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KOTANI THEORY FOR ERGODIC BLOCK JACOBI OPERATORS

FABRÍCIO VIEIRA OLIVEIRA ∗ AND SILAS L. CARVALHO

(Communicated by G. Teschl)

Abstract. We extend the so-called Kotani Theory for a particular class of ergodic block Ja-
cobi operators defined in l2(Z;Cl ) by the law [Hω u]n := D∗(Tn−1ω)un−1 + D(Tnω)un+1 +
V (Tnω)un , where T : Ω → Ω is an ergodic automorphism in the measure space (Ω,ν) , the
map D : Ω → GL(l,R) is bounded, and for each ω ∈ Ω , D(ω) is symmetric and D−1(ω) is
bounded. Namely, it is shown that for each r ∈ {1, . . . , l} , the essential closure of Zr := {x ∈R |
exactly 2r Lyapunov exponents of Az are zero} coincides with σac,2r(Hω ) , the absolutely con-
tinuous spectrum of multiplicity 2r , where Az is a Schrödinger-like cocycle induced by Hω .
Moreover, if k ∈ {1, . . . ,2l} is odd, then σac,k(Hω ) = /0 for ν -a.e. ω ∈ Ω . We also provide a
Thouless formula for such class of operators.

1. Introduction

In the context of the spectral theory of discrete one-dimensional Schrödinger op-
erators, defined in l2(Z;C) by the action

(Hu)n := un+1 +un−1 + vnun, (1.1)

where (vn)n∈Z is a bilateral sequence of real numbers, there are some classical results
on the characterization of their spectral components.

One of these results refers to the case when (vn) is dinamically defined by an
ergodic automorphism, that is, given an invertible ergodic transformation T : Ω → Ω
defined in a measure space (Ω,ν) and a function v : Ω → R , one sets, for each ω ∈ Ω ,
vω
n := v(Tnω) ; the resulting operator, Hω , is said to be ergodic. Kunz and Souillard

have proven in this setting [11] that there exist sets Σac,Σsc and Σpp such that, for
ν -almost every ω ∈ Ω ,

σac(Hω ) = Σac,

σsc(Hω ) = Σsc,

σpp(Hω) = Σpp,

where σac(Hω ),σsc(Hω) and σpp(Hω ) are, respectively, the absolutely continuous,
singular continuous and purely point spectral components of the operator Hω . Thus,
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one may say that the spectral components of the family of operators (Hω)ω∈Ω are
almost constant.

One may define, in connection with such class of operators, for each fixed z ∈
C , the skew-linear product (cocycle) θz : Ω×C2 → Ω×C2 by the law θz(ω ,u) :=
(T (ω),Az(ω)u) , where Az : Ω → SL(2,C) is given by

Az(ω) :=
[

z− v(ω) −1
1 0

]
. (1.2)

The orbits of the cocycle θz are associated with the solutions to the eigenvalue
equation (Hωu)n = zun . Namely, by considering the transfer matrices

An(z,ω) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Az(Tn−1(ω))Az(Tn−2(ω)) . . .Az(T (ω))Az(ω), if n � 1,

I2, if n = 0,

A−1
z (Tn(ω)) . . .A−1

z (T−2(ω))A−1
z (T−1(ω)), if n � −1,

(1.3)

the sequence (un)n∈Z is a solution to the eigenvalue equation (Hωu)n = zun at z ∈ C

iff [
un+1

un

]
= An(z,ω)

[
u1

u0

]
.

One of the central results in the theory refers to the characterization of the abso-
lutely continuous spectrum in terms of the Lyapunov exponent γ(z) of the cocycle θz ,
defined as

γ(z) := lim
n→∞

1
n

∫
log‖An(z,ω)‖dν(ω) = lim

n→∞

1
n

log‖An(z,ω)‖ , (1.4)

with the second identity valid for ν -a.e ω ∈ Ω (as a consequence of the ergodicity
of (Ω,T,ν)), obtained by Kotani in [9] for continuous operators, and then by Simon
in [18] for the family Hω defined as above. The result establishes that, for ν -a.e.
ω ∈ Ω ,

Σac = {z ∈ R | γ(z) = 0}ess
,

where S
ess

:= {E ∈ R | κ(S∩ (E − ε,E + ε)) > 0, for every ε > 0} is the essential
closure of S ⊂ R with respect to the Lebesgue measure κ .

This result was extended by Kotani and Simon [10] to matrix-valued Schrödinger
operators defined in l2(Z;Cl) , for each ω ∈ Ω , by the law

[HS
ωu]n := un−1 +un+1 +V(Tnω)un, (1.5)

where V : Ω → M(l,R) is a map with range in the set of self-adjoint matrices and,
again, T : Ω → Ω is an ergodic automorphism in the measure space (Ω,ν) .

Our main goal in this work is to go a step further, extending such characterization
of the absolutely continuous spectrum (including multiplicity) to a family of operators
of the form

[Hωu]n := D∗(Tn−1ω)un−1 +D(Tnω)un+1 +V(Tnω)un, (1.6)



KOTANI THEORY FOR ERGODIC BLOCK JACOBI OPERATORS 829

where D : Ω → GL(l,R) is a symmetric and invertible l× l matrix with real entries.
This is a particular case of the so-called matrix-valued Jacobi operators, defined in
[12]. Such operators arise naturally in the study of some quasi-crystals which satisfy
the Aubry-André duality (see [12] for details and main motivations), and can be seen
as the matrix-valued version of the one-dimensional Jacobi operators.

For each z ∈ C and each ω ∈ Ω , if one considers the eigenvalue equation

D∗(Tn−1ω)un−1 +D(Tnω)un+1 +V(Tnω)un = zun (1.7)

associated with the operator Hω , one may (like in [12]) write this equation in the form[
un+1

D∗(Tnω)un

]
= Az(Tnω)

[
un

D∗(Tn−1ω)un−1

]
,

with Az : Ω → GL(2l,C) (as in (1.2)) given by the law

Az(ω) :=

⎡
⎣D−1(ω)(z−V(ω)) −D−1(ω)

D∗(ω) 0

⎤
⎦ ; (1.8)

note that for each ω ∈ Ω , Az(ω) is a symplectic complex matrix of size 2l× 2l , that
is, (Az(ω))tJAz(ω) = J , where

J :=
[

0 I

−I 0

]
.

One may define the transfer matrices An(z,ω) as in (1.3).
If one also assumes that for each z∈C the cocycle (T,Az) is such that log+ ‖Az(·)‖

∈ L1(ν) , then it follows from Oseledec Theorem [13] (see also [16]) that for each
j = 1, . . . ,2l , the so-called j -th Lyapunov exponent of the cocycle is well defined by
the law

γ j(z,ω) = lim
n→∞

1
n

log(s j[An(z,ω)]) , (1.9)

where s j(An) stands for the j -th singular value of An (they are ordered so that s j(An) �
s j+1(An)), if the limit exists. The ergodicity of T guarantees that, for z ∈ C fixed,
γ j(z,ω) is constant for ν -a.e. ω ∈ Ω .

Namely, we prove, like in [10], the following result.

THEOREM 1.1. Let (Hω)ω be a family of ergodic matrix-valued Jacobi operators
of the form (1.6) such that the map D : Ω → GL(l,R) is bounded and for each ω ∈ Ω ,
D(ω) is a symmetric and invertible l× l matrix. Suppose also that the map Az , given
by the law (1.8), is such that log+ ‖Az(ω)‖ ∈ L1(ν) . Then, for each r ∈ {1, . . . , l} , the
essential closure of

Zr := {x ∈ R | exactly 2r exponents γ j(x) are zero} (1.10)

coincides with σac,2r(Hω ) , the absolutely continuous spectrum of multiplicity 2r . More-
over, if k ∈ {1, . . . ,2l} is odd, then σac,k(Hω) = /0 for ν -a.e. ω ∈ Ω .
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The inclusion Zr
ess ⊆σac,r(Hω) is known in the literature as Kotani Theorem (this

is Theorem 4.9); the inclusion σac,r(Hω) ⊆ Zr
ess

is the so-called Ishii-Pastur Theorem
(Theorem 5.2).

REMARK 1.2. We note that the additional hypotheses required for the map D are
needed to guarantee some desirable properties for the operator Hω . Specifically, for
each ω ∈ Ω , the hypothesis of D(ω) being invertible is necessary in (1.8), the hypoth-
esis of D(ω) being symmetric is sufficient, for instance, to establish Green formula
(2.1), and the hypothesis of D being a bounded map implies (2.4), a sufficient condi-
tion for the operator Hω to be symmetric.

In order to prove Kotani Theorem, one must show that the orthogonal derivative,
with respect to z , of the sum of the Lyapounov exponents (at +∞) up to γ j(x) , for
each j ∈ {1, . . . , l} , exists and is finite for κ -a.e. x ∈ R . For that, one might use
the strategy presented in the proof of the so-called Thouless formula (we prove the
following version of this formula in Theorem 3.5):

l

∑
j=1

γ j(z) =
∫

R

log |z− x|dk(x)−
∫

Ω
log |det(D(ω))|dν(ω), (1.11)

where k is the integrated density of states (see Definition 3.2) (note that log |det(D(·))| ∈
L1(ν) , since D is bounded and for each ω ∈ Ω , D(ω) is invertible). Then, given that
the sum of the Lyapunov exponents is, as a function of z , the Borel transform of a
measure (see the proof of Corollary 3.6), it has the desired regularity.

Thouless formula was first established in [21] for one-dimensional Schrödinger
operators. We note that there is a proof of Thouless formula for operators of the form
(1.5) in [10]; we have used this proof as a guide for the proof of our result. We also
note that there is, in [5], an alternative proof of the formula for operators of the form
(1.6) when the map D : Ω → M(l,R) is constant.

The organization of this paper is as follows. In Section 2 we obtain, among other
results, Green formula for (Hω)ω , we present a sufficient condition for (Hω )ω to be in
the limit-point case, and then we present a characterization of the absolutely continuous
spectrum of multiplicity j ∈ {1, . . . , l} of Hω with respect to the equivalent spectra
for Hφ

ω and Hφ ,−
ω , the restrictions of Hω to l2(Z+;Cl) and l2(Z+;Cl) , respectively,

satisfying Dirichlet boundary condition at n = 0.
In Section 3 we represent the Lyapounov exponents in terms of the so-called Jost

solutions and then prove Thouless formula. In Section 4 we present several auxiliary re-
sults that are used in the proof of Kotani Theorem, which we also prove there. Finally, in
Section 5 we prove Ishii-Pastur Theorem, and then complete the proof of Theorem 1.1.

2. The resolvent operator

2.1. Green formula and self-adjoint extensions of (Hω)ω

Let (Hω)ω be a family of dynamically defined operators of the form (1.6) such
that T : Ω → Ω is an ergodic automorphism and, for each ω ∈ Ω and each n ∈ Z ,
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Vω
n := V (Tnω) and Dω

n := D(Tnω) are invertible and symmetric real matrices. Then,
for each u,v ∈ (Cl)Z , each n,m ∈ Z such that n > m , and each ω ∈ Ω , one has the
so-called Green formula for Hω :

n

∑
k=m

〈(Hωu)k, vk〉Cl −〈(Hωv)k,uk〉Cl = Wω
[u,v](n+1)−Wω

[u,v](m), (2.1)

where
Wω

[u,v](n) :=
〈
Dω

n−1un, vn−1
〉

Cl −
〈
Dω

n−1vn,un−1
〉

Cl

is the so-called Wronskian of u and v at n ∈ Z .
When one represents un,vn as column-vectors, the Wronskian of u and v at n∈Z

may be written as
W ω

[u,v](n) = ut
nD

ω
n−1vn−1−vt

nD
ω
n−1un−1.

Finally, if (An),(Bn) are sequences of matrices of size l× l one obtains, by apply-
ing Hω to each of their columns, a generalization of Green formula:

n

∑
k=m

(At
kHω (B)k −Hω(A)tkBk) = W ω

[A,B](n+1)−Wω
[A,B](m), (2.2)

with
Wω

[A,B](m) := At
m−1D

ω
m−1Bm −At

mDω
m−1Bm−1.

LEMMA 2.1. (Constancy of the Wronskian) If u,v ∈ (Cl)Z are solutions to the
eigenvalue equation (1.7) at z ∈ C , then the Wronskian W[u,v](n) is constant.

Proof. This result is a direct consequence of Green formula. Namely, for each
integers n > m , one has

n

∑
k=m

〈(Hu)k, v〉Cl −〈(Hv)k,uk〉Cl =
n

∑
k=m

〈zuk, vk〉Cl −〈zvk,uk〉Cl = 0,

from which follows that

W[u,v](n+1)−W[u,v](m) = 0. �

LEMMA 2.2. Let z = x + iy ∈ C . If u,v,r,s ∈ (Cl)Z are such that Hu = zu ,
Hr = zr , Hv = xv and Hs = xs , then

W[u−v,r−s](n+1)−W[u−v,r−s](m) = iy
n

∑
k=m

(2〈uk,rk〉Cl −〈uk,sk〉Cl −〈vk,rk〉Cl ) .

Proof. One has, for each k ∈ Z , the identity

〈(H(u−v))k,(r− s)k〉Cl −〈(H(r − s))k,(u− v)k〉Cl

= 〈zuk − xvk,rk − sk〉Cl −〈z rk − xsk,uk − vk〉Cl

= 〈zuk,rk〉Cl −〈zuk,sk〉Cl + 〈xvk,sk〉Cl −〈xvk,rk〉Cl

+〈z rk, vk〉Cl −〈z rk,uk〉Cl + 〈xsk,uk〉Cl −〈xs k, vk〉Cl .
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Now, by summing both members in the previous identity from m up to n , it fol-
lows that

n

∑
k=m

〈(H(u−v))k,(r− s)k〉Cl −〈(H(r − s))k,(u− v)k〉Cl

=
n

∑
k=m

2yi〈uk,rk〉Cl −
n

∑
k=m

yi〈uk,sk〉Cl −
n

∑
k=m

yi〈vk,rk〉Cl .

The result now is a consequence of Green formula. �

In what follows, it will be necessary to guarantee that the operator Hω is in the
limit point case at +∞ ; we proceed as in [10].

The so-called boundary form of the restriction of the operator Hω to Z+ is defined
as

Γω (u,v) :=
∞

∑
k=1

〈(Hωu)k, vk〉Cl −〈(Hωv)k,uk〉Cl

= lim
n→∞

(〈vn,D
ω
n un+1〉Cl −〈vn+1,D

ω
n un〉Cl )

−(〈v0,D
ω
0 u1〉Cl −〈v1,D

ω
0 u0〉Cl ) .

Since D is a bounded map, it follows that for every u,v ∈ l2(N;Cl) ,

lim
n→∞

(〈vn,D
ω
n un+1〉Cl −〈vn+1,D

ω
n un〉Cl ) = 0. (2.3)

This condition, along with the fact that the inverse of D is also bounded, implies
that the deficiency indices of the restriction of the operator to Z+ are equal to l , a
property known in the literature as the limit point case (see [1, 3, 20]).

In this case, the self-adjoint extensions of Hω are associated with the domains D
for which the boundary form is trivial (see Proposition 7.1.3 in [3]), that is, for which

〈v0,D
ω
0 u1〉Cl −〈v1,D

ω
0 u0〉Cl = 0, (2.4)

for every u,v ∈ D . We are particularly interested in the extension that satisfies the
initial condition u0 = 0, which is denoted by Hφ

ω and called Dirichlet operator. We
also consider the extension with the initial condition u1 = 0, denoted by Hψ

ω and called
Neumann operator.

Associated with Dirichlet and Neumann operators, one defines sequences of ma-
tricial solutions to the eigenvalue equation (1.7), ψ(z,ω),φ(z,ω) , called respectively
Neumann and Dirichlet solutions; these are sequences of matrices of size l × l such
that {

ψ0(z,ω) = I,

ψ1(z,ω) = 0,

{
φ0(z,ω) = 0,

φ1(z,ω) = I,
(2.5)

and whose columns satisfy (1.7).
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2.2. Integral kernel of the resolvent operator

As usual, one may obtain the spectral properties of the operator Hφ
ω by analysing

the asymptotic behavior of the resolvent operator for z = x+ iy ∈ C as y ↓ 0.
The idea is to write, for each z ∈ ρ(Hφ

ω) (the resolvent set of Hφ
ω ), the resolvent

operator in its integral form through the matrix-valued Green Function, which is, by its
turn, parametrized by the solutions to the eigenvalue equation at z .

If z ∈ C\R and if Hφ
ω is in the limit point case (2.3), then the set

J+(z,ω) :=

{
u ∈ (Cl)Z | Hωu = zu,

∞

∑
n=1

‖un‖2 < ∞

}

is a subspace of dimension l . In this case, there exists only one sequence (Fn(z,ω))n of
matrices of size l× l , whose columns satisfy simultaneously (1.7), the initial condition
F0(z,ω) = I , and

∞

∑
n=0

‖Fn(z,ω)‖2 < ∞. (2.6)

Each sequence of columns of Fn(z,ω) is a solution to the eigenvalue equation with
a canonical vector of Cl as its initial condition; namely, if F j

n (z,ω) denotes the j -th
column of Fn(z,ω) , then (F j

n (z,ω))n , with F j
0 (z,ω) = e j (where e j stands for the j -

th element of the canonical basis of Cl ), is a solution to the eigenvalue equation (1.7).
These l solutions are the so-called Jost solutions.

The Jost solutions can be parametrized by the matrix-valued Weyl-Titchmarsh
function associated with Hφ

ω , Mφ (z,ω) , which is given by

Mφ (z,ω) := −F1(z,ω)(Dω
0 )−1. (2.7)

One can also write the Jost solutions in terms of Neumann and Dirichlet solutions
as

Fn(z,ω) = ψn(z,ω)−φn(z,ω)Mφ (z,ω)Dω
0 ; (2.8)

this is a consequence of the fact that both members of (2.8) are solutions to the eigen-
value equation that coincide at n ∈ {0,1} (given the unicity of solutions to such equa-
tions).

In what follows, we establish a relation between the matrix-valuedWeyl-Titchmarsh
function and the Jost solutions, as it was done in [10] (see Proposition 2.3 there).

PROPOSITION 2.3. Let, for each z ∈ C\R and each ω ∈ Ω , (Fn(z,ω))n be the
matrices given by the Jost solutions to the eigenvalue equation (1.7), and let Mφ (z,ω)
be the corresponding matrix-valued Weyl-Titchmarsh function. Then,

(a) (Mφ (z,ω))t = Mφ (z,ω);

(b) D0ℑ[Mφ (z,ω)]D0 = ℑ[z]
∞

∑
k=1

Fk(z,ω)∗Fk(z,ω).
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Proof. We omit z and ω in the notation throughout the proof.
(a) By letting An = Bn = Fn in Green formula (2.2), it follows that there exists a

constant C such that, for every n ∈ Z+ ,

W[F,F](n) = (Ft
n−1Dn−1Fn−Ft

nDn−1Fn−1) = C;

one has from relation (2.6) that

lim
n→∞

W[F,F](n) = 0,

and then, C = 0. It follows, in particular, that

(D0F0)tF1− (D0F1)tF0 = 0.

Since F0 = I and D0 = Dt
0 , it follows that D0F1 = D0Mφ D0 is symmetric, and so Mφ .

(b) Let An = Fn , Bn = Fn and m = 1 in (2.2); then, take the limit n → ∞ . It
follows from (2.3), (2.7) and item (a) that

D0ℑ[Mφ (z,ω)]D0 = (D0F0)tF1− (D0F1)tF0 = ℑ[z]
∞

∑
k=1

F∗
k Fk. �

LEMMA 2.4. For each z ∈ C and each ω ∈ Ω , let ψ(z,ω) and φ(z,ω) be the
Neumann and Dirichlet solutions to the eigenvalue equation (1.7) at z, respectively.
Then, for each n ∈ Z+ , one has

(a) ψn(z,ω)(Dω
0 )−1φ t

n(z,ω)−φn(z,ω)(Dω
0 )−1ψt

n(z,ω) = 0;

(b) ψn(z,ω)(Dω
0 )−1φ t

n+1(z,ω)−φn(z,ω)(Dω
0 )−1ψt

n+1(z,ω) = (Dω
n )−1;

(c) ψn+1(z,ω)(Dω
0 )−1φ t

n(z,ω)−φn+1(z,ω)(Dω
0 )−1ψt

n(z,ω) = −(Dω
n )−1.

(2.9)

Proof. Again, we omit z and ω in the notation throughout the proof. If one
applies equation (2.2) to the pairs (ψ ,ψ),(ψ ,φ),(φ ,ψ) and (φ ,φ) , one obtains from
the constancy of the Wronskian (Lemma 2.1), for each n ∈ Z+ , the system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ψt
nDnψn+1−ψt

n+1Dnψn = 0,

ψt
nDnφn+1−ψt

n+1Dnφn = D0,

φ t
nDnψn+1−φ t

n+1Dnψn = −D0,

φ t
nDnφn+1−φ t

n+1Dnφn = 0,

which can be written in the form[
ψt

n ψt
n+1

φ t
n φ t

n+1

][
Dn 0
0 Dn

]
J

[
ψn φn

ψn+1 φn+1

]
= J

[
D0 0
0 D0

]
. (2.10)
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Since J−1 = −J and

[
D0 0
0 D0

]−1

=
[

D−1
0 0
0 D−1

0

]
,

by multiplying to the left both members of identity (2.10) by J−1

[
D−1

0 0
0 D−1

0

]
, it fol-

lows that [
ψn φn

ψn+1 φn+1

][
D−1

0 0
0 D−1

0

]
J

[
ψt

n ψt
n+1

φ t
n φ t

n+1

]
= J

[
D−1

n 0
0 D−1

n

]
,

where it has been used the fact that[
D−1

0 0
0 D−1

0

]
J
−1
[

ψt
n ψt

n+1
φ t

n φ t
n+1

][
Dn 0
0 Dn

]
J and

[
ψn φn

ψn+1 φn+1

]

commute. Such identity can be written in the form⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ψnD
−1
0 φ t

n −φnD
−1
0 ψt

n = 0,

ψnD−1
0 φ t

n+1 −φnD−1
0 ψt

n+1 = D−1
n ,

ψn+1D
−1
0 φ t

n −φn+1D
−1
0 ψt

n = −D−1
n ,

ψn+1D
−1
0 φ t

n+1−φn+1D
−1
0 ψt

n+1 = 0.

�

From these relations, one can obtain the Green Function of the Dirichlet operator
Hφ

ω .

PROPOSITION 2.5. Set, for each p,q ∈ Z+ and each z ∈ C\R ,

Gφ
ω (p,q;z) :=

⎧⎨
⎩

−φp(z,ω)(Dω
0 )−1Ft

q(z,ω), p � q,

−Fp(z,ω)(Dω
0 )−1φ t

q(z,ω), p > q,

where F and φ are, respectively, the Jost solutions at +∞ and the Dirichlet solution
to the eigenvalue equation (1.7) at z. Then, for each u ∈ l2(Z+,Cl) ,

∑
q

Gφ
ω(p,q;z)uq = ((Hφ

ω − z)−1u)p. (2.11)

Proof. Since for each n ∈ Z+ , Fn ∈ l2(Z+;Cl) , it follows that(
∑
q

Gφ
ω(p,q;z)uq

)
p∈Z+

∈ l2(Z+;Cl).
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One needs to prove that

(Hφ
ω − z)

(
∑
q

Gφ
ω(p,q;z)uq

)
p∈Z+

= (up)p∈Z+ .

It follows from the definition of Gφ
ω(p,q;z) that (we omit the dependence of z and

ω in Gφ
ω (p,q;z)),

(Hφ − z)

(
∑
q

Gφ (p,q)uq

)
p∈Z+

=

(
∑
q

DpG
φ (p+1,q)uq

)
p∈Z+

+

(
∑
q

Dp−1G
φ (p−1,q)uq

)
p∈Z+

+

(
∑
q

(Vp− z)Gφ (p,q)uq

)
p∈Z+

.

For a fixed p ∈ Z+ , one needs to consider the following cases.
Case q < p−1:

DpG
φ (p+1,q)uq +Dp−1G

φ (p−1,q)uq +(Vp− z)Gφ (p,q)uq

= −DpFp+1D
−1
0 φ t

quq −Dp−1Fp−1D
−1
0 φ t

quq− (Vp− z)FpD
−1
0 φ t

quq

= − [DpFp+1 +Dp−1Fp−1 +(Vp− z)Fp]D−1
0 φ t

quq = − [0]D−1
0 φ t

quq = 0.

Case q = p−1:

DpG
φ (p+1,q)uq +Dp−1G

φ (p−1,q)uq +(Vp− z)Gφ (p,q)uq

= −DpFp+1D
−1
0 φ t

quq−Dp−1φp−1D
−1
0 Ft

quq − (Vp− z)FpD
−1
0 φ t

quq

= −DpFp+1D
−1
0 φ t

quq−Dp−1Fp−1D
−1
0 φ t

quq − (Vp− z)FpD
−1
0 φ t

quq

= − [DpFp+1 +Dp−1Fp−1 +(Vp− z)Fp]D−1
0 φ t

quq = − [0]D−1
0 ψt

quq = 0,

where one has applied (2.9)-(a) to the second identity.
Case q = p : applying (2.9)-(c) , one has

DqG
φ (q+1,q)uq +Dq−1G

φ (q−1,q)uq +(Vq− z)Gφ (q,q)uq = uq.

Case q � p+1:

DpG
φ (p+1,q)uq +Dp−1G

φ (p−1,q)uq +(Vp− z)Gφ (p,q)uq = 0. �

2.3. Spectral supports

We note that, for each ω ∈ Ω , the Green Function Gφ
ω(1,1; ·) : C+ → M(l,C) is

a matrix-valued Herglotz function (that is, Gφ
ω (1,1; ·) is analytic and ℑGφ

ω (1,1;z) > 0,
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for each z ∈ C+ , given that G is the integral kernel of (Hφ
ω − z)−1 and ℑ(Hφ

ω − z)−1 >
0) , from which follows that, for κ -a.e. x ∈ R ,

lim
y↓0

ℑGφ
ω(1,1;x± iy) < ∞

(see [4]). By the Spectral Theorem one has, for each u ∈ l2(Z+;Cl) ,

〈
(Hφ

ω − z)−1u,u
〉

=
∫

1
x− z

dμu(x), (2.12)

where μu is a finite Borel measure.
Consider the l canonical vectors (e1,k)k=1,...,l in (Cl)Z+ , where (e1,k)n, j = δ1,nδ j,k .

These vectors form a spectral basis for the operator Hφ
ω , in the sense that

span{∪l
k=1{(Hφ

ω)n(e1,k) | n ∈ Z+}} = l2(Z+;Cl);

therefore, in order to obtain the spectral properties of the operator Hφ
ω , it is enough to

study the properties of the matrix-valued spectral measure (μe1,i,e1, j )1�i, j�l .
The next step consists in obtaining a characterization of the absolutely continu-

ous spectrum (including multiplicity) by establishing minimal supports for the spectral
measures. One says that a Borel subset S ⊆ R is a minimal support of a positive and
finite Borel measure μ if:

(i) μ(R\ S) = 0;

(ii) for each S0 ⊂ S such that μ(S0) = 0, κ(S0) = 0,

where κ(·) stands for the Lebesgue measure on R .
Let, for each z ∈ C\ supp[Ω] ,

Q(z) =
∫

R

1
x− z

dΩ(x)

be the matrix-valued Herglotz function associated with the finite matrix-valued Borel
measure Ω . It follows from Theorem 6.1 in [4] that the sets

Sac,r := {x ∈ R | limy↓0 Q(x+ iy) < ∞, rank[limy↓0 ℑ[Q(x+ iy)]] = r},

Sac :=
⋃l

r=1 Sac,r,

Ss := {x ∈ R | limy↓0 ℑ[Tr[Q(x+ iy)]] = ∞},

(2.13)

are minimal supports for the absolutely continuous component of multiplicity r , abso-
lutely continuous and singular components of the measure Ω , respectively.
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PROPOSITION 2.6. For each z ∈ C \R and each ω ∈ Ω , let Mφ (z,ω) be the
Weyl-Titchmarsh matrix of the operator Hφ

ω , defined by (2.7). Then, for each j =
1, . . . , l , the set

Σφ ,ω
ac, j := {x ∈ R | lim

y↓0
Mφ (x+ iy,ω) < ∞, rank[lim

y↓0
ℑ[Mφ (x+ iy,ω)]] = j}

is a minimal support for the absolutely continuous component of multiplicity j , and the
set

Σφ ,ω
ac :=

l⋃
j=1

Σφ
ac, j

is a minimal support for the absolutely continuous component of the spectral measure
of the operator Hφ

ω . Finally, the set

Σφ ,ω
s := {x ∈ R | lim

y↓0
ℑ[Tr[Mφ (x+ iy,ω)]] = ∞}

is a minimal support for the singular component of the spectral measure of the operator
Hφ

ω .

Proof. By definition,

Gφ
ω (1,1;z) = −φ1D

−1
0 Ft

1 = D−1
0 Dt

0(M
φ )t = Mφ (z,ω). (2.14)

It follows from identities (2.11) and (2.12) that

Gφ
ω(1,1;z) =

∫
1

x− z
dΩ,

where Ω = (μe1,i,e1, j )1�i, j�l ; thus, since Gφ
ω (1,1;z) is a matrix-valued Herglotz func-

tion, the result follows from (2.13) and (2.14). �
Finally, the next result relates the absolutely continuous spectral components (of

all multiplicities) of operators which differ by a finite rank operator.

PROPOSITION 2.7. Let (Hω)ω be the Jacobi operator defined in l2(Z;Cl) by
the law (1.6), and let (Hφ

ω,±)ω be the correspondent Dirichlet operators defined in
l2(Z±;Cl) . Then, for each ω ∈ Ω and each j ∈ {1, . . . ,2l} ,

σac, j (Hω) = σac, j

(
Hφ

ω,+⊕Hφ
ω,−
)

.

Proof. Let {e1,1,e1,2, . . . ,e1,l ,e−1,1,e−1,2, . . . ,e−1,l} be the canonical spectral ba-

sis for both H and
(
Hφ

+ ⊕Hφ
−
)

. For each k∈ {1, . . . , l} and each m∈{−1,1} , let Hm,k

and
(
Hφ

+ ⊕Hφ
−
)

m,k
be the operators given by the restrictions of H and

(
Hφ

+⊕Hφ
−
)

to

the subspace spanned by em,k , respectively.
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Kato-Rosenblum’s Theorem (see [15]) establishes that if the difference between
two bounded self-adjoint operators, say S and T , is a finite rank operator, then σac(S)=
σac(T ) .

Since
(
Hφ

+⊕Hφ
−
)

m,k
is a finite rank perturbation of Hm,k , it follows that σac(Hm,k)

= σac

((
Hφ

+⊕Hφ
−
)

m,k

)
. �

3. Lyapunov exponents and Thouless formula

As discussed in Introduction, if the cocycle (T,Az) , with Az : Ω → SL(l,C) given
by (1.8), is such that log+ ‖Az(ω)‖ : Ω → R ∈ L1(ν) , then it follows from Oseledec
Theorem that its Lyapunov exponents are well defined.

One may characterize such exponents in terms of the singular values of the transfer
matrices An(z,ω) by relation (1.9). We emphazise again that, by the ergocity of T , they
do not depend on ω ∈ Ω .

If one also assumes that the mapping D : Ω → M(l,R) is bounded, the operator
(Hφ

ω)ω is (as discussed in Section 2) in the limit point case at +∞ . Hence, one can de-

fine the sequence of matrices (F (+)
n (z,ω))n∈Z+ ∈ l2(Z+;M(l,C)) (the Jost solutions),

which span the subspace J+(z,ω) and satisfies⎡
⎢⎣ F (+)

n+1(z,ω)

D(Tnω)F (+)
n (z,ω)

⎤
⎥⎦= An(z,ω)

⎡
⎣M+(z,ω)

D(ω)

⎤
⎦ . (3.1)

One can also define, in the same manner, the sequence (F(−)
−n (z,ω))n∈Z+ ∈ l2(Z−;M(l,C)) ,

which spans the subspace J−(z,ω) and satisfies⎡
⎢⎣ F (−)

−n−1(z,ω)

D(Tnω)F (−)
−n (z,ω)

⎤
⎥⎦= A−n(z,ω)

⎡
⎣M−(z,ω)

D(ω)

⎤
⎦ ; (3.2)

here, the matrices A−n(z,ω) are defined as in (1.3).
Note that these subspaces satisfy dim(J+(z,ω)) = dim(J−(z,ω)) = l and their

union spans the space of the solutions to the eigenvalue equation (1.7).
Since, for each n∈Z and each z∈C , An(z)∈ sp(2l) (that is, (An(z))tJAn(z) = J ),

it follows from relation (1.9) that the Lyapunov exponents are pairs of symmetric num-

bers. Moreover, since the sequences (F (±)
n )n∈Z+ are related with the transfer matrices

by equations (3.1) and (3.2), one has (by assuming that the matrices D(ω) are uni-
formly bounded), for each j ∈ {1,2, . . . , l} and each z ∈ C\R ,

lim
n→∞

1
n

log(s j[An(z,ω)]) = lim
n→∞

1
n

log
(
s j[F

(−)
n (z,ω)]

)
,

and for each j ∈ {l +1, l +2, . . . ,2l} ,

lim
n→∞

1
n

log(s j[An(z,ω)]) = lim
n→∞

1
n

log
(
s j[F

(+)
n (z,ω)]

)
.
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Let, for each j ∈ {1,2, . . . , l} and each z ∈ C \R , γ±j (z) be the Lyapunov expo-

nents of F (∓)
n (z,ω) . Gathering these results for the cocycle (T,Az) , one establishes the

following proposition.

PROPOSITION 3.1. Let (Hω)ω be as above and let z ∈ C\R . Then, the cocycle
(T,Az) has (not necessarily distict) 2l Lyapunov exponents which satisfy{

γ j(z) = γ+
j (z), j = 1,2, . . . , l

γ j(z) = γ−2l− j+1(z), j = l +1, l +2, . . . ,2l.

Moreover, for each j ∈ {1, . . . , l} and for ν -a.e. ω ∈ Ω , one has∗

γ+
1 (z)+ γ+

2 (z)+ . . .+ γ+
j (z) = lim

n→∞

1
n

log
∥∥∥Λ j(F (−)

n (z,ω))
∥∥∥ ,

γ−1 (z)+ γ−2 (z)+ . . .+ γ−j (z) = lim
n→∞

1
n

log
∥∥∥Λ j(F (+)

n (z,ω))
∥∥∥ ,

and if z ∈ C , then for each j = 1, . . . , l , γ j(z) = −γ2l− j+1(z) � 0 .

Set, for each z ∈ C ,

γ(z) :=
l

∑
j=1

γ j(z); (3.3)

it follows from Proposition 3.1 that for z ∈ C\R ,

γ(z) =
l

∑
j=1

γ+
j (z) = −

l

∑
j=1

γ−j (z).

One also concludes from Proposition 3.1 that for each z ∈ C\R ,

γ+
1 (z) � . . . � γ+

l−1(z) � γ+
l (z) � 0 � γ−l (z) � γ−l−1(z) � . . . � γ−1 (z),

where, for each j ∈ {1, . . . , l} , γ+
j (z) = −γ−j (z) .

Our next step consists in establishing Thouless formula in our setting (Theorem
3.5). In order to prove this result, we adapt the proofs presented in [2] and [10]; thus,
one needs to define the so-called integrated density of states.

DEFINITION 3.2. (Integrated density of states) Let (Hω)ω be as before. One de-
fines the integrated density of states related with this family of operators by the law

k(Γ) :=
∫

Ω

(
l

∑
j=1

〈
Pω (Γ)e1, j,e1, j

〉)
dν(ω),

where Γ ∈ A (A stands for the Borel σ -algebra of R) and Pω : A → B(l2(Z;Cl))
is the resolution of the identity associated with the Dirichlet operator Hφ

ω .

∗For the precise definition of Λ j , j ∈ {1, . . . , l} , see page 179 in [1] and page 43 in [6].
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Before we proceed let, for each N ∈ N and each ω ∈ Ω , HN
ω be the restriction of

Hφ
ω to the space l2({0,1, . . . ,N−1,N};Cl) . Let also kN

ω : R → Z+ be given by the law

kN
ω(x) :=

1
N
|{eigenvalues of HN

ω least or equal to x}|, (3.4)

where |A| stands for the cardinality of the set A .
In what follows, we show that the sequence of measures (dkN

ω )N∈N converges
weakly to the density of states dk .

PROPOSITION 3.3. Let k be as in Definition 3.2, let f : R → R be a measurable
and bounded function, and let (kN

ω)N∈N be the sequence given by (3.4). Then, there
exists a ν -measurable set Ω f , with ν(Ω f ) = 1 , such that, for each ω ∈ Ω f ,

lim
N→∞

∫
f (x)dkN

ω (x) =
∫

f (x)dk(x).

Proof. Let N ∈ N ; it follows from the definition of trace of an operator that

∫
f (x)dkN

ω (x) =
1
N

dimRng(χNPω ( f )χN) =
1
N

Tr[Pω( f )χN ]. (3.5)

Since (en,k) is an orthonormal basis of l2(Z+;Cl) , one has

1
N

Tr[Pω( f )χN ] =
1
N

N−1

∑
n=1

l

∑
k=1

〈
Pω( f )en,k,en,k

〉
. (3.6)

On the other hand, since the operator Hφ
Tnω is a translation of Hφ

ω , it follows that
for each n ∈ Z+ , 〈

Pω ( f )en,k,en,k
〉

=
〈
PTnω( f )e1,k,e1,k

〉
. (3.7)

So, if one defines, for each ω ∈ Ω ,

f (ω) =
l

∑
k=1

〈
Pω( f )e1,k,e1,k

〉
,

then one gets from relations (3.5) to (3.7) that

∫
f (x)dkN

ω (x) =
1
N

N−1

∑
n=1

f (Tnω).

By Birkhoff Ergodic Theorem, there exists a measurable set Ω f with ν(Ω f ) = 1
such that, for every ω ∈ Ω f ,

lim
N→∞

1
N

N−1

∑
n=0

f (Tnω) = E[ f ].
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By the definition of k , one has

E[ f ] = E

[
l

∑
k=1

〈
Pω( f )e1,k,e1,k

〉]
=
∫

f (x)dk(x).

By combining the last three identities, it follows that for every ω ∈ Ω f ,

lim
N→∞

∫
f (x)dkN

ω (x) =
∫

f (x)dk(x). �

PROPOSITION 3.4. Let (Hω )ω , k and (kN
ω)N∈N be as in Proposition 3.3. Then,

(dkN
ω)N∈N converges weakly to the measure dk for ν -a.e. ω ∈ Ω .

Proof. Let C0 denote the space of continuous functions with compact support
in R , endowed with the topology of the uniform convergence. Let (gn)n be a dense
sequence in C0 of real measurable bounded functions. Define

Ω0 :=
⋂
n∈N

Ωgn ,

with Ωgn given by Proposition 3.3; then, ν(Ω0) = 1.
Now, given f ∈C0 and ω ∈ Ω0 , it follows from Proposition 3.3 that

lim
N→∞

∫
f (x)dkN

ω (x) =
∫

f (x)dk(x). �

We are finally able to prove Thouless formula.

THEOREM 3.5. (Thouless formula) Let (Hω)ω be as above, let γ(z) be given by
(3.3) and let k be the integrated density of states (Definition 3.2). Then, for each z∈ C ,

γ(z) =
∫

R

log |z− x|dk(x)−
∫

Ω
log |det(D(ω))|dν(ω).

Proof. Firstly, consider the case z ∈ C\R . For each ω ∈ Ω , let F (±)(z,ω) be the
Jost solutions (2.6) to the eigenvalue equation (1.7) associated with the operators Hφ

ω,± .
One has from Proposition 3.1 that for ν -a.e. ω ∈ Ω ,

lim
n→∞

1
n

log
∣∣∣det
(
F(−)

n (z,ω)
)∣∣∣= lim

n→∞

1
n

log
∥∥∥Λ j(F(−)

n (z,ω))
∥∥∥= γ(z).

Given that z∈ ρ(Hω) , the space of solutions to the eigenvalue equation is spanned
by the Jost solutions (being, therefore, 2l -dimensional). If one considers the Dirichlet
solution (φn(ω ,z))n , each sequence of columns of (φn(ω ,z))n can be written as a linear

combination of the sequences of the columns of (F (+)
n (z,ω))n and (F (−)

n (z,ω))n . More
precisely, there exist matrices B,C such that, for each n ∈ Z+ ,

φn(z,ω) = F (−)
n (z,ω)B+F(+)

n (z,ω)C. (3.8)
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Suppose that B is not invertible. Then, there exists v �= 0 such that Bv = 0 , and
consequently, φ(z,ω)v = F(+)(z,ω)Cv ∈ l2(N;Cl) ; hence, z is an eigenvalue of Hφ

ω ,
which is an absurd. This proves that B is invertible. On the other hand, since, for each

z ∈ C\R and each n ∈ Z+ , F(−)
n (z,ω) is invertible, one can rewrite (3.8) as

φn(z,ω) =
[
I+F(+)

n (z,ω)CB−1
(
F (−)

n (z,ω)
)−1
]
F (−)

n (z,ω)B.

It follows now from Proposition 3.1 that

lim
n→∞

1
n

log |det(φn(z,ω))| = lim
n→∞

1
n

log
∣∣∣det
(
F(−)

n (z,ω)
)∣∣∣= γ(z). (3.9)

The Dirichlet solution φ satisfies, for each n ∈ Z+ , the recurrence relation

Dnφn+1 = (z−Vn)φn−Dn−1φn−1.

The entries of the matrices Dnφn+1 are monic polynomials in z of degree at most n .
Then, det(Dnφn+1) is a polynomial of degree nl (see [2], page 185, for a proof of this
argument).

Note that if v �= 0 is such that φN+1(z,ω)v = 0 , then there exists a solution to the
eigenvalue equation in z which is a linear combination of the columns of (Dnφn(z,ω))n

that vanishes at the entries 0 and N +1. In this case, z is an eigenvalue of HN
ω . Hence,

if DN is invertible, then det(DNφN+1(z,ω)) = 0 iff z is an eigenvalue HN
ω .

One concludes that det(DNφN+1(z,ω)) is a polynomial in z whose roots are
eigenvalues of HN

ω ; if one denotes them by (λk)1�k�Nl , one has

det(DNφN+1(z,ω)) =
Nl

∏
k=1

(z−λk). (3.10)

Let, for each N ∈ N and each ω ∈ Ω , β N
ω be the measure defined in the Borel

σ -algebra of R by the law

β N
ω (Λ) = |{x ∈ Λ | x is an eigenvalue of HN

ω }|;
then, it follows from (3.10) that

log |det(DN(ω))|+ log |det(φN+1(z,ω))| =
∫

log |z− x|dβ N
ω (x).

Consequently, by the definition of kN
ω and by Proposition 3.4 one has, for ν -a.e. ω ∈Ω ,

lim
N→∞

1
N

(log |det(φN+1(z,ω))|+ log |det(DN(ω))|) = lim
N→∞

∫
log |z− x|dkN

ω(x)

=
∫

log |z− x|dk(x). (3.11)

Since Dn(ω) = D(Tnω) for every ω ∈ Ω , it follows from Birkhoff Ergodic The-
orem that for ν -a.e. ω ∈ Ω ,

lim
N→∞

1
n

(log |det(DN(ω))|) =
∫

Ω
log |det(D(ω))|dν(ω). (3.12)
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By combining the identities (3.9), (3.11) and (3.12), one gets

γ(z) =
∫

R

log |z− x|dk(x)−
∫

Ω
log |det(D(ω))|dν(ω). (3.13)

In order to prove Thouless formula for x ∈ R , we proceed as in the proof of The-
orem 9.20 in [2]; namely, given r > 0 and x ∈ R , if one takes the mean value of γ(z)
in the disk D(x;r) , it follows from (3.13) that

1
πr2

∫
|x−(p+qi)|�r

γ(p+qi)dκ(p)dκ(q)

= −
∫

Ω
log |det(D(ω))|dν(ω)

+
1

πr2

∫
|x−(p+qi)|�r

∫
R

log |(p+qi)− s|dk(s)dκ(p)dκ(q).

(3.14)

Now, it follows from the lemma presented in the proof of Theorem 9.20 in [2] that the
function f : C → C∪{−∞} , given by the law

f (z) := −
∫

Ω
log |det(D(ω))|dν(ω)+

∫
log |z− s|dk(s),

is subharmonic and so, for every z0 ∈ C , one has

f (z0) = lim
r→0

1
πr2

∫
|z−z0|�r

f (z)dz. (3.15)

Thus, by letting r ↓ 0 in both members of (3.14), it follows from (3.15) that

γ(x) = f (x) = −
∫

Ω
log |det(D(ω))|dν(ω)+

∫
log |x− s|dk(s). �

In what follows, we prove using Thouless formula that γ(x) has, for κ -a.e. x∈R ,
a finite ortogonal derivative at x . This result is used in the proof of Kotani Theorem 4.9,
as discussed in Section 4.

COROLLARY 3.6. Let γ(z) be as in Theorem 3.5. Then, for κ -a.e. x ∈ R , the
normal derivative

∂γ(x+ iy)
∂y

= lim
y↓0

γ(x)− γ(x+ iy)
y

exists and is finite.

Proof. It follows from Theorem 3.5 that

limy↓0
γ(x)− γ(x+ iy)

y
= limy↓0

∫
R

log |x+ iy− s|− log |x− s|
y

dk(s)

=
∫

R

i
1

|x− s|dk(s)

Now, since the Borel transform of the measure k exists for κ -a.e. x ∈ R , the results
follows. �
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4. Kotani Theorem

In this section we prove, in our setting, a version of Kotani Theorem, which relates
the Lyapunov exponents of the cocycle to the mean value of the singular values of the
matrix-valued spectral measure. Specifically, we prove that if some Lyapunov exponent
is zero, then the mean value of the correspondent singular value of the matrix-valued
spectral measure is strictly positive and finite.

Our starting point is the existence of the normal derivative of γ(z) (Corollary 3.6).
The idea, again, is to adapt the steps of the proof of Kotani Theorem in [10] (more
precisely, we adapt the proof of Theorem 7.2 in [10]). The main obstacle in our case is
the presence of the matrices Dn in the recurrence relations. The solution that we present
to circunvet this problem is to include these matrices in the term that is dynamically
estimated, and then to relate such term to the matrix-valued spectral measure using the
Sylvester Law of Inertia (see [17]).

PROPOSITION 4.1. (Sylvester law of inertia) Let B be an hermitian matrix and
let

π(B) = number of strictly positives eigenvalues of B;
ν(B) = number of strictly negatives eigenvalues of B;
δ (B) = number of null eigenvalues of B.

Then, for every non-singular matrix X ,

π(B) = π(X∗BX),
ν(B) = ν(X∗BX),
δ (B) = δ (X∗BX).

In the case of dynamically defined operators, one may generalize the Weyl-Titch-
marsh function Mφ by the sequence

Mφ
n (z,ω) = −Fn+1(z,ω)F−1

n (z,ω)D−1
n (ω), (4.1)

where z ∈ C+ , ω ∈ Ω , n ∈ Z0
+ and Fn(z,ω) := F (+)

n (z,ω) (we omit the index (+)
in order to simplify the notation throughout the rest of the text), with Mφ

0 (z,ω) =
Mφ (z,ω) . It follows from relation (4.1) that for each z ∈ C+ , each ω ∈ Ω and each
n ∈ Z0

+ ,

Mφ
n+1(z,ω) = Mφ

n (z,Tω).

LEMMA 4.2. Let (Hω )ω∈Ω be as before, let (Fn(z,ω))n∈N be the Jost solutions
to the eigenvalue equation (1.7) at z ∈ C and let (Mφ

n (z,ω))n∈Z0
+

be the sequence of

Weyl-Titchmarsh functions defined by (4.1). Then, for each m,n ∈ Z0
+ ,

(a) Fn(z,Tmω)Fm(z,ω) = Fn+m(z,ω);

(b) Mφ
0 (z,T mω)Dm(ω) = Fm+1(z,ω)F−1

m (z,ω);

(c) −(Mφ
0 )−1(z,Tn−1ω)−Dn(ω)Mφ

0 (z,Tnω)Dn(ω)+Vn(ω) = zI .
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Proof. We omit the dependence in z throughout the proof.
(a) Let a ∈ Cl . The sequence u = (un)n , with un = Fn(ω)a , is the solution to

the eigenvalue equation (1.7) that satisfies u0 = a ; moreover, u ∈J+(ω) . Then, vn =
Fn(Tmω)a corresponds to the solution v ∈J+(Tmω) to the eigenvalue equation (1.7)
that satisfies the initial condition v0 = a .

On other hand, wn = Fn+m(ω)a corresponds to the solution u ∈ J+(ω) which
satisfies wm = a .

One concludes that each column of Fn(Tmω)Fm(ω) coincides with the correspon-
dent column of Fn+m(ω) , since both are solutions, in J+(Tmω) , to the eigenvalue
equation (1.7) that satisfy the same initial condition.

(b) It follows from (a) that for each m ∈ Z0
+ and each ω ∈ Ω ,

F1(Tmω)Fm(ω) = Fm+1(ω).

Since F0(Tmω) = I and Dm(ω) = D(Tmω) , it follows from relation (4.1) that

Mφ
0 (Tmω) = −F1(Tmω)D−1

m (ω);

by combining both relations, one gets

Mφ
0 (Tmω) = −Fm+1(ω)F−1

m (ω)D−1
m (ω).

(c) The eigenvalue equation (1.7), for each n ∈ Z+ , reads

Dn−1(ω)Fn−1(ω)F−1
n (ω)+Dn(ω)Fn+1(ω)F−1

n (ω)+Vn(ω) = zI;

it follows from (b) that

−(Mφ
0 )−1(Tn−1ω)−Dn(ω)Mφ

0 (Tnω)Dn(ω)+Vn(ω) = zI. �

Before we present Kotani Theorem in its full generality, we present a partial
version of it; namely, we proceed to prove, for ν -a.e. ω ∈ Ω , the set inclusion
Z

ess
l ⊆ σac,l(H

φ
ω) , with Zl given by (1.10).

LEMMA 4.3. Let, for each z∈C+ , (Mφ
n (z,ω))n be as in Lemma 4.2, and let γ(z)

be given by (3.3). Then, for each n ∈ Z+ ,

E

[
log

∣∣∣∣∣det

(
I+

ℑ[z]

Dn(ω)ℑ[Mφ
n (z,ω)]Dn(ω)

)∣∣∣∣∣
]

= 2γ(z). (4.2)

Proof. Let ω ∈ Ω and n ∈ Z+ ; if one takes the imaginary part of both members
of the identity of Lemma 4.2-(c) , one gets

−Dnℑ[Mφ
n ]Dn−ℑ[(Mφ

n−1)
−1] = ℑ[z]I. (4.3)
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Then,

I+
ℑ[z]

Dnℑ[Mφ
n ]Dn

= ((Mφ
n−1)

∗)−1ℑ[Mφ
n−1](M

φ
n−1)

−1(Dnℑ[Mφ
n ]Dn)−1,

from which follows that

E

[
log

∣∣∣∣∣det

(
I+

ℑ[z]

Dnℑ[Mφ
n ]Dn

)∣∣∣∣∣
]

= −E

[
log
∣∣∣det
(
(Mφ

n−1)
∗
)∣∣∣]+E

[
logdet

(
ℑ[Mφ

n−1]
)]

−E

[
log
∣∣∣det
(
Mφ

n−1

)∣∣∣]−2E [log |det(Dn)|]−E

[
logdet

(
ℑ[Mφ

n ]
)]

.

Since
E

[
logdet

(
ℑ[Mφ

n−1]
)]

= E
[
logdet

(
ℑ[Mφ

n ]
)]

and, by Proposition 2.3,

E

[
log
∣∣∣det
(
Mφ

n−1

)∣∣∣]= E

[
log
∣∣∣det
(
(Mφ

n−1)
∗
∣∣∣)] ,

one concludes that

E

[
logdet

∣∣∣∣∣
(

I+
ℑ[z]

Dnℑ[Mφ
n ]Dn

)∣∣∣∣∣
]

= −2E

[
log
∣∣∣det
(
Mφ

n−1

)∣∣∣+ log |det(Dn)|
]
. (4.4)

On other hand, for each n ∈ Z+ , Mφ
n = −Fn+1F−1

n D−1
n , by definition (4.1). So,

for each ω ∈ Ω , one has

log
∣∣det
(
Mφ

n (ω)
)∣∣= log |det(−Fn+1(ω))|+ log

∣∣det
(
F−1

n (ω)
)∣∣+ log

∣∣det
(
D−1

n (ω)
)∣∣ .

It follows from Birkhoff Ergodic Theorem that for ν -a.e. ω ∈ Ω ,

E
[
log
∣∣det
(
Mφ

n

)∣∣]= lim
L→∞

1
L

L−1

∑
n=0

log
∣∣det
(
Mφ

n (ω)
)∣∣ ,

and consequently, that for ν -a.e. ω ∈ Ω ,

E

[
log
∣∣∣det
(
Mφ

n

)∣∣∣] = limL→∞
1
L

(log |det(FL(ω))|− log |det(F0(ω))|)

+ limL→∞
1
L

(
∑L−1

n=0 log
∣∣det
(
D−1

n (ω)
)∣∣) .

Now, we compute each term of the right-hand side of this identity separately. Nat-
urally,

lim
L→∞

1
L

log |det(F0(ω))| = 0.



848 F. VIEIRA OLIVEIRA AND S. L. CARVALHO

By Proposition 3.1, one has

lim
L→∞

1
L

(log |det(FL(ω))|) = −γ(z),

and again by Birkhoff Ergodic Theorem, one has for ν -a.e ω ∈ Ω ,

lim
L→∞

1
L

L−1

∑
n=0

log
∣∣det
(
D−1

n (ω)
)∣∣= −E [log |det(Dn)|] .

Finally,
E
[
log
∣∣det
(
Mφ

n

)∣∣]= −γ(z)−E [log |det(Dn)|] , (4.5)

and the result is now a consequence of relations (4.4) and (4.5). �

PROPOSITION 4.4. Let, for each z∈C+ , (Mφ
n (z,ω)) and γ(z) be as in Lemma 4.3.

Then, for each n ∈ Z+ ,

E

⎡
⎣ 1

Tr
[
Dnℑ[Mφ

n ]Dn + ℑ[z]
2

]
⎤
⎦� 2

γ(z)
ℑ[z]

.

Proof. Given a square matrix A , it is known that†

det
(
eA)= eTr[A].

Now, if B is such that I+B = eA ‡, then

det(I+B) = eTr[log(I+B)],

that is,
logdet(I+B) = Tr [log(I+B)] .

Thus, relation (4.2) can be written as

E

[
Tr

[
log

(
I+

ℑ[z]

Dnℑ[Mφ
n ]Dn

)]]
= 2γ(z),

which can be expressed in terms of singular the values, μk , of D0ℑ[Mφ
0 ]D0 as

E

[
l

∑
k=1

(
log

(
1+

ℑ[z]
μk

))]
= 2γ(z) (4.6)

(namely, given a positive semi-definite matrix A of size l × l , if f : R+ → R+ is an
increasing function, one has, for each k ∈ {1, . . . , l} , sk[ f (A)] = f (sk[A]) ; see Theorem
6.7 in [6]).

†See, for instance, page 25 in [19].
‡The matricial logarithm is defined for every matrix with positive eigenvalues; see page 269 in [7].
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It is also known that for each x � 0,

log(1+ x) � x
1+ x

2

. (4.7)

Hence,

E

⎡
⎣ l

∑
k=1

(
ℑ[z]
μk

)
1+
(

ℑ[z]
2μk

)
⎤
⎦� 2γ(z),

and then,

ℑ[z]E

[
l

∑
k=1

1

μk + ℑ[z]
2

]
� 2γ(z).

Finally, since the arithmetic mean of a finite set of non-negative numbers is greater than
its harmonic mean, it follows that

E

⎡
⎣ 1

Tr
[
Dnℑ[Mφ

n ]Dn + ℑ[z]
2

]
⎤
⎦� E

[
l

∑
k=1

1

μk + ℑ[z]
2

]
� 2

γ(z)
ℑ[z]

. �

It follows from Corollary 3.6 that the normal derivative ∂γ(x+iy)
∂y (x) exists for κ -

a.e. x ∈ R . So, for each x ∈ R such that this derivative exists and such that γ(x) = 0,
one has

∂γ(x+ iy)
∂y

(x) = lim
y↓0

γ(x+ iy)− γ(x)
y

= lim
y↓0

γ(x+ iy)
y

.

It follows from Fatou Lemma and Proposition 4.4 that, for κ -a.e. x ∈ R

E

[
liminfy↓0

(
Tr

[
Dnℑ[Mφ

n (x+ iy)]Dn +
ℑ[z]
2

])−1
]

� limsupy↓0 E

[(
Tr

[
Dnℑ[Mφ

n (x+ iy)]Dn +
ℑ[z]
2

])−1
]

< ∞.

Then, for κ -a.e. x ∈ R such that γ(x) = 0 and for ν -a.e. ω ∈ Ω ,

liminf
y↓0

Tr
[
Dnℑ[Mφ

n (x+ iy,ω)]Dn
]
> 0.

On other hand, since for each n ∈ Z+ , Mφ (z) is a Herglotz function (by (2.14)),
one has for κ -a.e. x ∈ R and each ω ∈ Ω ,

lim
y↓0

Tr
[
Dnℑ[Mφ

n (x+ iy,ω)]Dn
]
< ∞.

Hence, for κ -a.e. x ∈ R such that γ(x) = 0 and for ν -a.e. ω ∈ Ω ,

0 < lim
y↓0

Tr
[
Dnℑ[Mφ

n (x+ iy,ω)]Dn
]
< ∞. (4.8)
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Finally, it follows from Proposition 4.1 and relation (4.8) that for κ -a.e. x ∈ R

such that γ(x) = 0 and for ν -a.e. ω ∈ Ω ,

0 < lim
y↓0

Tr
[
ℑ[Mφ

n (x+ iy,ω)]
]
< ∞;

the set inclusion Z
ess
l ⊆ σac,l(H

φ
ω) is now a consequence of Proposition 2.6.

In fact, as in [10], one can go even further and obtain from Proposition 4.4 a strati-
fied charaterization (in terms of the multiplicity) of the absolutely continuous spectrum
with respect to the sets (1.10).

The idea is to relate the greatest singular values of the Weyl-Titchmarsh matrix-
valued function Mφ with the greatest Lyapunov exponents, generalizing, therefore,
relation (4.6).

PROPOSITION 4.5. Let z ∈ C+ , Mφ (z,ω) and γ(z) be as in Lemma 4.3. Let
μ1(ω) � μ2(ω) � . . . � μl(ω) be the singular values of D0ℑ[Mφ (ω)]D0 . Then, for
each j ∈ {1, . . . , l} ,

j

∑
k=1

E

[
log

(
1+

ℑ[z]
μk

)]
� 2(γl+1− j(z)+ . . .+ γl(z)).

Proof. It follows from (4.3) that, for each n ∈ Z+ ,

−Dnℑ[Mφ
n ]Dn = ℑ[z]I− ((Mφ

n−1)
∗)−1ℑ[Mφ

n−1](M
φ
n−1)

−1.

Now, by multiplying both members of this identity to the left by F∗
n and to the right by

Fn , one gets

−F∗
n Dnℑ[Mφ

n ]DnFn = F∗
n ℑ[z]Fn−F∗

n ((Mφ
n−1)

∗)−1ℑ[Mφ
n−1](M

φ
n−1)

−1Fn.

Since, by definition (4.1),⎧⎨
⎩

F∗
n ((Mφ

n−1)
∗)−1 = −F∗

n−1Dn−1,

(Mφ
n−1)

−1Fn = −Dn−1Fn−1,

the last identity can be written as

−F∗
n Dnℑ[Mφ

n ]DnFn = ℑ[z]F∗
n Fn−F∗

n−1Dn−1ℑ[Mφ
n−1]Dn−1Fn−1;

note that this is a relation between two positive semi-definite matrices. By setting Pn :=√
Dnℑ[Mφ

n ]DnFn , one has

P∗
n−1Pn−1 = ℑ[z]F∗

n Fn +P∗
n Pn,

from which follows the recurrence relation

P∗
n−1Pn−1 = P∗

n

(
I+

ℑ[z]

Dnℑ[Mφ
n ]Dn

)
Pn. (4.9)
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Now, we apply the operators Λk to both members of (4.9). For each j ∈ {0, . . . ,
l−1} , one gets

Λl− j
(
P∗

n−1Pn−1
)

= Λl− j

(
P∗

n

(
I+

ℑ[z]

Dnℑ[Mφ
n ]Dn

)
Pn

)

= Λl− j

((
I+

ℑ[z]

Dnℑ[Mφ
n ]Dn

)
PnP∗

n

)
,

and then,

∥∥∥Λl− j(P∗
n−1Pn−1)

∥∥∥�
∥∥∥∥∥Λl− j

(
I+

ℑ[z]

Dnℑ[Mφ
n ]Dn

)∥∥∥∥∥
∥∥∥Λl− j(P∗

n Pn)
∥∥∥ . (4.10)

Since ∥∥∥∥∥Λl− j

(
I+

ℑ[z]

Dnℑ[Mφ
n ]Dn

)∥∥∥∥∥=
l− j

∏
k=1

(
1+

ℑ[z]
μl+1−k(Tnω)

)
,

it follows from (4.10) that

log
∥∥∥Λl− j(P∗

n−1Pn−1)
∥∥∥�

l− j

∑
k=1

log

(
1+

ℑ[z]
μl+1−k(Tnω)

)
+ log

∥∥∥Λl− j(P∗
n Pn)
∥∥∥ ,

and so, for each n ∈ Z+ ,

log
∥∥∥Λl− j(P∗

0 P0)
∥∥∥�

n

∑
j=1

l− j

∑
k=1

log

(
1+

ℑ[z]
μl+1−k(T jω)

)
+ log

∥∥∥Λl− j(P∗
n Pn)
∥∥∥ .

If one multiplies both sides of the last inequality by 1
n and let n → ∞ , one gets by

Birkhoff Ergodic Theorem that, for ν -a.e. ω ∈ Ω ,

0 �
l

∑
k=1

E

[
log

(
1+

ℑ[z]
μl+1−k

)]
+ lim

n→∞

1
n

log
∥∥∥Λl− j(P∗

n Pn)
∥∥∥ . (4.11)

Nevertheless, by definition, F and P satisfies for each n ∈ Z+ ,

P∗
n Pn = F∗

n Dnℑ[Mφ
n ]DnFn;

thus, for each j ∈ {0, . . . , l−1} ,

Λl− j (P∗
n Pn) = Λl− j

(
F∗

n Dnℑ[Mφ
n ]DnFn

)

= Λl− j
(
Dnℑ[Mφ

n ]DnFnF∗
n

)
,
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from which follows that

1
n

log
∥∥∥Λl− j(P∗

n Pn)
∥∥∥� 1

n
log
∥∥∥Λl− j(Dnℑ[Mφ

n ]Dn)
∥∥∥+

1
n

log
∥∥∥Λl− j(F∗

n Fn)
∥∥∥ .

Now, it follows from Proposition 3.1 that for ν -a.e. ω ∈ Ω ,

−(γ+
1 (z)+ . . .+ γ+

l− j(z)) = lim
n→∞

1
n

log
∥∥∥Λl− j(Fn(ω ,z))

∥∥∥ ,
and since log

∥∥∥Λl− j(D0ℑ[Mφ
0 ]D0)(ω)

∥∥∥< ∞ , one has

lim
n→∞

1
n

log
∥∥∥Λl− j(P∗

n Pn)
∥∥∥� −2(γ1(z)+ . . .+ γl− j(z)). (4.12)

By combining relations (4.11) and (4.12), one gets

l− j

∑
k=1

E

[
log

(
1+

ℑ[z]
μl+1−k

)]
� 2(γ1(z)+ . . .+ γl− j(z)). (4.13)

Finally, by Lemma 4.3 and relation (4.13), it follows that

j

∑
k=1

E

[
log

(
1+

ℑ[z]
μk

)]
=

l

∑
k=l− j+1

E

[
log

(
1+

ℑ[z]
μl+1−k

)]

� 2(γl+1− j(z)+ . . .+ γl(z)). �

Before we present the proof of Kotani Theorem, some final preparation is required.
Suppose now that for a given x ∈ R , there exists a solution to the eigenvalue

equation (1.7) for the operator Hω which is square-sumable. Given y > 0, since x+ iy∈
ρ(Hω) , the correspondent solution for x+ iy also exists. Then, by Green formula, one
can compare the norms of these solutions in l2(N;Cl) .

LEMMA 4.6. Let ω ∈ Ω , k ∈ {1, . . . ,k} , n∈N , and let f(k)n (x+ iy,ω) be the k -th
column of the matrix Fn(x+ iy,ω) . If f(k)(x,ω) ∈ l2(N;Cl) , then

∞

∑
m=1

∥∥∥f(k)m (x+ iy)
∥∥∥2

Cl
�

∞

∑
m=1

∥∥∥f(k)m (x)
∥∥∥2

Cl
.

Proof. We omit the dependence in ω throughout the proof. Let z = x + iy . By
applying Lemma 2.2 to f(k)(z) and f(k)(x) , one gets

ℑ[z]
(

2
∥∥∥f(k)(z)∥∥∥2 −〈f(k)(z), f(k)(x)〉−〈f(k)(x), f(k)(z)〉)= 0;

namely, given that these solutions are square-sumable at +∞ , one has

lim
n→∞

W
[f(k)(z)−f(k)(x),f(k)(z)−f

(k)(x)]
(n+1) = 0,
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and since f(k)0 (z)− f(k)0 (x) = 0 , one also has

W
[f(k)(z)−f(k)(x),f(k)(z)−f(k)(x)]

(1) = 0.

Hence, ∥∥∥f(k)(z)− f(k)(x)
∥∥∥2 =

∥∥∥f(k)(z)∥∥∥2 +
∥∥∥f(k)(x)∥∥∥2

−
〈
f(k)(z), f(k)(x)

〉
−
〈
f(k)(x), f(k)(z)

〉

=
∥∥∥f(k)(x)∥∥∥2−∥∥∥f(k)(z)∥∥∥2 ,

and consequently, ∥∥∥f(k)(x)∥∥∥2−∥∥∥f(k)(z)∥∥∥2 > 0. �

COROLLARY 4.7. Let z ∈ C+ , (Hω)ω and Mφ (z,ω) be as in Lemma 4.3. Sup-
pose that there exist x∈R and j ∈ {1, . . . , l} such that γ j(x) > 0 . Then, for each y > 0 ,
γ j(x) � γ j(x+ iy) .

Proof. If γ j(x) > 0 then, for ν -a.e. ω ∈ Ω , there exists a solution to eigenvalue
equation at x , say f(x,ω) , which decays exponentially fast. By Lemma 4.6, it follows
that for ν -a.e. ω , the correspondent solution f(x+ iy,ω) decays at least with the same
exponential rate. Hence, γ j(x) � γ j(x+ iy) . �

PROPOSITION 4.8. Let (Hω )ω ,Mφ (ω),γ and (μk)l
k=1 be as in Proposition 4.5.

Let x ∈ R , j ∈ {1, . . . , l} , and suppose that there exists, for each k = 1,2, . . . , l− j , the
limit

γk(x) = lim
y↓0

γk(x+ iy).

Then, for each y > 0 ,

E

(
j

∑
k=1

1
μk(x+ iy)+ y

2

)
� 2

y

(
j

∑
k=1

γl+1−k(x+ iy)

)

+
2
y

(
l

∑
k= j+1

(γl+1−k(x+ iy)− γl+1−k(x))

)
.

Proof. It follows from Proposition 4.5 that

j

∑
k=1

E

[
log

(
1+

y
μk

)]
� 2(γl+1− j(x+ iy)+ . . .+ γl(x+ iy)).
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Now, by employing the same arguments presented in the proof of Proposition 4.4, one
gets

E

(
j

∑
k=1

1
μk(x+ iy)+ y

2

)
� 2

y

j

∑
k=1

γl+1−k(x+ iy). (4.14)

On the other hand, it follows from Corollary 4.7 that

l

∑
k= j+1

(γl+1−k(x+ iy)− γl+1−k(x)) � 0,

and since y > 0, one has

0 � 2
y

l

∑
k= j+1

(γl+1−k(x+ iy)− γl+1−k(x)). (4.15)

The result now follows from relations (4.14) and (4.15). �

THEOREM 4.9. (Kotani Theorem) Let (Hω)ω be the family of ergodic matrix-
valued Jacobi operators of the form (1.6) such that the mapping D : Ω → GL(l,R)
is bounded, and for each ω ∈ Ω , D(ω) is a symmetric and invertible l × l matrix.
Suppose also that the mapping Az , given by the law (1.8), is such that log+ ‖Az(ω)‖ ∈
L1(ν) . Let also, for each j ∈ {1, . . . , l} , Z j be the set given by (1.10). Then, for ν -a.e.
ω ∈ Ω , the restriction of the absolutely continuous spectrum of Hω to the set Z j has
multiplicity at least 2 j .

Proof. Define the sets

Q1 := {x ∈ R | ∃ limy↓0 γ(x+ iy)},

Q2 := {x ∈ R | ∃ limy↓0
∂γ
∂y (x+ iy)},

Q3 := {x ∈ Q1∩Q2 | limy↓0
[

γ(x+iy)−γ(x)
y − ∂γ

∂y (x+ iy)
]

= 0},

Q4 := {x ∈ R | limy↓0 ℑ[M(x+ iy,ω)] < ∞, for ν-a.e. ω ∈ Ω}.
It follows from Corollary 3.6 that for ν -a.e. ω ∈ Ω , κ(R \Q3) = 0. One has,

from the definitions of Z j and Q3 , that for each x0 ∈ Z j ∩Q3 , there exists the limit

lim
y↓0

1
y

[
j

∑
k=1

γk(x0 + iy)+
l

∑
k= j+1

(γk(x0 + iy)− γk(x0))

]
= lim

y↓0
1
y
[γ(x0 + iy)− γ(x0)].

Hence, it follows from Proposition 4.8 and Fatou Lemma that, for each x0 ∈ Z j ∩
Q3 and each k ∈ {1, . . . , j} ,

E

[
liminf

y↓0
1

μk(x0 + iy)+ y
2

]
� limsup

y↓0
E

[
1

μk(x0 + iy)+ y
2

]
< ∞,
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and so
liminf

y↓0
μk(x0 + iy,ω) > 0.

On the other hand, given that Mφ is a Herglotz function (by (2.14)), it follows that
κ(R \Q4) = 0. Summing up, if x0 ∈ Z j ∩Q3 ∩Q4 , then for ν -a.e. ω ∈ Ω and each
k ∈ {1, . . . , j} , one has

0 < lim
y↓0

μk(x0 + iy,ω) < ∞.

Therefore, one concludes from these results that

rank [D0(ω)ℑ[M(x0,ω)]D0(ω)] � j.

Now, it follows from Proposition 4.1 that

rankℑ[M(x0,ω)] = rank [D0(ω)ℑ[M(x0,ω)]D0(ω)] � j.

By analogous arguments, one can prove the same results for the family (Hφ
ω,−)ω

defined in l2(Z−;Cl) and then, by Proposition 2.7, one can extend, with multiplicity
2 j , the result to the family of operators (Hω )ω defined in l2(Z;Cl) . �

5. Ishii-Pastur Theorem

Now, we discuss the Ishii-Pastur Theorem (proved for scalar Schrödinger opera-
tors in [8] and [14]), the reciprocal of Kotani Theorem. In the context of matrix-valued
Schrödinger operators, the result is presented in [10].

PROPOSITION 5.1. Let Mφ (z,ω) be the Weyl-Titchmarsh function for the oper-
ator Hφ

ω and let f(k)(z) be as in Lemma 4.6. Let ω ∈ Ω , x ∈ R , k ∈ {1, . . . , l} , and
suppose that f(k)(x) ∈ l2(N;Cl) . Then,

lim
y↓0

(D0ℑ[Mφ (x+ iy,ω)]D0)kk = 0.

Proof. It follows from Proposition 2.3-(b) and Lemma 4.6 that, for each y > 0,

(D0ℑ[M(x+ iy,ω)]D0)kk = y
∞

∑
n=1

(F∗
n Fn)kk = y

∞

∑
n=1

∥∥∥f(k)n (x+ iy)
∥∥∥2

Cl
�

∞

∑
n=1

∥∥∥f(k)n (x)
∥∥∥2

Cl
.

Therefore,

lim
y↓0

(D0ℑ[M(x+ iy,ω)]D0)kk

y
�

∞

∑
n=1

∥∥∥f(k)n (x)
∥∥∥2

Cl
< ∞,

from which follows that limy↓0(D0ℑ[M(x+ iy,ω)]D0)kk = 0. �
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THEOREM 5.2. (Ishii-Pastur Theorem) Let (Hω )ω be the family of ergodic matrix-
valued Jacobi operators of the form (1.6) such that the mapping D : Ω → GL(l,R) is
bounded, and for each ω ∈ Ω , D(ω) is a symmetric and invertible l× l matrix. Sup-
pose also that the mapping Az , given by the law (1.8), is such that log+ ‖Az(ω)‖ ∈
L1(ν) . Let also, for each j ∈ {1, . . . , l} , Z j be the set given by (1.10). Then, for ν -a.e.
ω ∈ Ω , the restriction of the absolutely continuous spectrum of Hω to the set Z j has
multiplicity at most 2 j .

Proof. Let x ∈ Z j . It follows from Oseledets Theorem that, for ν -a.e. ω ∈ Ω ,
there exist l − j + 1 linearly independent solutions to the eigenvalue equation (1.7)
(namely, f(k)(x)) that decay exponentially fast at +∞ .

So, it follows from Proposition 5.1 that for ν -a.e. ω ∈ Ω and for l− j+1 values
of k ,

lim
y↓0

(D0ℑ[Mφ (x+ iy)]D0)kk = 0,

and then, by Proposition 4.1, that

lim
y↓0

(ℑ[Mφ (x+ iy)])kk = 0.

Thus, for ν -a.e. ω ∈ Ω , one has

rank[lim
y↓0

ℑ[Mφ (x+ iy)]] � j.

Now, as in the proof of Theorem 4.9, the same conclusion is valid for the family
(Hφ

ω,−)ω of operators defined in l2(Z−;Cl) , and again by Proposition 2.7, one can
extend the result, with multiplicity 2 j , to the family of operators (Hω )ω defined in
l2(Z;C) . �
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tifiques, 50 (1979), 275.

[17] H. SCHNEIDER, Topological aspects of Sylvester’s theorem on the inertia of hermitian matrices, The
American Mathematical Monthly 73, 8 (1966), 817–821.

[18] B. SIMON, Kotani theory for one dimensional stochastic jacobi matrices, Communications in Mathe-
matical Physics 89 (1983).

[19] M. E. TAYLOR, Partial Differential Equations I, Springer, New York, 2011.
[20] G. TESCHL, Jacobi Operators and Completely Integrable Nonlinear Lattices, Mathematical Surveys

and Monographs 72. American Mathematical Society, Providence, 2000.
[21] D. THOULESS, A relation between the density of states and range of localization for onedimensional

random system, Journal of Physics, C 5 (1972), 77–81.

(Received February 17, 2022) Fabrı́cio Vieira Oliveira
Instituto de Ciências Exatas (ICEX-UFMG)
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