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Abstract. The main aim of the present paper is to establish invertibility criteria for Toeplitz-
plus-Hankel-Bezoutians based on the analysis of the structure of these matrices. In particular,
their inverses have an explicit representation as a sum of a Toeplitz and a Hankel matrix whose
symbols are the solution of certain linear systems taking the form of generalized resultant equa-
tions. These results generalize previous inversion formulas and criteria for the special cases of
centrosymmetric or centroskewsymmetric Toeplitz-plus-Hankel-Bezoutians.

The inversion of Toeplitz-plus-Hankel-Bezoutians considered here is based on the con-
verse problem, the inversion of Toeplitz-plus-Hankel matrices. Consequently, several modi-
fications of known inversion formulas and new results for Toeplitz-plus-Hankel matrices are
developed, which allow a deeper insight into the structure of these matrices, too.

1. Introduction

In the present paper we deal with two special types of structured matrices, Toeplitz-
plus-Hankel matrices and Toeplitz-plus-Hankel-Bezoutians. Toeplitz-plus-Hankel ma-
trices (briefly, T+H matrices) are matrices Tn(a) + Hn(b) which are the sum of a
Toeplitz matrix and a Hankel matrix,

Tn(a) =
[
ai− j

]n−1
i, j=0, Hn(b) =

[
bi+ j−n+1

]n−1
i, j=0. (1.1)

Here a = (a j)n−1
j=−n+1 ∈ F2n−1 and b = (b j)n−1

j=−n+1 ∈ F2n−1 are the symbols of the
Toeplitz and the Hankel matrix, respectively. Throughout this paper, the entries of the
matrices and vectors are taken from an arbitrary field F , for example from the field of
complex numbers.

In order to define T+H-Bezoutians we use polynomial language. A matrix B =[
bi j
]n−1
i, j=0 is called a Toeplitz-plus-Hankel-Bezoutian (briefly, T+H-Bezoutian) if its

generating polynomial can be written in the form

B(t,s) :=
n−1

∑
i, j=0

bi jt
is j =

4
∑
i=1

ui(t)vi(s)

(t − s)(1− ts)
(1.2)
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for certain polynomials ui(t),vi(t) ( i = 1,2,3,4).
It has been discovered by G. Heinig and one of the authors in 1988 [12] that the in-

verse of every nonsingular T+H matrix is a T+H-Bezoutian, and, vice versa, the inverse
of every nonsingular T+H-Bezoutian is a T+H matrix.

The goal of the present paper is at least two-fold. First of all we want to extend
known inversion formulas for T+H matrices. Secondly, and more importantly, we want
to establish invertibility criteria for T+H-Bezoutians and compute their inverses. An-
other, related goal is to gain a deeper insight into the “structure” of T+H-Bezoutians
which is not yet completely understood.

Let us mention that there is a vast literature dedicated to the inversion of Toeplitz,
Hankel, and also T+H matrices, which started with the papers [17], [7], [15], and [11].
On the other hand, the converse problem – the inversion of Bezoutians – has received
little attention in the past (see [10], [9], [8]).

Our considerations are inspired by a series of papers dedicated to the inversion of
special classes of T+H-Bezoutians. The starting point was the inversion of Toeplitz-
Bezoutians and Hankel-Bezoutians considered in [2]. By a Hankel-Bezoutian BH and
a Toeplitz-Bezoutian BT we mean n×n matrices such that for certain polynomials u(t)
and v(t), the generating polynomials of the matrices are given by

BH(t,s) =
u(t)v(s)−v(t)u(s)

t− s
,

BT (t,s) =
u(t)v(s−1)sn −v(t)u(s−1)sn

1− ts
.

(1.3)

Hankel- or Toeplitz-Bezoutians arise as the inverses of Hankel or Toeplitz matrices
(and vice versa). With the result of [2], the inversion of these Bezoutians is fairly
well understood. It relies on a characterization of the nullspace of generalized resultant
matrices in terms of solutions of Bézout equations [1].

In [3], [4], and [5] the inversion of T+H-Bezoutians was discussed for the first
time, and inversion formulas and fast inversion algorithms were established, however,
only for centrosymmetric and centroskewsymmetric matrices. The reason why these
cases could be handled was that such T+H-Bezoutians possess a splitting property.
It leads to simpler structured matrices, so-called split-Bezoutians, and their restricted
inverses. This kind of generalized inversion was considered in [6]. All these cases are
fairly well understood, too.

But up to now the general case of T+H-Bezoutians remains unresolved. This is
the challenge and motivation of the present paper. We will obtain some results (in
particular, criteria for invertibility and inversion formulas), although they will not be as
complete or as simple as in the afore-mentioned cases.

Let us recall some history from [6]. Bezoutians were considered first in connection
with elimination theory by Euler in 1748, Bézout in 1764, and Cayley in 1857 (see, e.g.,
[18]). Much later, in 1974, their importance for the inversion of Hankel and Toeplitz
matrices was discovered by Lander [14]. He observed that the inverse of a nonsingular
Hankel (Toeplitz) matrix is a Hankel- (Toeplitz-) Bezoutian and vice versa.
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As mentioned above, it was discovered in [12] that the same relationship holds be-
tween T+H-Bezoutians and T+H matrices. Furthermore, in that paper, an invertibility
criterion and an inversion formula for T+H matrices was established. These fundamen-
tal results (restated in Theorem 4.1 below) are the starting points of our considerations
here. Interestingly, our invertibility theory for T+H-Bezoutians will be based on a mod-
ification of this invertibility criterion for T+H matrices. Furthermore, along the way we
extend the known invertibility results for T+H matrices as well.

Let us make another observation. Every pair of polynomials u(t) and v(t) of
appropriate degree gives rise to a Hankel- or Toeplitz-Bezoutian via formula (1.3). Un-
fortunately, this is no longer the case with T+H-Bezoutians and formula (1.2). The
octuple of polynomials ui(t),vi(t) , i = 1,2,3,4, vastly over-parameterizes the T+H-
Bezoutian, and implicit relations between the polynomials must hold. Thus it is fair to
say that the “explicit structure” of T+H-Bezoutians is not yet satisfactorily understood.
This state of affairs was another motivation for this paper.

The paper is organized as follows. In Section 2 we introduce notation and make
basic observations about T+H matrices. In Section 3 we establish basic results on
T+H-Bezoutians. In parts they are taken from [12] and concern the representation of
T+H-Bezoutians in terms of a pair (U,V ) related to the afore-mentioned polynomials.
We introduce the notion of such a pair to be well-posed or normed and discuss an
underlying uniqueness issue. Some simple necessary invertibility condition (Theorem
3.7) is obtained as well.

Section 4 is dedicated to the inversion of T+H matrices. In the first subsection
we recall an important result (Theorem 4.1) from [12], on which basically all of what
follows is based. In the next two subsections we derive two more invertibility criteria
and present a new inversion formula.

In Subsection 4.4 we will elaborate further on this result and eliminate certain
redundant parameters. This will lead to three systems of equations (4.17), (4.19) and
(4.21) whose solvability is equivalent to the invertibility of the T+H matrix. The (joint)
solution (U,V ) will give rise to the inverse, a T+H-Bezoutian B(U,V ) . One intricate
point is the non-uniqueness of the solutions, which is necessary to discuss in order to
prove the main results of this section (Theorems 4.12 and 4.18). The third system of
equations (4.21) is quite cumbersome. We will investigate in Subsection 4.6 whether it
can be dropped and this will give rise to the notion of strictness.

In Section 5 we then turn to the converse problem, the inversion of T+H-Bezoutians.
We start to discuss whether invertibility criteria known for Toeplitz- or Hankel-Bezou-
tians can be generalized to T+H-Bezoutians. Our main results for the inversion of T+H-
Bezoutians will be based on the results of Section 4, which give rise to new systems of
equations (5.11), (5.12), and (5.13). The first two of them are systems of generalized
resultant matrices. We will also discuss the uniqueness issue and whether the last equa-
tion is redundant. This will lead to our main results on the inversion of T+H-Bezoutians
in Subsection 5.3.

Finally, let us remark that working on this topic a lot of interesting questions arise
which we intend to deal with in a forthcoming paper.
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2. Notation

Throughout this paper we consider vectors or matrices whose entries belong to
a field F . By F

n we denote the linear space of all vectors of length n , and {ei}n
i=1

denotes the canonical basis in Fn , i.e., ei = (δ ji)n
j=1 , where δ ji denotes the Kronecker

delta. The zero vector in Fn is denoted by 0n . By Fn×m we denote the linear space of
all n×m matrices, and In stands for the identity matrix in Fn×n .

In what follows we often use polynomial language. We associate with a matrix
A =

[
ai j
]n−1
i, j=0 ∈ Fn×n the bivariate polynomial

A(t,s) :=
n−1

∑
i, j=0

ai j t
is j. (2.1)

and call it the generating polynomial of A . Similarly, with a vector x = (x j)n−1
j=0 ∈ Fn

we associate the polynomial

x(t) :=
n−1

∑
j=0

x jt
j ∈ F

n[t], (2.2)

where Fn[t] denotes the linear space of all polynomials in t of degree less than n with
coefficients in F .

Hereafter Jn denotes the flip matrix of order n ,

Jn :=

⎡⎣ 0 1
. .

.

1 0

⎤⎦ . (2.3)

For a vector x ∈ Fn we put
xJ := Jnx.

In polynomial language this means xJ(t) = x(t−1)tn−1 .
We have already defined Toeplitz and Hankel matrices in the introduction in (1.1).

Let us mention that for a Toeplitz matrix we have

Tn(aJ) = Tn(a)T = JnTn(a)Jn with aJ = J2n−1a. (2.4)

Furthermore, for a Hankel matrix we have Hn(b) = Tn(b)Jn = JnTn(bJ) . This notation
is convenient to represent T+H matrices. Throughout this paper we will write them in
the form

A = Tn(a)+Tn(b)Jn, (2.5)

where a = (ai)n+1
i=−n+1 and b = (bi)n+1

i=−n+1 are vectors in F2n−1 , and we will use the
notation

A = TH(a,b).

The pair (a,b) ∈ F2n−1 ×F2n−1 will be called the symbol of the T+H matrix. Let us
remark that the transpose is also a T+H matrix given by

AT = TH(aJ,b).



T+H-BEZOUTIANS 863

REMARK 2.1. In contrast to pure Toeplitz or Hankel matrices, the symbol of a
T+H matrix is not uniquely determined. The reason is that the intersection of the linear
spaces of Toeplitz and Hankel matrices (of order n ) consists of all “checkered” matrices
and is a two-dimensional space. Therefore, the decomposition (2.5) is unique only up
to checkered matrices.

More specifically, if we introduce the vectors of size 2n−1,

eα ,β =
[

α,β ,α,β , . . . ,β ,α,β ,α
]
, α,β ∈ F,

and the subspace W of F2n−1×F2n−1 of dimension two,

W =

{{
(eα ,β , −eβ ,α) : α,β ∈ F

}
if n is even{

(eα ,β , −eα ,β ) : α,β ∈ F
}

if n is odd,
(2.6)

then we can say that TH(a,b) = 0 if and only if (a,b) ∈W . It follows that the symbol
(a,b) of a T+H matrix is determined only up to vectors in W .

Note that, consequently, the set of all n×n T+H matrices is a linear subspace of Fn×n

of dimension 2(2n−1)−2= 4n−4.

3. T+H-Bezoutians: known and basic results

Recall that a T+H-Bezoutian is an n× n matrix B for which there exist eight
vectors ui,vi ∈ F

n+2 ( i = 1,2,3,4) such that, in polynomial language,

B(t,s) =

4
∑
i=1

ui(t)vi(s)

(t− s)(1− ts)
. (3.1)

As already mentioned earlier, the relationship between T+H-Bezoutians and T+H ma-
trices is shown in the following important theorem, which was established in [12].

THEOREM 3.1. The inverse of an invertible T+H-Bezoutian is an invertible T+H
matrix, and vice versa.

We introduce a matrix transformation ∇ : Fn×n → F(n+2)×(n+2) by

(∇C) (t,s) = (t− s)(1− ts)C(t,s), C ∈ F
n×n, (3.2)

which in matrix language can be expressed as

∇C =

⎡⎢⎢⎣
0 −rT

1 0

c1 CWn−WnC cn

0 −rT
n 0

⎤⎥⎥⎦ with Wn =

⎡⎢⎢⎢⎢⎣
0 1 · · · 0

1 0
. . .

...
...

. . . 0 1

0 · · · 1 0

⎤⎥⎥⎥⎥⎦ , (3.3)
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where c1,cn (r1,rn) are the first and last columns (rows) of C .
We know from [12] that an n× n matrix A is a T+H matrix if and only if the

matrix of order (n− 2) in the centre of ∇A is the zero matrix. In other words, if we
delete the first two and the last two rows and columns of ∇A then we have the zero
matrix.

Now we can rephrase the definition of a T+H-Bezoutian by saying that B is a
T+H-Bezoutian if and only if rank∇B � 4, or, in other words, if and only if there are
(n+2)×4 matrices

U =
[

u1 u2 u3 u4
]
, V =

[
v1 v2 v3 v4

]
(3.4)

such that we have the decomposition

∇B = UVT . (3.5)

It is obvious from (3.1) that the pair (U,V ) uniquely determines the Bezoutian B .
Therefore, we will use the notation

B = B(U,V). (3.6)

Conversely, however, (U,V ) is not uniquely determined by B . Indeed, one can always
replace the pair (U,V ) by (Û ,V̂ ) where Û =UC−1 , V̂ =VCT and C is a nonsingular
4×4 matrix. In case rank∇B = 4 this is the only allowed modification.

On the other hand, not every pair (U,V ) of the form (3.4) defines a T+H-Bezoutian
via (3.1). Clearly, for a T+H-Bezoutian B = B(U,V ) the sum

(∇B)(t,s) =
4

∑
i=1

ui(t)vi(s)

is divisible by both (t− s) and (1− ts) , which implies that

4

∑
i=1

ui(t)vi(t) = 0 and
4

∑
i=1

ui(t)vJ
i (t) = 0. (3.7)

Denoting

U(t) = [u1(t),u2(t),u3(t),u4(t) ] and V (t) = [v1(t),v2(t),v3(t),v4(t) ]

we can write this condition more compactly as

U(t)VT (t) = U(t)VT (t−1) = 0. (3.8)

DEFINITION 3.2. We will call the pair (U,V ) well-posed if conditions (3.7) (or,
equivalently, (3.8)) are satisfied.
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PROPOSITION 3.3. Suppose the pair (U,V) is well-posed. Then (3.1) uniquely
defines a T+H-Bezoutian B = B(U,V ) .

Proof. Consider c(t,s) = ∑4
i=1 ui(t)vi(s) . Then c(t, t) = 0 and c(t,t−1) = 0 by

(3.7). Hence c(t,s) is divisible by (t − s) and divisible by (1− ts) . A simple exer-
cise shows that then c(t,s) is divisible by the product (t − s)(1− ts) , which implies
that B(t,s) given by (3.1) is a bivariate polynomial of appropriate degree, and thus
determines an n×n matrix. �

We continue to cite two theorems from [12] (Theorems 4.1 and 4.2) and to com-
ment on their proofs.

THEOREM 3.4. Suppose B is a nonsingular matrix with rank∇B = 4 . Then B is
the inverse of a T+H matrix.

The proof of this theorem was done in two steps. First, it was established that ∇B
admits a certain representation, ∇B = UVT , in which (U,V ) take a special form to be
described below. The representation was then used to prove that B−1 is a T+H matrix.
Notice that this theorem is the main ingredient for the proof of one part of Theorem 3.1.

THEOREM 3.5. Let B be a matrix of order n � 2 . If rank∇B < 4 , then the first
and the last column or the first and the last row of B are linearly dependent. Hence, in
particular, B is singular.

In fact, the following was proved in [12]: If B is a T+H-Bezoutian (i.e., rank∇B �
4) and the first and last row are linearly independent and the first and last column are
linearly independent, too, then rank∇B = 4. In addition, the afore-mentioned special
form of ∇B =UVT was established, which is described now.

DEFINITION 3.6. We say that U is normed or V is normed (or the pair (U,V ) is
normed) if these matrices are of the form

U =
[

u1 u2 u3 u4
]
=

⎡⎢⎣ −1 0 0 0

x1 x2 x3 x4

0 −1 0 0

⎤⎥⎦ (3.9)

and

V =
[

v1 v2 v3 v4
]
=

⎡⎢⎣ 0 0 1 0

y1 y2 −y3 −y4

0 0 0 1

⎤⎥⎦ (3.10)

with certain xi,yi ∈ Fn ( i = 1, . . . ,4).
A T+H-Bezoutian B is called normable if it admits a representation B = B(U,V )

with a normed (and necessarily well-posed) pair (U,V ) .
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Note that representations B = B(U,V ) with normed (U,V ) are not unique and
that normable T+H-Bezoutians may also have non-normed representations.

Using this terminology we will now summarize the results stated above (see also
the first part of proof of Theorem 4.1 in [12]). In fact, one can derive the following
from the definition of the Bezoutians without using the relationship to T+H matrices as
their inverses.

THEOREM 3.7. Let B be a T+H-Bezoutian such that the first and last rows are
linearly independent and the first and last columns are linearly independent. Then
rank∇B = 4 and B is normable.

Clearly, in this theorem the assumptions on the rows/columns independence can
be replaced by the stronger assumption that B is nonsingular.

There are important nontrivial T+H-Bezoutians B with rank∇B < 4. For example,
the split-Bezoutians considered in [6] are T+H-Bezoutians with rank∇B � 2 (see the
definition (5.5)). While they are singular, they can be inverted with respect to certain
subspaces. A particularly simple example of such split-Bezoutians are “checkered”
matrices such as B = [(−1)i+ j ]n−1

i, j=0 . These are T+H-Bezoutians with rank∇B = 2
and also T+H matrices, but they are not restrictedly invertible in the sense of [6].

Since the focus in this paper are invertible T+H-Bezoutians, which are always
normable, we proceed to establish results on normable Bezoutians.

PROPOSITION 3.8. Let B = B(U,V ) , where the pair (U,V ) is normed and well-
posed. Then, with the notation (3.9) and (3.10), the vectors x3 = (x3i)n

i=1 and x4 =
(x4i)n

i=1 are the first and the last column of B and the vectors y1 = (y1i)n
i=1 and y2 =

(y2i)n
i=1 are the first and last row of B. In notation,

x3 = Be1, x4 = Ben, y1 = BT e1, y2 = BT en.

In particular,
y11 = x31, y1n = x41, y21 = x3n, y2n = x4n. (3.11)

Proof. By assumption we have ∇B = UVT . Using formula (3.3) we consider
the first/last row/column therein to arrive at the first statement. The second statement,
(3.11), is a consequence of it. Indeed, the entries in (3.11) are the entries which occur
at the four corners of the matrix B . �

In order to discuss the issue of non-uniqueness of (U,V ) for a normable Be-
zoutian B(U,V) , let us introduce the following equivalence relation between normed
pairs (U,V ) . We say that two normed pairs (U,V ) and (Û ,V̂ ) are equivalent, written
as

(U,V ) ∼ (Û ,V̂ ), (3.12)

if there is an X ∈ F2×2 so that

Û = U

[
I2 0
X I2

]
, V̂ = V

[
I2 −XT

0 I2

]
.
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In view of (3.8) it is easy to see that the property of being well-posed is invariant
under this equivalence relation. Furthermore, if (U,V ) ∼ (Û ,V̂ ) with both pairs being
normed and well-posed, then UVT = ÛV̂ T and therefore B(U,V ) = B(Û ,V̂ ) . Under
an additional assumption on the rank, the converse is also true.

PROPOSITION 3.9. Let both (U,V ) and (Û ,V̂ ) be normed and well-posed. If
B = B(U,V ) = B(Û ,V̂ ) and rank∇B = 4 , then (U,V ) ∼ (Û ,V̂ ) .

Proof. Using the previous proposition and with the appropriate notation we im-
mediately see that x3 = x̂3, x4 = x̂4 and y1 = ŷ1, y2 = ŷ2 as these vectors are columns
and rows of B . From the assumption B = B(U,V ) = B(Û ,V̂ ) it follows that ∇B =
UVT = ÛV̂ T . Since rank∇B = 4, the columns of U are linear combinations of the
columns of Û and vice versa. Combining the specific form of the first two columns
(notice the −1’s therein) with the fact that the last two columns in U and Û are the
same, it follows that there exists a 2×2 matrix X1 ∈ F2×2 such that

Û = U

[
I2 0
X1 I2

]
.

By a similar argumentation, there exists a 2×2 matrix X2 ∈ F2×2 such that

V̂ = V

[
I2 −XT

2
0 I2

]
.

Now observe that

UVT = Û

[
I2 0
X1 I2

][
I2 0

−X2 I2

]
V̂ T = Û

[
I2 0

X1−X2 I2

]
V̂ T = ÛV̂ T

and, in particular, [
û3 û4

]
(X1−X2)

[
v̂T

1

v̂T
2

]
= 0.

Since
[

û3 û4
]

and
[

v̂1 v̂2
]

have rank two, this leads to X1 − X2 = 0 . Thus,

(U,V ) ∼ (Û ,V̂ ) . �

4. Inversion of T+H matrices

4.1. Known results and some conclusions

Consider for an n×n T+H matrix A = TH(a,b) with

a = (ai)n−1
i=−n+1, b = (bi)n−1

i=−n+1 (4.1)

the vectors

g1 = (ai +b−n−1+i) n
i=1, g2 = (a−n−1+i +bi) n

i=1,

f1 = (a−i +b−n−1+i) n
i=1, f2 = (an+1−i +bi) n

i=1,
(4.2)
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where a±n and b±n can be chosen arbitrarily. These vectors are defined in a way to
ensure that the n× (n+2) matrices

∂̂A =
[

g1 A g2
]
, ∂̂AT =

[
f1 AT f2

]
(4.3)

retain the T+H structure, i.e.,

∂̂A =

⎡⎢⎢⎢⎢⎢⎣
a1 a0 a−1 · · · a−n+1 a−n

... a1
. . .

. . .
...

...
...

...
. . .

. . . a−1
...

an an−1 · · · a1 a0 a−1

⎤⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎣
b−n b−n+1 · · · b−1 b0 b1

...
... . .

.
. .

.
b1

...
... b−1 . .

.
. .

. ...
...

b−1 b0 b1 · · · bn−1 bn

⎤⎥⎥⎥⎥⎥⎦ ,

and likewise for ∂̂AT , where the transpose AT = TH(aJ,b) .
Let us recall Theorem 3.1 of [12], which will be the key result for our considera-

tions in this paper.

THEOREM 4.1. Suppose A = TH(a,b) and the equations

Ax1 = g1, Ax2 = g2, Ax3 = e1, Ax4 = en, (4.4)

or the equations

ATy1 = e1, AT y2 = en, AT y3 = f1, AT y4 = f2 (4.5)

are solvable. Then A is nonsingular, and its inverse is completely given by these solu-
tions,

∇A−1 = UVT , (4.6)

where

U =
[

u1 u2 u3 u4
]
=

⎡⎢⎣ −1 0 0 0

x1 x2 x3 x4

0 −1 0 0

⎤⎥⎦ (4.7)

and

V =
[

v1 v2 v3 v4
]
=

⎡⎢⎣ 0 0 1 0

y1 y2 −y3 −y4

0 0 0 1

⎤⎥⎦ . (4.8)

Clearly, if the assumptions of the theorem are fulfilled, then the pair (U,V ) is
normed and well-posed, and

A−1 = B(U,V ).

Indeed, the latter and the well-posedness are inferred from (4.6).
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REMARK 4.2. The theorem implies that the invertibility of A is equivalent to
the solvability of (4.4) (or (4.5)). Therefore, the solvability of (4.4) or (4.5) is inde-
pendent of the choice of a±n,b±n . However, the matrices U and V (i.e., the vectors
x1,x2,y3,y4 ) depend on them. The precise dependence of U and V on a±n,b±n , which
can also be seen by direct inspection, will be analyzed in Lemma 4.16 and Proposition
4.17 below.

REMARK 4.3. Note that the invertibility of A follows e.g. from the solvability
of the equations (4.4). In Proposition 3.4 of [12] a recurrence formula for the columns
bk = A−1ek , k = 1, . . . ,n , was given using only the solutions x1,x2,x3,x4 :

b0 := 0, b1 = x3,

bk+1 = Wnbk −bk−1 +(x1e
T
1 +x2e

T
n −x3f

T
1 −x4f

T
2 )bk,

(4.9)

where Wn is defined in (3.3). Analogously, the invertibility of A follows from the solv-
ability of (4.5), and a similar recurrence formula for the rows of A−1 can be established.

In what follows we will often use the notation (4.7) and (4.8) instead of referring
to the vectors xi and yi individually. In view of (4.3) it is possible to write the system
(4.4) equivalently as

(∂̂A)U = [0 ,0 ,e1, en ] (4.10)

with U given by (4.7). Likewise the system (4.5) is equivalent to

(∂̂AT )V = [e1, en, 0 ,0 ] (4.11)

with V given by (4.8). Obviously, Theorem 4.1 amounts to the following.

COROLLARY 4.4. Suppose that the equations (4.10) with normed U or the equa-
tions (4.11) with normed V are solvable. Then A is nonsingular, and its inverse is given
by A−1 = B(U,V) where the normed pair (U,V ) is the (unique) solution of (4.10) and
(4.11).

4.2. The nullspace of ∂A and ∂AT and invertibility

Notice that when deleting both the first and the last row in (4.10) and (4.11) we
arrive at homogeneous equations. To make this more explicit we introduce the (n−2)×
(n+2) matrices ∂A and ∂AT by deleting the first and last rows of ∂̂A and ∂̂AT . More
specifically,

∂A =

⎡⎢⎢⎣
a2 a1 a0 · · · · · · a−n+2 a−n+1

...
...

. . .
...

...

an−1 an−2 · · · · · · a0 a−1 a−2

⎤⎥⎥⎦

+

⎡⎢⎢⎣
b−n+1 b−n+2 · · · · · · b0 b1 b2

...
... . .

. ...
...

b−2 b−1 b0 · · · · · · bn−2 bn−1

⎤⎥⎥⎦
(4.12)
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and likewise for ∂AT . Observe that ∂A and ∂AT do not contain the (arbitrary) coeffi-
cients a±n , b±n anymore. Here is what can be immediately said.

COROLLARY 4.5. Assume A = TH(a,b) is nonsingular. Then the nullspace
ker∂A is four-dimensional and {ui}4

i=1 given by (4.4) and (4.7) form a basis of ker∂A.
Likewise the nullspace ker∂AT is four-dimensional and {vi}4

i=1 given by (4.5) and
(4.8) form a basis of ker∂AT .

We are now going to investigate what an arbitrary basis taken from ∂A or ∂AT

can tell us about the invertibility of A = TH(a,b) . The result is based on formulas that
have been established previously in [16].

THEOREM 4.6. The matrix A = TH(a,b) is invertible if and only if ker∂A is four
dimensional and for an arbitrary basis {ûi}4

i=1 of ker∂A the following 4×4 matrix C
is invertible,

C = PT [ û1 û2 û3 û4
]
,

where P is the (n+2)×4 matrix

P =
[ −e1 −en+2 p1 p2

]
with p1 = (a1−i +bi−n)n+1

i=0 , p2 = (an−i +bi−1)n+1
i=0 . Moreover, in this case,[

u1 u2 u3 u4
]
=
[

û1 û2 û3 û4
]
C−1

is of the form (4.7) and {ui}4
i=1 are the solutions of (4.4).

Proof. In view of Theorem 4.1 and what has been said above, it follows that A is
invertible if and only if we can find a basis {ui}4

i=1 of ker∂A which is of the form (4.7)
and corresponds to a solution of (4.4). On the one hand this means that there exists
an invertible matrix C which relates the two bases to each other. On the other hand
if we have a basis {ui}4

i=1 of ker∂A which is of the from (4.7), then it automatically
satisfies all the equations contained in (4.4) excepts possibly the ones corresponding
to the first and last rows in the system. Therefore, invertibility of A comes down to
finding an invertible matrix C such that the corresponding {ui}4

i=1 is of the form (4.7)
and satisfies the equations corresponding to the first and last row in (4.4). These last
conditions amount precisely to

PT [ u1 u2 u3 u4
]
= I4.

Now all of this implies the assertion. �
An analogous results can also established for ker∂AT . We just state the corre-

sponding formulas. Given any basis {v̂i}4
i=1 of ker∂AT then a (normed) matrix of the

form (4.8) is given by[
v1 v2 v3 v4

]
=
[

v̂1 v̂2 v̂3 v̂4
]
D−1,
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where
D = QT [ v̂1 v̂2 v̂3 v̂4

]
with

Q =
[

q1 q2 e1 en+2
]

and q1 = (ai−1 +bi−n)n+1
i=0 , q2 = (ai−n +bi−1)n+1

i=0 .
The construction just described together with the fact that the corresponding U or

V determine the inverse of A leads to the following result.

COROLLARY 4.7. Let A = TH(a,b) be a nonsingular T+H matrix. Then ker∂A
(and ker∂AT ) is four-dimensional, and its inverse A−1 is completely given by any basis
of ker∂A (or of ker∂AT ).

We illustrate this corollary and the formulas contained in Theorem 4.6 with an
example.

EXAMPLE 4.8. Let A be the following nonsingular 3×3 T+H matrix,

A =

⎡⎣ 1 1 0
−1 0 1

0 −1 0

⎤⎦=

⎡⎣ 1 0 1
−2 1 0

1 −2 1

⎤⎦+

⎡⎣ 0 1 −1
1 −1 1

−1 1 −1

⎤⎦ .

The corresponding 1×5 matrix ∂A is given by

∂A =
[
1, −2, 1, 0, 1

]
+
[
0, 1, −1, 1, −1

]
=
[
1, −1, 0, 1, 0

]
.

Clearly its nullspace is four-dimensional and a possible basis for ker∂A is given by the
columns of the matrix

Û =

⎡⎢⎢⎢⎢⎣
−1 0 0 0
−1 1 1 0

0 0 0 1
0 1 1 0
0 −1 0 0

⎤⎥⎥⎥⎥⎦ .

Choosing a±n = b±n = 0 (n = 3) in the vectors p1 and p2 , the matrices P and C =
PTÛ become

P =

⎡⎢⎢⎢⎢⎣
−1 0 −2 1

0 0 1 0
0 0 1 −1
0 0 0 0
0 −1 1 0

⎤⎥⎥⎥⎥⎦ , C =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
1 0 1 1

−1 0 0 −1

⎤⎥⎥⎦ .

Hence U = ÛC−1 evaluates to

U =

⎡⎢⎢⎢⎢⎣
−1 0 0 0
−1 1 1 1
−1 0 0 −1

0 1 1 1
0 −1 0 0

⎤⎥⎥⎥⎥⎦ .
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Thus

x1 =

⎡⎣ −1
−1

0

⎤⎦ , x2 = x3 =

⎡⎣ 1
0
1

⎤⎦ , x4 =

⎡⎣ 1
−1

1

⎤⎦ ,

which are the solutions of (4.4) with g1 = [−2,1,1]T and g2 = [1,0,0]T . Now we
obtain the columns b1,b2,b3 of B = A−1 by the recursion given in Remark 4.3,

B =
[

b1, b2, b3
]
=

⎡⎣ 1 0 1
0 0 −1
1 1 1

⎤⎦ .

4.3. Inversion using an extended matrix

We continue with another modification of Theorem 4.1, a sufficient invertibility
criterion and an inversion formula for A = TH(a,b) which uses only solutions of equa-
tions the right hand sides of which are unit vectors. The price to pay is that an additional
condition has to be satisfied. Furthermore, the symbols a,b have to be extended by (ar-
bitrarily chosen) entries a±n,a±(n+1),b±n,a±(n+1) , so that an extended matrix An+2 of
order n+2 can be considered:

ae =

⎡⎢⎢⎢⎢⎣
a−n−1

a−n

a
an

an+1

⎤⎥⎥⎥⎥⎦ , be =

⎡⎢⎢⎢⎢⎣
b−n−1

b−n

b
bn

bn+1

⎤⎥⎥⎥⎥⎦ , An+2 = TH(ae,be). (4.13)

Note that removing the first and last row of An+2 results into ∂̂A , while removing the
first and the last column of An+2 gives the transpose of ∂̂AT . In particular, A is in the
center of An+2 ,

An+2 =

⎡⎢⎣ a0 +b−n−1 fT1 a−n−1 +b0

g1 A g2

an+1 +b0 fT2 a0 +bn+1

⎤⎥⎦ .

Hereafter for a vector x = (xi)m
i=1 we denote

x̊ = (xi)m−1
i=2 and x0

0 = (xi)m+1
i=0 with x0 = xm+1 = 0.

PROPOSITION 4.9. Let A = TH(a,b) and An+2 = TH(ae,be) , where ae,be are
introduced in (4.13). Suppose that the equations

Ax = e1, Az = en, An+2xn+2 = e1, An+2zn+2 = en+2 (4.14)

are solvable and that the 2×2 matrix

E =

[
eT
1 xn+2 eT

1 zn+2

eT
n+2x

n+2 eT
n+2z

n+2

]
(4.15)

is nonsingular. Then A is invertible and A−1 is completely given by the solutions x , z ,
xn+2 , zn+2 .
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Proof. It is easy to see that[
g1 A g2

]
xn+2 = 0,

[
g1 A g2

]
zn+2 = 0

and, consequently,

Ax̊n+2 = −x1 g1− xn+2g2, Az̊n+2 = −z1 g1− zn+2 g2,

where x1 = eT
1 xn+2 , xn+2 = eT

n+2x
n+2 , z1 = eT

1 zn+2 , zn+2 = eT
n+2z

n+2 . Since detE �= 0,
the solutions x1,x2 of the first two equations of (4.4) are linear combinations of x̊n+2

and z̊n+2 , [
x1 x2

]
=
[ −x̊n+2 −z̊n+2

]
E−1.

Taking Remark 4.3 into account completes the proof. �
Analogously, one has a corresponding result assuming that the equations

AT y = e1, ATw = en, AT
n+2y

n+2 = e1, AT
n+2w

n+2 = en+2 (4.16)

are solvable and that

F =

[
eT
1 yn+2 eT

1 wn+2

eT
n+2y

n+2 eT
n+2w

n+2

]
is nonsingular. It is now easy to establish the following conclusion.

THEOREM 4.10. Assume that the equations (4.14) and (4.16) are solvable. Then
E = FT , and if this matrix is nonsingular, then A−1 = B(U,V) , where

U =
[

xn+2 zn+2 x0
0 z0

0

]
diag(−E−1, I2 ),

V =
[

y0
0 w0

0 yn+2 wn+2
]
diag( I2, F−1),

and the pair (U,V ) is normed.

Note that by a Schur-complement argument the following is clear: Assuming A
nonsingular then An+2 is nonsingular if and only if detE �= 0.

4.4. Equivalent systems for invertibility

We are now going to establish a modification of Theorem 4.1 in which the re-
dundant parameters a±n,b±n do not occur anymore. This will lead to systems that
involve the matrices A and ∂A as well as AT and ∂AT . Interestingly, the elimination
of a±n,b±n gives rise to an additional equation which connects the vectors x1,x2,y3,y4

appearing in (4.4) and (4.5) with one another.
The following proposition provides an equivalent formulation for the systems (4.4)

and (4.5), respectively. It is simply obtained by setting apart what correspond to the first
and the last row in the first two equations of (4.4), respectively, in the last two equations
of (4.5).



874 T. EHRHARDT AND K. ROST

PROPOSITION 4.11. Suppose A = TH(a,b) .

(i) The system (4.4) is equivalent to

∂A

⎡⎣ −1
x1

0

⎤⎦= 0, ∂A

⎡⎣ 0
x2

−1

⎤⎦= 0, Ax3 = e1, Ax4 = en, (4.17)

and [
eT
1

eT
n

]
A
[

x1 x2
]−[ a1 b1

b−1 a−1

]
=
[

b−n a−n

an bn

]
. (4.18)

(ii) The system (4.5) is equivalent to

AT y1 = e1, AT y2 = en, ∂AT

⎡⎣ 1
−y3

0

⎤⎦= 0, ∂AT

⎡⎣ 0
−y4

1

⎤⎦= 0, (4.19)

and [
eT
1

eT
n

]
AT [ y3 y4

]−[ a−1 b1

b−1 a1

]
=
[

b−n an

a−n bn

]
. (4.20)

Note that the numbers a±n,b±n do not occur in (4.17) and (4.19) (see also the
definition (4.12) of ∂A). Since a±n,b±n are the same numbers in (4.18) and (4.20) we
can combine these two equations into one in order to eliminate these numbers,[

eT
1

eT
n

]
A
[

x1 x2
]−[ a1 b1

b−1 a−1

]
=

[
yT

3

yT
4

]
A
[

e1 en
]−[ a−1 b−1

b1 a1

]
. (4.21)

It is easy to see that regarding the solvability the following can be said:

(i) solvability of (4.4) is equivalent to the solvability of (4.17),

(ii) solvability of (4.5) is equivalent to the solvability of (4.19),

(iii) solvability of (4.4) and (4.5) is equivalent to the solvability of (4.17), (4.19), and
(4.21).

Indeed, note that if, for instance, (4.17) is solvable, then system (4.4) is solvable with
the numbers a±n,b±n defined by (4.18). However, as has been observed in Remark
4.2, the solvability of (4.4) is independent of the choice of a±n,b±n . More precisely,
changing a±n,b±n amounts to modifying x1,x2 with linear combinations of x3,x4 (see
Lemma 4.16 below).

Combining the previous observation with Theorem 4.1 we obtain the following
characterization. Therein, and in what follows, we use the normed matrices U and V
defined by (4.7) and (4.8) as notation for and in place of the vectors xi and yi .
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THEOREM 4.12. Let A = TH(a,b) . Then the following statements are equiva-
lent:

(a) A is invertible.

(b) The system (4.17) has a normed solution U .

(c) The system (4.19) has a normed solution V .

(d) There exists a well-posed and normed pair (U,V ) such that (4.17), (4.19), (4.21)
are true and

A−1 = B(U,V).

Proof. (b/c)⇒(a): If the system (4.17) has a solution, then also (4.18) is fulfilled
for suitably chosen a±n , b±n . This being equivalent to (4.4) implies the invertibility of
A by Theorem 4.1. The argument is the same in case the system (4.19) has a solution.

(d)⇒(b/c): Obvious.
(a)⇒(d): If A is invertible, then the systems (4.4) and (4.5) have a (unique) solu-

tion (U,V ) (for any fixed choice of a±n , b±n ). From (4.6) in Theorem 4.1 it follows
that the pair (U,V ) is well-posed and A−1 = B(U,V ) . Furthermore, the matrices U
and V satisfy (4.17), (4.18), (4.19), (4.20), and thus also (4.21). �

REMARK 4.13. We note that a normed solution U to (4.17) and a normed solu-
tion to V to (4.19) as stated in (b/c) does not automatically give the pair (U,V ) whose
existence is claimed in (d). The reason is that the solution U to (4.17) and solution to
V to (4.19) are not unique. Only if U and V ‘match’ with each other a ‘correct’ pair
(U,V ) for (d) is obtained.

This issue of non-uniqueness will be clarified in the next subsection (Proposition
4.17). From there one can infer that is possible to modify either U or V such that the
modified pair satisfies the conditions of part (d).

REMARK 4.14. In view of (b/c) of the previous theorem, one can ask the question
whether the Bezoutian B = A−1 can be obtained solely from the normed solution U
of (4.17) (or the normed solution V of (4.19)). This can be done as follows. Given
A = TH(a,b) and, e.g., a solution U of (4.17), one first defines the numbers a±n,b±n

by (4.18), and then considers f1, f2 by (4.2). Now A−1 can be obtained by the recursion
formula (4.9).

REMARK 4.15. Suppose (U,V ) is a normed pair satisfying (only) the equations
(4.17) and (4.19). In view of (d) it is natural to ask about the relationship between the
following three condition: (i) the pair (U,V) is well-posed, (ii) the pair (U,V ) satisfies
equation (4.21), and (iii) B = B(U,V ) is the inverse of the T+H matrix A . In the
following two subsections we will try to clarify the relationship. It is further illustrated
in Examples 4.22 and 4.23 below.
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4.5. Discussion of the uniqueness of U and V

Throughout this subsection we will assume that A = TH(a,b) is invertible, and we
will discuss various combinations of the systems involving (4.17), (4.19), and (4.21).

Before we start notice that the combined system (4.17) and (4.18) (being equiv-
alent to (4.4)) has a unique (normed) solution U for every fixed choice of a±n , b±n .
Thus the non-uniqueness of the system (4.17) alone only arises from modifications of
the parameters a±n , b±n . The same holds, of course for the combined system (4.19)
and (4.20). The dependence of U and V on these parameters is made explicit in the
following lemma.

LEMMA 4.16. Let A = TH(a,b) be invertible. If we change[
b̂−n â−n

ân b̂n

]
=
[

b−n a−n

an bn

]
+X , X ∈ F

2×2, (4.22)

then

(i) the solution to the combined system (4.17) and (4.18) changes to

Û = U

[
I2 0
X I2

]
, (4.23)

(ii) the solution to the combined system (4.19) and (4.20) changes to

V̂ = V

[
I2 −XT

0 I2

]
. (4.24)

Proof. Let us prove (i). The proof of (ii) is analogous, but notice the slight differ-
ence in signs and the transposed being involved. Write the two solutions corresponding
to the different parameters as

U =
[

u1 u2 u3 u4
]
=

⎡⎢⎣ −1 0 0 0

x1 x2 x3 x4

0 −1 0 0

⎤⎥⎦ ,

Û =
[

û1 û2 û3 û4
]
=

⎡⎢⎣ −1 0 0 0

x̂1 x̂2 x̂3 x̂4

0 −1 0 0

⎤⎥⎦ .

(4.25)

It follows that x3 = x̂3,x4 = x̂4 since the last two equations in (4.17) do not involve
a±n , b±n . From the first two equations and (4.18) we get

A
[

x̂1−x1 x̂2−x2
]
=

⎡⎢⎢⎢⎢⎢⎣
b̂−n−b−n â−n−a−n

0 0
...

...
0 0

ân−an b̂n−bn

⎤⎥⎥⎥⎥⎥⎦=
[

e1 en
]
X
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which equals A
[

x3 x4
]
X , by again the last two equations in (4.17). Thus[

x̂1 x̂2
]
=
[

x1 x2
]
+
[

x3 x4
]
X

which implies (4.23). �
We can apply the previous lemma to immediately obtain the following result.

However, we will also give an independent proof avoiding the use of a±n , b±n .

PROPOSITION 4.17. Let A = TH(a,b) be invertible. Then

(i) solutions to (4.17) with normed U are unique up to changes

U �→U

[
I2 0
X1 I2

]
with X1 ∈ F

2×2, (4.26)

(ii) solutions to (4.19) with normed V are unique up to changes

V �→V

[
I2 −XT

2
0 I2

]
with X2 ∈ F

2×2, (4.27)

(iii) solutions to the combined system (4.17), (4.19), and (4.21) are unique up to
changes

Û = U

[
I2 0
X I2

]
, V̂ = V

[
I2 −XT

0 I2

]
, where X ∈ F

2×2. (4.28)

Recalling (3.12) this means (U,V ) ∼ (Û ,V̂ ) .

Proof. First of all notice that if we apply transformations (4.26), (4.27), or (4.28)
to solutions U , V of corresponding systems, then the resulting matrices Û , V̂ are also
solutions. Thus it remains to show the converse, i.e., whether different solutions are
related to each other by the given transformations.

(i): As in the proof of the previous lemma, using the notation (4.25) to denote two
solutions of the system (4.17), we conclude that x3 = x̂3 , x4 = x̂4 . Furthermore from
the first equations in (4.17) we obtain

A
[

x̂1−x1
]
, A
[

x̂2−x2
] ∈ lin{e1,en},

noting that ∂A does not contain the first and the last row of A . The latter is equal to
lin{Ax3,Ax4} , and thus x̂1−x1 and x̂2−x2 belong to lin{x3,x4} so that[

x̂1 x̂2
]
=
[

x1 x2
]
+
[

x3 x4
]
X1

for some matrix X1 . This implies the relationship (4.26).
(ii): We proceed similarly, and using the appropriate notation we arrive at ŷ1 =

y1, ŷ2 = y2 and [
ŷ3 ŷ4

]
=
[

y3 y4
]
+
[

y1 y2
]
XT

2
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for some matrix X2 ∈ F2×2 . This implies the (4.27).
(iii): We continue with the arguments made in (i) and (ii). The goal is to show that

X1 = X2 by invoking equation (4.21). Indeed, assuming that both normed pairs (U,V )
and (Û ,V̂ ) satisfy (4.21) it follows that[

eT
1

eT
n

]
A
[

x̂1−x1 x̂2−x2
]
=

[
ŷT

3 −yT
3

ŷT
4 −yT

4

]
A
[

e1 en
]
.

Using what we established above we conclude that[
eT
1

eT
n

]
A
[

x3 x4
]
X1 = X2

[
yT

1

yT
2

]
A
[

e1 en
]

which is, using (4.17) and (4.19), equivalent to[
eT
1

eT
n

][
e1 en

]
X1 = X2

[
eT
1

eT
n

][
e1 en

]
.

Since, clearly,

[
eT
1

eT
n

][
e1 en

]
= I2 we have X1 = X2 . �

Using the previous considerations we are now able to establish the following re-
sult, which complements and should be appreciated in connection with Theorem 4.12.

THEOREM 4.18. Let A = TH(a,b) be invertible. Then any (normed) solution
(U,V ) to (4.17), (4.19), and (4.21) is well-posed and

A−1 = B(U,V ).

Proof. From Theorem 4.12(d) we know that one solution to these three systems
exists which is also well-posed and identifies the inverse of A as the corresponding
Bezoutian. Any other solution is related to this one by the transformation described
in (4.28). However, such a transformation leaves the property of being well-posed
invariant and leads to the same Bezoutian (as has been noted in the paragraph before
Proposition 3.9). �

4.6. Strict pairs and strict Bezoutians

The question we are now going to address is whether the third condition (4.21)
can be dropped. One might be tempted to just rely on (4.17) and (4.19) to determine
the solutions U and V . However, the problem is that the corresponding pair (U,V )
may not satisfy (4.21). In fact, this pair may not even be well-posed and thus does not
define a Bezoutian. In practice, i.e., for the purpose of computing the Bezoutian from
(U,V ) , one can easily remedy the situation. One simply needs to modify either U by
a suitable transformation (4.26) or V by a suitable transformation (4.27). The question



T+H-BEZOUTIANS 879

which matrix X1 or X2 has to be applied can be answered by using equations (4.18),
(4.20), and Lemma 4.16. We leave the details to the reader.

Elaborating on these lines, one is led to the following question. Suppose the
(normed) pair (U,V ) is a solution to (4.17) and (4.19) and is well-posed. Does it follow
that (U,V ) also satisfies (4.21), and thus is the correct pair giving raise to the inverse
A−1 = B(U,V )? It turns out that this may or may not be the case. This dichotomy is
reflected in the following definition.

DEFINITION 4.19. We say that a normed pair (U,V ) is strict if the two polyno-
mial equations

[
x3(t) x4(t)

]
X

[
y1(t)

y2(t)

]
= 0,

[
x3(t) x4(t)

]
X

[
yJ

1(t)

yJ
2(t)

]
= 0, (4.29)

involving a matrix X ∈ F2×2 can only be satisfied simultaneously when X is the zero
matrix. Therein we use the notation (4.7) and (4.8) for normed pairs.

We note that the vectors x3,x4,y1,y2 are invariant under transformation (4.26) and
(4.27). Thus the notion of strictness is invariant under such transformations, too.

Observing that well-posed and normed pairs (U,V) define a T+H-Bezoutian in
which the vectors x3,x4,y1,y2 occur as the first/last columns and rows (see Proposition
3.8), we can extend this notion to any T+H-Bezoutian.

DEFINITION 4.20. A T+H-Bezoutian B is called strict if the two polynomial
equations (4.29) can only be satisfied by the zero matrix X , where x3,x4 are the first
and last column and y1,y2 are the first and the last row of B .

PROPOSITION 4.21. Suppose A = TH(a,b) be invertible. Let U and V be any
(normed) solutions to (4.17) and (4.19). If the pair (U,V ) is strict and well-posed, then
it satisfies (4.21) and A−1 = B(U,V ) .

Proof. Since A is invertible we can conclude from Theorem 4.12 that the com-
bined system (4.17), (4.19), and (4.21) has a well-posed and normed pair (Û ,V̂ ) as its
solution with A−1 = B(Û ,V̂ ) . However, we cannot immediately say whether this pair
coincides with the given pair (U,V ) . What we can say is that since both U and Û
satisfy (4.17), and since both V and V̂ satisfy (4.19), we can infer from parts (i) and
(ii) of Proposition 4.17 that

Û = U

[
I2 0
X1 I2

]
, V̂ = V

[
I2 −XT

2
0 I2

]
(4.30)

with certain X1,X2 ∈ F2×2 . Both pairs are also well-posed. Therefore

Û(t)V̂ T (t) = U(t)
[

I2 0
X1−X2 I2

]
VT (t) = 0 = U(t)VT (t),
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and putting X = X1 −X2 , we obtain that the first condition in (4.29) is satisfied. Like-
wise

Û(t)V̂ T (t−1) = U(t)
[

I2 0
X1−X2 I2

]
VT (t−1) = 0 = U(t)VT (t−1),

and this implies that the second condition in (4.29) holds. Since (U,V ) is assumed to
be strict it follows that X = 0, i.e., X1 = X2 . We can conclude that the pair (U,V ) is
equivalent to the pair (Û ,V̂ ) , i.e, (U,V ) ∼ (Û ,V̂ ) . Therefore, by part (iii) of Proposi-
tion 4.17, we see that the pair (U,V ) also satisfies (4.21). Furthermore, A = B(Û ,V̂ ) =
B(U,V) by direct computation (see also the paragraph before Proposition 3.9). �

The conclusions in the previous proposition fail if the pair (U,V ) is not strict.
Indeed, let X ∈ F2×2 be a nonzero matrix such that (4.29) is satisfied. Then one can
consider a new pair (Û ,V̂ ) defined by (4.30) with X1 −X2 = X . This new pair, along
with (U,V ) , satisfies the conditions (4.17) and (4.19) (see Proposition 4.17), and it
is also well-posed. However, the corresponding Bezoutians differ. Indeed, with C =
B(Û ,V̂ )−B(U,V) we obtain that

C(t,s) =
ts

(t− s)(1− ts)

([
x3(t) x4(t)

]
X

[
y1(s)

y2(s)

])
, (4.31)

which is a well-defined Bezoutian due to (4.29), but nonzero. Clearly, B(Û ,V̂ ) and
B(U,V) cannot both be the inverse of A , and thus the conclusions in Proposition 4.21
fail without the assumption of strictness.

While we plan to investigate the notions of strictness and non-strictness in more
detail in a future paper, let us give two examples of a non-strict and strict, resp., pair
(U,V ) related to nonsingular T+H-Bezoutians B = B(U,V ) .

EXAMPLE 4.22. We consider the same matrices as in Example 4.8, a T+H-Bezoutian
B and its inverse, a T+H matrix A = B−1 ,

B =

⎡⎣ 1 0 1
0 0 −1
1 1 1

⎤⎦ , A =

⎡⎣ 1 1 0
−1 0 1

0 −1 0

⎤⎦ . (4.32)

Using one of the methods discussed earlier in this section, it is possible to determine a
pair (U,V ) such that B = B(U,V ) ,

U =

⎡⎢⎢⎢⎢⎣
−1 0 0 0
−1 1 1 1
−1 0 0 −1

0 1 1 1
0 −1 0 0

⎤⎥⎥⎥⎥⎦ , V =

⎡⎢⎢⎢⎢⎣
0 0 1 0
1 1 −1 1
0 1 −1 2
1 1 0 1
0 0 0 1

⎤⎥⎥⎥⎥⎦ . (4.33)

This pair is normed, well-posed and satisfies (4.17), (4.19), and (4.21). From this pair
or from the first/last rows/columns of B , the underlying vectors x3,x4,y1,y2 can be
determined:

x3(t) = 1+ t2, x4(t) = 1− t + t2, y1(t) = 1+ t2, y2(t) = 1+ t + t2.
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For X equal to

Xλ = λ
[ −2 1

1 0

]
, λ ∈ F,

it is easily seen that the two corresponding polynomial equations (4.29) are satisfied:

−2(1+ t2)2 +(1+ t2)(1+ t + t2)+ (1− t + t2)(1+ t2) = 0.

Note that due to symmetry (y1 = yJ
1 , y2 = yJ

2 ) both equation amount to the same.
Therefore, the T+H-Bezoutian B and the pair (U,V ) are non-strict.

Normed and well-posed solutions to (4.17) and (4.19) are not unique. Indeed, one
can consider the modified pairs (Uλ1

,Vλ2
) with

Uλ1
= U

[
I2 0

Xλ1
I2

]
, Vλ2

= V

[
I2 −XT

λ2

0 I2

]
, λ1,λ2 ∈ F.

In contrast, (Uλ1
,Vλ2

) satisfies (4.21) if and only if λ1 = λ2 . The T+H-Bezoutians
corresponding to these pairs are given by

B(Uλ1
,Vλ2

) = B(U,V )+Cλ1−λ2

where the matrix Cλ corresponds to the matrix considered in (4.31) and evaluates to

Cλ =

⎡⎣ 0 0 0
0 −λ 0
0 0 0

⎤⎦ .

Thus we obtain a one-parameter family of T+H-Bezoutian

Bλ = B+Cλ =

⎡⎣ 1 0 1
0 λ −1
1 1 1

⎤⎦
which arise from normed and well-posed pairs (Uλ1

,Vλ2
) , all satisfying the same equa-

tions (4.17) and (4.19) (but not equation (4.21) unless λ = λ1 − λ2 is zero). It is
interesting to note that these Bezoutians are invertible and their inverses represent a
one-parameter family of T+H matrices,

(Bλ )−1 =

⎡⎣ −λ +1 1 λ
−1 0 1
λ −1 −λ

⎤⎦= A+ λ

⎡⎣ −1 0 1
0 0 0
1 0 −1

⎤⎦ .

This concrete example confirms what has been stated above, namely that the conclu-
sions of Proposition 4.21 fail if the assumption of strictness is not satisfied.

EXAMPLE 4.23. Consider the T+H matrix

A =

⎡⎣ 1 0 0
−2 1 0

0 −2 1

⎤⎦+

⎡⎣ 0 1 0
1 0 1
0 1 −1

⎤⎦=

⎡⎣ 1 1 0
−1 1 1

0 −1 0

⎤⎦ (4.34)
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with inverse

B =

⎡⎣ 1 0 1
0 0 −1
1 1 2

⎤⎦ , (4.35)

where B = B(U,V ) with, for example,

U =

⎡⎢⎢⎢⎢⎣
−1 0 0 0
−1 1 1 1
−1 0 0 −1

0 0 1 2
0 −1 0 0

⎤⎥⎥⎥⎥⎦ , V =

⎡⎢⎢⎢⎢⎣
0 0 1 0
1 1 −1 1
0 1 −1 2
1 2 −2 2
0 0 0 1

⎤⎥⎥⎥⎥⎦ . (4.36)

One can show by direct verification that the two polynomial equations (4.29) involving

x3(t) = 1+ t2, x4(t) = 1− t +2t2, y1(t) = 1+ t2, y2(t) = 1+ t +2t2

have only the trivial solution X = 0. Therefore, the T+H-Bezoutian B and the pair
(U,V ) are strict.

This normed pair satisfies equations (4.17) and (4.19). Any other normed pair
(Û ,V̂ ) satisfying the same equations is given by (4.30) with arbitrary X1,X2 ∈ F2×2 .

Now, due to the strictness, if we require in addition the pair (Û ,V̂ ) to be well-
posed or to satisfy equation (4.21), then necessarily X1 = X2 . This then entails that
(Û ,V̂ ) is both well-posed and satisfies equation (4.21). Moreover, we obtain the same
Bezoutian B = B(Û ,V̂ ) . Notice that all this is in accordance with Theorem 4.18 and
Proposition 4.21.

5. Inversion of T+H-Bezoutians

After having discussed the inversion of T+H matrices, we now turn to the problem
of inverting T+H-Bezoutians. In the first subsection we obtain simple necessary (but
not sufficient) criteria for the invertibility of Bezoutians. In the later subsections we
are then going to establish necessary and sufficient criteria, which are of a different
kind, namely, in terms of the solvability of a certain system of equations of generalized
resultant form. From the solution to these systems, the symbol (a,b) of the T+H matrix
TH(a,b) being the inverse of B = B(U,V ) can be determined.

5.1. Necessary criteria for invertibility

In what follows we need the following m× (m + k) matrix which is associated
with a vector w = (wi)k

i=0 ∈ Fk+1 ,

Dm,m+k(w) =

⎡⎢⎢⎢⎣
w0 w1 . . . wk 0

w0 w1 . . . wk
. . .

. . .
. . .

0 w0 w1 . . . wk

⎤⎥⎥⎥⎦ . (5.1)
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The equation Dm,m+k(w)x = y can be interpreted in the language of rational functions
as follows (see [6]):

w(t−1)x(t) ≡ y(t) mod lin{. . . ,t−2,t−1,tm,tm+1, . . .}. (5.2)

Indeed, write
w(t−1) = w0 +w1t

−1 + . . .+wkt
−k

and
x(t) = x0 + x1t + . . .+ xm+k−1t

m+k−1.

The coefficients of the powers 1,t, . . . ,tm−1 in the product w(t−1)x(t) have to coincide
with those of the polynomial y(t) = y0 + y1t + . . .+ ym−1tm−1 .

Further for x ∈ Fm we have(
Dm,m+k(w)T x

)
(t) = w(t)x(t) , (5.3)

which means that the transpose Dm,m+k(w)T can be identified with the operator of
multiplication by w(t) acting from Fm[t] to Fm+k[t] .

Apart from the trivial case (w ≡ 0 ) the matrix Dm,m+k(w) has full rank. Thus the
dimension of its kernel (nullspace) is k ,

dimkerDm,m+k(w) = k. (5.4)

To put the following considerations into context, recall a known criterion for the
invertibility of Hankel- or Toeplitz-Bezoutians (see [10]).

PROPOSITION 5.1. The n×n Hankel-Bezoutian BH (or Toeplitz-Bezoutian BT )
introduced by its generating polynomial in (1.3) is nonsingular if and only if u(t) and
v(t) are generalized coprime, which means that the polynomials u(t) and v(t) are
coprime in the usual sense and degu(t) = n or degv(t) = n.

The question is whether this result can be generalized to T+H-Bezoutians. First
results in this direction for special, namely centrosymmetric or centroskewsymmetric,
T+H-Bezoutians of order n were obtained in [13] (see also [4, 5]), where F is a field
with char(F) �= 2.

Let us recall here only the centrosymmetric case for odd n . A matrix B ∈ Fn×n is
centrosymmetric if B = JnBJn . Moreover we need the definition of a split-Bezoutian of
order n ,

Bsp,n(g, f)(t,s) =
g(t)f(s)− f(t)g(s)

(t− s)(1− ts)
, (5.5)

where g(t), f(t) ∈ Fn+2[t] are symmetric polynomials, i.e., g = Jn+2g and f = Jn+2f .
The following result was first established in [13].

PROPOSITION 5.2. Let n be odd and B∈Fn×n be a centrosymmetric T+H-Bezoutian.
Then B can be represented in the form

B = Bsp,n(g1, f1)+DT
n−2,n(w)Bsp,n−2(g2, f2)Dn−2,n(w), (5.6)
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where w(t) = t2−1 and {gi(t), fi(t)} are two pairs of symmetric polynomials of degree
n+1 for i = 1 and of degree n−1 for i = 2 .

Furthermore, the T+H-Bezoutian B is nonsingular if and only if both {g1(t), f1(t)}
and {g2(t), f2(t)} are pairs of coprime polynomials.

For general T+H-Bezoutians we now have the following result.

PROPOSITION 5.3. Let B = B(U,V ) be an n×n T+H-Bezoutian given by a well-
posed pair (U,V ) of the form (3.4). If the polynomials {ui(t)}4

i=1 or {vi(t)}4
i=1 have

a nonconstant common divisor w(t) ∈ Fk+1[t] , then B is singular and allows the fol-
lowing representation

B = DT
n−k,n(w)B(P,V ) or B = B(U,Q)Dn−k,n(w), (5.7)

where P =
[

p1 p2 p3 p4
]

with pi being defined by ui(t) = w(t)pi(t) or where
Q =

[
q1 q2 q3 q4

]
with qi being defined by vi(t) = w(t)qi(t) .

Proof. The proof of the identity is straightforward by taking the definition (3.1)
of a (possibly nonsquare) T+H-Bezoutian and properties of Dn,n−k(w) into account.
Due to the sizes of the matrices involved in (5.7) and k � 1, the nonsingularity of B
follows. �

Let us remark that we also have a representation (5.7) if either all of {ui(t)}4
i=1 or

all of {vi(t)}4
i=1 are polynomials which do not attain their maximal degree n+ 1. In

this case, clearly, the last row or the last column of B is zero. Correspondingly, we call
the a quadruple {wi(t)}4

i=1 of polynomials in F
n+2[t] generalized coprime if they do

not have a nonconstant common factor and at least one of them attains their maximal
degree, i.e.,

max{degwi(t) : i = 1, . . . ,4} = n+1.

Combining this result with Theorem 3.7 we obtain the following necessary criteria
for the invertibility of a T+H-Bezoutian.

COROLLARY 5.4. Let B =B(U,V ) be a nonsingular n×n T+H-Bezoutian. Then
rank∇B = 4 and each of the two quadruples {ui(t)}4

i=1 and {vi(t)}4
i=1 is generalized

coprime. Moreover, B is normable.

It turns out that in contrast to the pure Toeplitz or Hankel case (as stated in Propo-
sition 5.1) the converse of this corollary fails. In particular, assuming that {ui(t)}4

i=1
and {vi(t)}4

i=1 are two quadruples of (generalized) coprime polynomials does not im-
ply that the corresponding Bezoutian is invertible. Furthermore, the rank condition is
independent of the coprimeness condition.

We will illustrate these failures with some examples.

EXAMPLE 5.5. We consider centrosymmetric T+H-Bezoutian B of odd order n
represented in the form (5.6). Then both quadruples {ui(t)}4

i=1 and {vi(t)}4
i=1 are (up

to certain minus signs) equal to

{g1(t), f1(t),(t2 −1)g2(t),(t2−1)f2(t)}. (5.8)
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It is possible to find a choice such that the four polynomials in (5.8) are coprime (i.e.,
they do not share a nonconstant common factor), while on the other hand, the pair
{g1(t), f1(t)} is not coprime. Then Proposition 5.2 shows that B is singular.

For instance, with n = 3 and F = C we can take

g1(t) = (1+ t2)2, f1(t) = (1+ t2)t, g2(t) = 1+ t2, f2(t) = t.

Using the fact that {g1, f1} and {g2, f2} are linearly independent one can show that
the four polynomials in (5.8) are linearly independent. This implies rankU = rankV =
rank∇B = 4. In fact, a straightforward computation gives that

B = −
⎡⎣ 2 0 0

0 0 0
0 0 2

⎤⎦ ,

which has linearly independent first and last rows/columns, and thus B is normable
(see Theorem 3.7).

One can modify this example, by choosing f1 = g1 (and leaving the other polyno-
mials unchanged). In this case rank∇B = 2 (in fact, Bsp,n(g1, f1) = 0 in (5.6)), while
still the four polynomials in (5.8) do not share a nonconstant common factor.

Let us now give an example for a representation similar to (5.7).

EXAMPLE 5.6. Consider the singular T+H-Bezoutian B(U,V) of order 5,

B(U,V) =
1
3

⎡⎢⎢⎢⎢⎣
1 2 1 0 0
0 0 1 1 0

−1 −2 0 2 1
−1 1 −1 0 3
−1 1 −1 −1 2

⎤⎥⎥⎥⎥⎦ ,

where we choose the corresponding matrices U,V as normed in the form (3.9), (3.10),

u1 =
1
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3
0
3
1
0

−1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, u2 =

1
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
3
1

−4
−6
−3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, u3 =

1
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0

−1
−1
−1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, u4 =

1
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1
3
2
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

v1 =
1
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
2
1
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, v2 =

1
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−1

1
−1
−1

2
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, v3 =

1
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
−1
−5

2
5
2
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, v4 =

1
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−4
−2

2
4
7
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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It is easy to see that the polnomials ui(t) and vi(t), i = 1,2,3,4 are zero for t =
−1. We define matrices P and Q such that the i-th column of it is the coefficient vector
of the polynomials pi(t) = ui(t)

t+1 and qi(t) = vi(t)
t+1 ,

P =
1
3

⎡⎢⎢⎢⎢⎢⎢⎣
−3 0 0 0

3 1 1 0
0 2 −1 0
1 −1 0 1

−1 −3 −1 2
0 −3 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ , Q =
1
3

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 3 0
1 −1 −4 −4
1 2 −1 2
0 −3 3 0
0 2 2 4
0 0 0 3

⎤⎥⎥⎥⎥⎥⎥⎦ ,

and compute

B(P,Q) =
1
3

⎡⎢⎢⎣
1 1 0 0

−1 −1 3 0
0 0 0 1

−1 2 −3 2

⎤⎥⎥⎦ .

Using (5.7) we obtain the representation

B(U,V ) = DT
4,5(w)B(P,Q)D4,5(w),

where

D4,5(w) =

⎡⎢⎢⎣
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1

⎤⎥⎥⎦ .

In summary, this example exhibits a singular T+H-Bezoutian, in which the quadruples
of polynomials have a common factor. On the other hand, the Bezoutian is normable
and rank∇B = 4.

5.2. Systems equivalent to the invertibility of T+H-Bezoutians

Despite the counter-examples of the previous subsection we want to establish nec-
essary and sufficient criteria for the inversion of T+H-Bezoutians. These criteria will
be in terms of equivalent systems. Recall that for the inversion of T+H matrices we
had come up with systems (4.17), (4.19), and (4.21), in which the vector (a,b) is given
and (U,V ) is the solutions to be sought. We now need to take the opposite point of
view: the pair (U,V ) is given and the vector (a,b) is sought. Accordingly, we will
first rewrite these systems in an equivalent way.

Hereafter we use the notation of the previous sections. In particular, a = (ai)n−1
i=−n+1 ,

b = (bi)n−1
i=−n+1 , A = TH(a,b) , and ∂A is defined in (4.12).

LEMMA 5.7. For a,b ∈ F
2n−1 , A = TH(a,b) , and w,z ∈ F

n the system

Aw = z

is equivalent to
Dn,2n−1(wJ)a+Dn,2n−1(w)b = z
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Proof. First observe that

Tn(a)w = Dn,2n−1(wJ)a.

Indeed, writing out the matrix vector multiplications it is straightforward to see that⎡⎢⎢⎢⎢⎣
a0 a−1 . . . a−n+1

a1
. . .

. . .
...

...
. . .

. . . a−1

an−1 . . . a1 a0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

w1
...
...

wn

⎤⎥⎥⎥⎥⎦
coincides with ⎡⎢⎢⎢⎢⎢⎣

wn . . . w1 0 0
0 wn . . . w1 0

. . .
. . .

. . .
. . .

0 wn . . . w1 0
0 0 wn . . . w1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

a−n+1
...

a0
...

an−1

⎤⎥⎥⎥⎥⎥⎥⎦ .

More formally, this is of course just the identity

n

∑
j=1

ak− jw j =
k+n−1

∑
l=k

wn+k−la−n+l, k = 1, . . . ,n.

In the above identity we now replace w by wJ = Jnw and a by b . We get

Tn(b)Jnw = Dn,2n−1(w)b.

Adding the two identities and noting that A = Tn(a)+Tn(b)Jn , proves the claim. �

LEMMA 5.8. For a,b ∈ F2n+1 , A = TH(a,b) , and w ∈ Fn+2 the system

(∂A)w = 0n−2

is equivalent to
Dn−2,2n−1(wJ)a+Dn−2,2n−1(w)b = 0n−2.

Proof. Note that the matrix ∂A is of size (n−2)× (n+2) , see also (4.12). Here
we observe that

(∂Tn(a))w = Dn−2,2n−1(wJ)a.

Indeed, along the same lines as in the previous proof,

⎡⎢⎢⎣
a2 a1 a0 · · · · · · a−n+2 a−n+1

...
...

. . .
...

...

an−1 an−2 · · · · · · a0 a−1 a−2

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

w0

w1
...

wn

wn+1

⎤⎥⎥⎥⎥⎥⎦



888 T. EHRHARDT AND K. ROST

coincides with⎡⎢⎢⎢⎢⎢⎣
wn+1 wn . . . w1 w0 0 0

0 wn+1 wn . . . w1 w0 0
. . .

. . .
. . .

. . .
. . .

. . .
0 wn+1 wn . . . w1 w0 0

0 0 wn+1 wn . . . w1 w0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

a−n+1
...

a0
...

an−1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

or, formally,

n+1

∑
j=0

ak− jw j =
k+n

∑
l=k−1

wn+k−la−n+l, k = 2, . . . ,n−1.

Replacing w by wJ = Jn+2w and a by b , we get

(∂Tn(b))Jn+2w = Dn−2,2n−1(w)b.

Noting that ∂ (Tn(b)Jn) = (∂Tn(b))Jn+2 and adding the two equations again proves the
claim. �

In what follows we are going to consider a normed pair (U,V ) , i.e., where U =
[u1,u2,u3,u4] and V = [v1,v2,v3,v4] are of the form (4.7) and (4.8). Introducing the
entries ui = (ui j)n+1

j=0 and vi = (vi j)n+1
j=0 , recall that the first and the last entry of u3 , u4 ,

v1 , v2 are zero. In these cases we denote the middle parts by

ůi = (ui j)n
j=1, v̊i = (vi j)n

j=1.

Note that these coincide with xi and yi , respectively.
Let us put these parts of U (for i = 1,2,3,4) into a (4n− 4)× (4n− 2) matrix,

where we omit the second subscript 2n−1 in each block,

D(U) =

⎡⎢⎢⎢⎢⎣
Dn−2(uJ

1) Dn−2(u1)

Dn−2(uJ
2) Dn−2(u2)

Dn(ůJ
3) Dn(ů3)

Dn(ůJ
4) Dn(ů4)

⎤⎥⎥⎥⎥⎦ . (5.9)

Likewise, we introduce a similar (though slightly different) matrix for V ,

D(V ) =

⎡⎢⎢⎢⎣
JnDn(v̊1) Dn(v̊1)
JnDn(v̊2) Dn(v̊2)

Jn−2Dn−2(v3) Dn−2(v3)
Jn−2Dn−2(v4) Dn−2(v4)

⎤⎥⎥⎥⎦ . (5.10)

We note that D(U) and D(V ) can be considered as generalized resultant matrices.
As the upshot of all this we have the following result. Therein 0n−2 denotes the

zero vector in F
n−2 and e1,en ∈ F

n .
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PROPOSITION 5.9. Let a,b ∈ F2n−1 . Then

(i) the system (4.17) is equivalent to

D(U)
[

a
b

]
=

⎡⎢⎢⎣
0n−2

0n−2

e1

en

⎤⎥⎥⎦ , (5.11)

where D(U) is a (4n−4)× (4n−2) matrix.

(ii) The system (4.19) is equivalent to

D(V )
[

a
b

]
=

⎡⎢⎢⎣
e1

en

0n−2

0n−2

⎤⎥⎥⎦ , (5.12)

where D(V ) is a (4n−4)× (4n−2) matrix.

(iii) The system (4.21) is equivalent to

C(U,V )
[

a
b

]
= 04, (5.13)

where C(U,V ) is a certain 4× (4n−2) matrix.

It is a simple exercise to write down C(U,V ) explicitly, but we refrain from doing
so as its precise form is not very illuminating. However we mention that this matrix
only depends on u1 , u2 , v3 , and v4 , but not on ů3 , ů4 , v̊1 , or v̊2 .

Proof. (i): Using the previously introduced notations, system (4.17) reads

∂Au1 = 0, ∂Au2 = 0, Aů3 = e1, Aů4 = e4

with A = TH(a,b) . Application of Lemmas 5.7 and 5.8 leads to four systems, which
can be conveniently written in block form using (5.11).

(ii): The system (4.19) is a similar system, but with AT = TH(aJ,b) instead of A .
This amounts to changing a to aJ = J2n−1a . Furthermore, the role of the first two and
last two of the indices i = 1, . . . ,4 is reversed. Therefore, instead of, e.g.,

Dn(ůJ
3)a+Dn(ů3)b = e1

we have
Dn(v̊J

1)J2n−1a+Dn(v̊1)b = e1.

Taking into account that

Dn(v̊J)J2n−1 = JnDn(v̊), Dn−2(vJ)J2n−1 = Jn−2Dn(v)
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it is seen straightforwardly that we arrive at equation (5.12) which involves the block
matrix D(V ) .

(iii): Equation (4.21), which is an identity of 2× 2 matrices, can be written as
four equations. These equations depend linearly of the vector (a,b) , and the system is
homogeneous. �

REMARK 5.10. Recall from Remark 2.1 that TH(a,b) = 0 if and only if (a,b) ∈
W , where W is the two-dimensional subspace of F2n−1×F2n−1 defined in (2.6). Ei-
ther by the equivalence stated in the previous proposition or by direct inspection, it can
be seen that the subspace W is in the kernel of each of the matrices D(U) , D(V ) , and
C(U,V ) , i.e.,

W ⊂ kerD(U), W ⊂ kerD(V ), W ⊂ kerC(U,V ).

In view of the dimensions of the systems (5.11) and (5.12), one might conjecture
that – generically – each of these two systems is solvable and that the solution is unique
modulo W . However, we have reasons to believe that this may not be the case.

5.3. Computation of the symbol of the inverses of T+H-Bezoutians

Finally, we are now going to analyse how the invertibility of a T+H-Bezoutian
B(U,V) given by a well-posed and normed pair (U,V ) is related to the solvability of
the three equations (5.11), (5.12), and (5.13). We also address the question how the
symbol (a,b) can be computed and whether the third equation (5.13) can be dropped.

PROPOSITION 5.11. Let B = B(U,V ) be a nonsingular T+H-Bezoutian given by
a well-posed and normed pair (U,V ) . Then there exists an (a,b) which satisfies the
equations (5.11), (5.12), (5.13) and for which

B−1 = TH(a,b).

Proof. Since B has an inverse, its inverse is a T+H matrix by Theorem 3.1. So
A = B−1 = TH(a,b) for some (a,b) . Since A itself is invertible, we can conclude from
Theorem4.12 that equations (4.17), (4.19), and (4.21) are satisfied for some normed and
well-posed pair (Û ,V̂ ) , possibly different from (U,V ) , such that A−1 = B = B(Û ,V̂ ) .
Since B is invertible we have rank∇B = 4 by Theorem 3.7 and therefore, we can apply
Proposition 3.9 to conclude that (U,V )∼ (Û ,V̂ ) . This implies that the equations (4.17),
(4.19), and (4.21) are also satisfied for the pair (U,V ) (either by direct verification or by
Proposition 4.17(iii)). But the equations (4.17), (4.19), and (4.21) satisfied for (U,V )
and (a,b) are equivalent to the equations (5.11), (5.12), and (5.13). �

This proposition shows that the invertibility of the T+H-Bezoutian implies the
solvability of the systems of equations (5.11), (5.12), and (5.13). Regarding the con-
verse, the following can be said.
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PROPOSITION 5.12. Let (U,V ) be a normed pair and assume that (a,b) is a
solution to the equations (5.11), (5.12), and (5.13). Then the pair (U,V ) is well-posed,
the T+H-Bezoutian B = B(U,V ) is nonsingular, and

B−1 = TH(a,b).

Proof. Assume that (U,V ) along with (a,b) satisfies the equations (5.11), (5.12),
and (5.13). This means that they satisfy the equations (4.17), (4.19), and (4.21). In
particular, A = TH(a,b) is invertible by the equivalence of (a) and (b/c) in Theorem
4.12. Theorem 4.18 now implies that (U,V ) is well-posed and A−1 = B(U,V ) , from
which we conclude that the Bezoutian is nonsingular. �

THEOREM 5.13. Let (U,V ) be a normed pair. Then the following statements are
equivalent:

(a) The system of equations (5.11), (5.12), and (5.13) has a solution (a,b) .

(b) The pair (U,V ) is well-posed and the Bezoutian B = B(U,V) is nonsingular.

In this case,
B−1 = TH(a,b).

Proof. The direction (a)⇒(b) follows from Proposition 5.12, which also implies
that B−1 is given by any solution (a,b) to the system (5.11), (5.12), and (5.13). The
direction (b)⇒(a) is a consequence of Proposition 5.11. �

COROLLARY 5.14. Let (U,V ) be a normed pair. Then solutions (a,b) to the
equations (5.11), (5.12), and (5.13) are unique modulo W , where W is defined in
(2.6).

Proof. Let (a,b) and (â, b̂) be two solutions to the system. Then either the pre-
vious theorem or Proposition 5.12 imply that B = B(U,V) is well-defined and nonsin-
gular, and

B−1 = TH(a,b) = TH(â, b̂).

Hence (a,b)− (â, b̂) ∈ W by Remark 2.1. �

Furthermore, the three systems of equations (5.11), (5.12), and (5.13) are highly
over-determined. The question arises if one can drop at least the third system. As
we will see, this can be done in the case of strictness, the notion of which has been
introduced in Subsection 4.6.

PROPOSITION 5.15. Let (U,V ) be a normed pair which is strict and well-posed.
If (a,b) is a solution to (5.11) and (5.12), then B = B(U,V ) is invertible and B−1 =
TH(a,b) . In particular, the solutions to (5.11) and (5.12) are unique modulo W .
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Proof. Assuming that (a,b) is a solution to (5.11) and (5.12), we can consider
A = TH(a,b) , which is invertible by Theorem 4.12, parts (a)-(c). Now apply Propo-
sition 4.21 to conclude that A−1 = B(U,V ) , which implies the invertibility of B =
B(U,V) . Furthermore, if we have another solution (â, b̂) , then by repeating the ar-
guments we have just given we obtain TH(a,b) = TH(â, b̂) which means uniqueness
modulo W . �

In view of Example 4.22 one can show that the previous result fails if the assump-
tion (U,V ) being strict is dropped. We leave the details to the reader.

Let us illustrate the previous results with two examples, featuring a strict and a
non-strict, respectively, T+H Bezoutian.

EXAMPLE 5.16. Let us first consider the strict Bezoutian B given by (4.35) in
Example 4.23. Then B = B(U,V ) with (U,V ) given by (4.36). The corresponding
matrices D(U) and D(V ) become

D(U) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1 −1 −1 −1 −1 −1 0 0
−1 0 0 1 0 0 1 0 0 −1
1 0 1 0 0 1 0 1 0 0
0 1 0 1 0 0 1 0 1 0
0 0 1 0 1 0 0 1 0 1
2 −1 1 0 0 1 −1 2 0 0
0 2 −1 1 0 0 1 −1 2 0
0 0 2 −1 1 0 0 1 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

D(V ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 1 1 0 1 0 0
0 1 0 1 0 0 1 0 1 0
1 0 1 0 0 0 0 1 0 1
0 0 1 1 2 1 1 2 0 0
0 1 1 2 0 0 1 1 2 0
1 1 2 0 0 0 0 1 1 2
1 −1 −1 −2 0 1 −1 −1 −2 0
0 1 2 2 1 0 1 2 2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The two systems (5.11) and (5.12) have a solution (a,b) given by

a =
[
0, 0, 1, −2, 0

]T
, b =

[
0, 1, 0, 1, −1

]T
,

which can be seen directly but is also obvious since the inverse B−1 = A = TH(a,b) is
given by (4.34). However, both the nullspace of D(U) and D(V ) are three-dimensional,

kerD(U) = W � lin
{[

0, −1, 1, 0, 0
∣∣0, 0, −1, 1, 0

]T}
,

kerD(V ) = W � lin
{[

0, −1, 1, 0, 0
∣∣0, 1, −1, 0, 0

]T}
.

This shows, somewhat surprisingly, that only one equation (5.11) or (5.12) is not enough
to uniquely (modulo W ) determine the correct symbol of the inverse A = TH(a,b) .
However, taking both equations into account, the solution is unique (modulo W ) since
kerD(U)∩kerD(V ) = W . This is consistent with Proposition 5.15.
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EXAMPLE 5.17. We now consider the non-strict Bezoutian B given by (4.32) in
Example 4.22. Then B = B(U,V ) with (U,V ) given by (4.33). The corresponding
matrices D(U) and D(V ) become

D(U) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1 −1 −1 −1 −1 −1 0 0
−1 1 0 1 0 0 1 0 1 −1
1 0 1 0 0 1 0 1 0 0
0 1 0 1 0 0 1 0 1 0
0 0 1 0 1 0 0 1 0 1
1 −1 1 0 0 1 −1 1 0 0
0 1 −1 1 0 0 1 −1 1 0
0 0 1 −1 1 0 0 1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

D(V ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 1 1 0 1 0 0
0 1 0 1 0 0 1 0 1 0
1 0 1 0 0 0 0 1 0 1
0 0 1 1 1 1 1 1 0 0
0 1 1 1 0 0 1 1 1 0
1 1 1 0 0 0 0 1 1 1
1 −1 −1 0 0 1 −1 −1 0 0
0 1 2 2 1 0 1 2 2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The two systems (5.11) and (5.12) have a solution (a,b) given by

a =
[
1, 0, 1, −2, 1

]T
, b =

[
0, 1, −1, 1, −1

]T
.

The nullspaces of D(U) and D(V ) are three-dimensional and coincide,

kerD(U) = kerD(V ) = W � lin
{[

0, 0, 1, 0, 0
∣∣0, 0, −1, 0, 0

]T}
.

Therefore, as expected, the (simultaneous) solution (a,b) to both equations (5.11) and
(5.12) is not unique modulo W . The set of solutions gives rise to a one-parameter
family of T+H matrices TH(a,b) given by

Aλ = A+ λ

⎡⎣ 1 0 −1
0 0 0
−1 0 1

⎤⎦ ,

which are the inverses of the one-parameter family of T+H-Bezoutians Bλ described in
Example 4.22. Notice that uniqueness can be achieved by taking into account the third
equation (4.21), in accordance with Corollary 5.14.
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