lattice with the property (d) and the type q (with $1 < q \leq 2$) and let $p \geq q'$. Then the following are equivalent:

(a) E has the p-weak DP^* property,

- (b) for every disjoint sequence $(x_n) \in \ell_p^w(E)$ and every disjoint weak* null sequence (x_n^*) in E^* , $x_n^*(x_n) \to 0$,
- (c) for every disjoint sequence $(x_n) \in \ell_p^w(E)_+$ and every disjoint weak^{*} null sequence (x_n^*) in E_+^* , $x_n^*(x_n) \to 0$,
- (d) the solid hull of a weakly p-compact set is almost limited,
- (e) for every sequence $(x_n) \in \ell_p^w(E)_+$ and every weak* null sequence (x_n^*) in E_+^* , $x_n^*(x_n) \to 0$,
- (f) E has the p-bi-sequence property.

If a Banach lattice has the *p*-Schur or the *p*-DP^{*} property, then it also has the *p*-weak DP^{*} property, but the converse is false. In fact, Banach lattice $\ell_{\infty} \oplus L^1[0,1]$ has the *p*-weak DP^{*} property, but it has neither the *p*-positive Schur nor the *p*-DP^{*} property. Since ℓ_{∞} has the DP^{*} property, but it does not have the *p*-positive Schur property, also $L^1[0,1]$ has the positive Schur and weak DP^{*} properties, but it does not have the *p*-DP^{*} property. Note that, each separate Banach space with the *p*-DP^{*} property has the *p*-Schur property.

Castillo mentioned that *p*-convergent operators in [4]. In fact, *p*-convergent operators are precisely those operators which transformed weakly *p*-compact subsets into realtively compact subsets. Equivalently, an operator $T : X \to Y$ between two Banach spaces is called *p*-convergent, if $||Tx_n|| \to 0$, for every sequence $(x_n) \in \ell_p^w(X)$. Also, an operator $T : E \to Y$ is called *disjoint p*-convergent if it takes disjoint sequences $(x_n) \in \ell_p^w(E)$ to norm null ones [20]. It is clear that every *p*-convergent operator is disjoint *p*-convergent. For the converse, we prove the following practical lemma.

LEMMA 3.12. Let *E* be a Banach lattice with the type q (with $1 < q \leq 2$), let $p \geq q'$ and *F* is discrete with order continuous norm. Then every positive operator $T : E \rightarrow F$ is disjoint *p*-convergent if and only if it is *p*-convergent.

Proof. Let *W* be a weakly *p*-compact subset of *E* and let $T: E \to F$ be a positive disjoint *p*-convergent operator. From [4], it is enough to show that T(W) is relatively compact. let *A* be the solid hull of *W*, then by [20, Lemma 4.2.1] every disjoint sequence (x_n) in *A* is weakly *p*-summable and so by hypothesis, $||Tx_n|| \to 0$. By a consequence of [1] theorems 13.3 and 13.5, T(A) is an almost order bounded set in *F*. Since *F* is discrete with order continuous norm, then T(A) is relatively compact. Hence, *T* is a *p*-convergent operator. \Box

An operator *T* on a Banach lattice *E* is said to be an *almost DP operator* if the sequence $||Tx_n|| \rightarrow 0$ for every disjoint weakly null sequence (x_n) in *E*. By [5, Theorem 3.5], *E* has the weak DP* property if and only if each operator $T : E \rightarrow c_0$ is an almost DP operator. With the same techniques of [5, Theorem 3.5], we can characterize some σ -Dedekind complete Banach lattices with the *p*-weak DP* property.

THEOREM 3.13. Let *E* be a σ -Dedekind complete Banach lattice with the type q (with $1 < q \leq 2$) and let $p \geq q'$. Then the following are equivalent:

(a) E has the p-weak DP^* property,

(b) every continuous operator $T: E \to c_0$ is disjoint p-convergent,

(c) every positive operator $T: E \rightarrow c_0$ is disjoint p-convergent,

(d) every positive operator $T: E \rightarrow c_0$ is p-convergent.

Proof. $(b) \Rightarrow (c)$. It is clear.

 $(c) \Leftrightarrow (d)$. Because c_0 is discrete with order continuous norm, it follows from Lemma 3.12.

 $(c) \Rightarrow (a)$. By Theorem 3.8, we have to show that for each disjoint sequence $(x_n) \in \ell_p^w(E)_+$ and each disjoint weak^{*} null sequence (x_n^*) in E_+^* , $x_n^*(x_n) \to 0$. Consider the positive opeartor $T: E \to c_0$ defined by $Tx = (\langle x, x_n^* \rangle)$, for all $x \in E$. According to (c), T is a disjoint *p*-convergent operator. Therefore, $||Tx_n|| \to 0$, and hence $x_n^*(x_n) \to 0$, as desired.

 $(a) \Rightarrow (b)$. Consider the operator $T : E \to c_0$. We have to show that $||Tx_n|| \to 0$, for each disjoint squence $(x_n) \in \ell_p^w(E)$. Assume by way of contradiction that $||Tx_n|| \to 0$ for some disjoint squence $(x_n) \in \ell_p^w(E)$. Then, we can suppose that there would exist some $\varepsilon > 0$ satisfying $||Tx_n|| > \varepsilon$ for all $n \in \mathbb{N}$. Since (x_n) is weakly *p*-summable, then it is weakly null and so by [1, Ex. 22, p. 73] and by the similar idea in Theorem 3.5 of [5], one can find a disjoint weak* null sequence (x_n^*) in E^* . Since *E* has the *p*-weak DP* property, then by Theorem 3.8, $x_n^*(x_n) \to 0$. This is a contradiction. Hence, $||Tx_n|| \to 0$, for each disjoint squence $(x_n) \in \ell_p^w(E)$ and so *T* is a disjoint *p*-convergent operator. \Box

We can uniquely determine every bounded linear operator $T: E \to c_0$ by a weak^{*} null sequence $(x_n^*) \subset E^*$ such that $Tx = (\langle x, x_n^* \rangle)$, for all $x \in E$. But, if $(x_n^*) \subset E^*$ is a disjoint weak^{*} null sequence, then *T* is called a disjoint operator.

The final result deals the relationship between the weak DP^{*} (resp. the *p*-weak DP^{*}) property and disjoint completely continous (resp. disjoint *p*-convergent) operators. Recall that, an operator on a Banach lattice *E* is called *completely continous*, if it maps weakly null sequences in *E* to norm null ones.

THEOREM 3.14. If E is a Banach lattice with the property (d), then for the following assertions:

- (a) every disjoint operator $T: E \to c_0$ is completely continous,
- (b) E has the weak DP^* property,
- (c) E has the p-weak DP^* property,
- (d) every disjoint operator $T: E \to c_0$ is p-convergent.

the implications $(a) \Leftrightarrow (b) \Rightarrow (c) \Leftrightarrow (d)$ are valid.

Proof. $(a) \Rightarrow (b)$. Assume by way of contradiction that there is a weakly null sequence (x_n) in E and a disjoint weak* null sequence (x_n^*) in E^* such that $|\langle x_n^*, x_n \rangle| > \varepsilon$, for all n and some $\varepsilon > 0$. Consider the operator $T : E \to c_0$ defined by

$$Tx = (\langle x, x_n^* \rangle), \qquad x \in E.$$

It is clear that *T* is a disjoint operator, but *T* is not completely continous. In fact, the sequence (x_n) is weakly null, but $||Tx_n|| \ge x_n^*(x_n) \ge \varepsilon$, for all *n* and some $\varepsilon > 0$.

 $(b) \Rightarrow (a)$. Let $T : E \to c_0$ be a disjoint operator and let (x_n) be a weakly null sequence in *E*. Since *E* has the weak DP^{*} property, then (x_n) is almost limited. By [13, Theorem 2.7], the operator *T* is order bounded. Moreover *E* and c_0 have the property (d) and c_0 has the strong GP property. Then by [13, Proposition 3.9] and [2, Definition 3.1], $||Tx_n|| \to 0$ and so *T* is completely continous.

 $(b) \Rightarrow (c)$. It is clear.

 $(c) \Leftrightarrow (d)$. It is enough to repeat the techniques of Theorem 3.13.

REFERENCES

- C. D. ALIPRANTIS AND O. BURKISHAW, *Positive Operators*, Pure and Applied Mathematics Series, Academic Press, New York and London, 1985.
- [2] H. ARDAKANI, S. M. MOSHTAGHIOUN, S. M. S. MODARRES MOSADEGH AND M. SALIMI, The strong Gelfand-Phillips property in Banach lattices, Banach J. Math. Anal. 10 (2016), 15–26.
- [3] J. BORWEIN, M. FABIAN AND J. VANDERWERFF, Characterizations of Banach spaces via convex and other locally Lipschitz functions, Acta Math. Vietnam 22 (1997), 53–69.
- [4] J. CASTILLO AND F. SANCHEZ, Dunford-Pettis-like Properties of Continuous Vector Function Spaces, Revista Mathematica 6 (1993), 43–59.
- [5] J. X. CHEN, Z. L. CHEN AND G. X. JI, Almost limited sets in Banach lattices, J. Math. Anal. Appl. 412 (2014), 547–563.
- [6] M. B. DEHGHANI, S. M. MOSHTAGHIOUN AND M. DEHGHANI, On the limited p-Schur property of some operator spaces, Int. J. Anal. Appl. 16 (2018), 50–61.
- [7] M. B. DEHGHANI, S. M. MOSHTAGHIOUN AND M. DEHGHANI, On the p-Schur property of Banach spaces, Ann. Funct. Anal. 9 (2018), 123–136.
- [8] J. DIESTEL, Sequences and Series in Banach Spaces, Graduate Texts in Math. 92, Springer–Verlag, Berlin, 1984.
- [9] J. DIESTEL, Absolutely Summing Operators, Cambridge University Press, 1995.
- [10] G. EMMANUELE, On Banach spaces with the Gelfand–Phillips property, III, J. Math. Pures Appl. 72 (1993), 327–333.
- [11] J. H. FOURIE AND E. D. ZEEKOEI, DP*-properties of order p on Banach spaces, Quaest. Math. 37 (2014), 349–358.
- [12] A. EL. KADDOURI, M. MOUSSA, About the class of ordered limited operators, Acta Universitatis Carolinae, Mathematica et Physica 54 (2013), 37–43.
- [13] M. L. LOURENÇO AND V. C. C. MIRANDA, The property (d) and almost limited completely contiunous operators, arXiv:2011.02890v1.
- [14] N. MACHRAFI, A. ELBOUR AND M. MOUSSA, Some characterizations of almost limited sets and applications, arXiv:1312.2770v1.
- [15] P. MEYER-NIEBERG, Banach Lattices, Universitext, Springer-Verlag, Berlin, 1991.
- [16] C. PALAZUELOS, E. A. SANCHEZ PEREZ AND P. TRADACETE, Maurey-Rosenthal factorization for p-summing operators and Dodds-Fremlin domination, J. Operator Theory. 68 (2012), 205–222.
- [17] J. A. SANCHEZ, Positive Schur property in Banach lattices, Extracta Mathematica 7 (1992), 161– 163.
- [18] W. WNUK, Banach lattices with properties of the Schur type, A survey. Conf. Sem. Mat. Univ. Bari 249 (1993), 1–25.

- [19] W. WNUK, On the dual positive Schur property in Banach lattices, Positivity 2 (2012), 759–773.
- [20] E. ZEEKOEI AND J. FOURIE, Classes of Dunford-Pettis-type operators with applications to Banach spaces and Banach lattices, Ph.D. Thesis, 2017.

(Received January 21, 2022)

H. Ardakani Department of Mathematics Payame Noor University Tehran, Iran e-mail: ardakani@pnu.ac.ir

Kh. Taghavinejad Department of Mathematics Payame Noor University Tehran, Iran e-mail: khadijehtaghavi@student.pnu.ac.ir

Operators and Matrices www.ele-math.com oam@ele-math.com