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ON SOME FUGLEDE–KADISON DETERMINANT
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Abstract. Let M be a finite von Neumann algebra with finite trace τ . We extend some im-
portant matrix determinant inequalities, studied by Lin, Ghabries, Abbas, Mourad and Assi,
to the Fuglede-Kadison determinant of τ -measurable operators in the noncommutative algebra
Llog+(M ) . Some Fuglede-Kadison determinant inequalities are established in Llog+(M ) with
different forms to the matrix case.

1. Introduction

Recently, Lin proposed a conjecture concerning determinant inequalities in [19]
namely that

det(A2 + |AB|α) � det(A2 + |BA|α), α > 0, (1.1)

where A, B are two arbitrary positive semi-definite matrices. In [11], Ghabries, Ab-
bas and Mourad proved that (1.1) holds if A and B are Hermitian matrices. In [12]
Ghabries, Abbas, Mourad and Assi showed that, for 0 � α � β � γ and α

β ∈ [ 1
2 ,1] ,

det(Aγ +AαBα) � det(Aγ + |B β
2 A

β
2 | 2α

β ), (1.2)

where A, B are two positive semi-definite matrices.
Fuglede and Kadison [9] introduced an operator determinant, called the Fuglede-

Kadison determinant, which was used to compute the solution of the invariant subspace
problem for operators. Afterwards the Fuglede-Kadison determinant was used to con-
struct Entropy in many varieties of algebras. Now the determinant inequalities play
an important role in noncommutative integration theory. The aspect we are interested
in is whether inequalities (1.1) and (1.2) hold or not when A, B are two positive τ -
measurable operators in the algebra Llog+(M ) .

The paper is organized as follows. Section 2 contains some basic facts about log-
arithmic submajorizations. In section 3, some logarithmic submajorization inequalities
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of geometric mean are discussed and two Fuglede-Kadison determinant inequalities
corresponding to (1.2) are proved. Moreover, the inequalities in Theorem 12 are ob-
tained with a slightly more general condition. In the last section, we prove some op-
erator Fuglede-Kadison determinant inequalities which correspond to inequality (1.1).
It is necessary to mention that it seems to be impossible for us to present a form com-
pletely the same as the above two inequalities for τ -measurable operators case with the
noncommutative integral tools on hand.

2. Preliminaries

2.1. τ -measurable operators and singular numbers

Let H be a separable Hilbert space. Let M be a finite von Neumann algebra
with a faithful normal finite trace τ on H . The identity and the complete lattice of all
projections in M are denoted by 1 and P(M ) , respectively. A linear operator

x : D(x) → H , with domain D(x) ⊆ H

is said to be affiliated with M , if ux = xu for all unitary u in the commutant M ′
of M . For any self-adjoint operator x on H , we denote its spectral measure by ex .
A self-adjoint operator x is affiliated with M if and only if ex(B) ∈ P(M ) for any
Borel set B ⊆ R . A densely-defined closed operator x affiliated with M is called
τ -measurable if there exists an e ∈ P(M ) such that

e(H ) ⊆ D(x) and τ(e⊥) � δ for all δ > 0.

The set of all τ -measurable operators is denoted by L0(M ) (see [6, 21, 22]). The
symbol x � 0 means that x is positive, self adjoint and τ -measurable. For all x ∈
L0(M ) , if

x∗x � xx∗

we say an operator x is hyponormal (see [5]). For x ∈ L0(M ) and s > 0, the singular
number of x is defined by

μs(x) = inf{‖xe‖ : e is a pro jection in M with τ(1− e) � s}.
The function s → μs(x) is simply denoted by μ(x) . In the following, we give some
elementary properties of the generalized singular numbers μs(x) (see [10, 15, 21, 23]
for more details).

PROPOSITION 1. ([10]) Let x, y ∈ L0(M ) and s > 0 .

1. μs(x) = μs(|x|) = μs(x∗) and μs(αx) = |α|μs(x) for α ∈ C .

2. If 0 � x � y, then μs(x) � μs(y) .

3. For any continuous increasing function on [0,∞) with f (0) � 0 ,

μs( f (|x|)) = f (μs(|x|)).
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2.2. Fuglede-Kadison determinant

Recall that noncommutative Lp (1 � p � ∞) spaces and L1(M ) + M (see e.g.
[13, 21]) are defined by

Lp(M ) = {x ∈ L0(M ) : μ(x) ∈ Lp(R)}
and

L1(M )+M = {x : x = y+ z,y ∈ L1(M ),z ∈ M }
with norm

‖x‖Lp(M ) = ‖μ(x)‖Lp and ‖x‖L1(M )+M = inf
x=z+y

z∈M , y∈L1(M )

{‖y‖L1(M ) +‖z‖M

}
.

Let Llog+(M )= {x∈L0(M ) : log+ |x| ∈L1(M )+M } , where log+ α = max{logα,0}
and α > 0. From [7], we know that Llog+(M ) is an algebra and

L1(M )+M ⊆ Llog+(M ) ⊆ L0(M ).

For x, y ∈ Llog+(M ) , if

∫ t

0
μs(x)ds �

∫ t

0
μs(y)ds, t > 0

x is said to be submajorized by y , denoted by x ≺ y (or μs(x) ≺ μs(y)) . Similarly, if

∫ t

0
logμs(x)ds �

∫ t

0
logμs(y)ds, t > 0

x is said to be logarithmically submajorized by y , which is denoted by x ≺log y (or
μs(x) ≺log μs(y)).

Let x ∈ Llog+(M ) . A Fuglede-Kadison determinant-like function of x is defined
by

Λt(x) = exp

(∫ t

0
logμs(x)ds

)
, t > 0

and the Fuglede-Kadison determinant on Llog+(M ) is Δ(x) = lim
t→∞

Λt(x) .

PROPOSITION 2. Let x, y ∈ Llog+(M ) and t > 0 .

1. ([10, Theorem 4.2]) Λt(xy) � Λt(x)Λt (y) .

2. ([7, Page 8]) Λt(x) = Λt(x∗) = Λt(|x|) = Λt(x∗x)
1
2 .

3. ([7, Page 8]) Λt(|x|r) = Λt(|x|)r, r ∈ R+ .

4. Λt(x) � Λt(y) if and only if x ≺log y, for all t > 0 .

5. Λt(x) � Λt(y) , if 0 � x � y, for all t > 0 .
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It is easy to check that the above properties in Proposition 2 continue to hold for
the Fuglede-Kadison determinant of x and y . In particular, Δ(xy) = Δ(x)Δ(y) ([7,
Proposition 4.1]).

Next, we enumerate some properties about the Fuglede-Kadison determinant-like
function of the product and mean of two operators.

Now, we present the definition of weighted geometric means #α . Suppose that
0 � x, y ∈ L0(M ) and x is invertible. Then, for 0 � α � 1, x#αy is defined by

x
1
2 (x−

1
2 yx−

1
2 )αx

1
2 .

The operation # 1
2
, simply denoted by #, is called the geometric mean. Please refer to

([16, 20]) for more information.

PROPOSITION 3. Let x, y ∈ Llog+(M ) and t > 0 .

1. ([17, Page 4]) If xy is self adjoint, then

Λt(xy) � Λt(yx).

2. ([18, Page 478]) If x, y � 0 and r � 1 , then

Λt(|xy|r) � Λt(xryr).

3. ([16, Theorem 3.41]) If x, y � 0 and x is invertible, then

Λt(x#αy) � Λt(x1−αyα),

where 0 � α � 1 .

For more information on the Fuglede-Kadison determinant, please refer to [1, 2,
3, 7, 9, 10, 16, 18, 17, 21].

3. Geometric mean and logarithmic submajorization

When α = 1
2 , we compare the geometric mean with the arithmetic mean.

REMARK 4. For 0 � x, y ∈ Llog+(M ) , if x is invertible, then

x#y � x+ y
2

.

Proof. From the definition of #, we have

x#y = x
1
2 (x−

1
2 yx−

1
2 )

1
2 x

1
2 and

x+ y
2

=
x

1
2 (1+ x−

1
2 yx−

1
2 )x

1
2

2
.

So, we just prove (x−
1
2 yx−

1
2 )

1
2 � (1+x−

1
2 yx−

1
2 )

2 . Set c = x−
1
2 yx−

1
2 � 0. Then

1+ c−2c
1
2 = (1− c

1
2 )2 = |1− c

1
2 |2 � 0

and the remark is proved. �
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LEMMA 5. Let 0 � x, y ∈ Llog+(M ) . The inequalities

Λt(1+ x) � Λt(1+ y), for all t > 0

and
Δ(1+ x) � Δ(1+ y)

hold if x ≺log y. Moreover, Λt(1+ x) � Λt(1+ y) , for all t > 0 implies x ≺ y.

Proof. Let ϕ(α) = log(1+ α) . Then ϕ : [0,∞) → [0,∞) is a continuous increas-
ing function such that

ϕ(0) = 0 and ϕ ◦ exp is convex.

It follows from [7, Proposition 3.2] that x ≺log y implies

Λt(1+ x) � Λt(1+ y), for all t > 0

and we also have
Δ(1+ x) � Δ(1+ y).

Similarly, putting

f (s) = logμs(1+ x), g(s) = logμs(1+ y) and ϕ(α) = eα −1

and applying [7, Proposition 3.2] again, we get x ≺ y . �
By Lemma 5 and Proposition 2, we have the following remark.

REMARK 6. Let x ∈ Llog+(M ) and t > 0. Then

Λt(1+ |x|) = Λt(1+ |x∗|).

THEOREM 7. Let 0 � x, y ∈ Llog+(M ) and t > 0 . If x is invertible, then

Λt(x
1
2 (x#y)y

1
2 ) � Λt(xy).

Moreover,
Λt(x

1
2 (x#y)y(x#y)x

1
2 ) � Λt(x2y2).

Proof. By [16, Lemma 3.32 and Proposition 3.33] there exists a contraction z ∈
M such that

x#y = x
1
2 zy

1
2 = y

1
2 z∗x

1
2 .

Thus, for all t > 0, we have

Λt(x
1
2 (x#y)y

1
2 ) = Λt(x

1
2 y

1
2 z∗x

1
2 y

1
2 )

� (Λt(x
1
2 y

1
2 ))2Λt(z∗) (by Proposition 2 (1))

� Λt(|x 1
2 y

1
2 |2) (by Proposition 2 (3) and the contractivity of z)

� Λt(xy) (by Proposition 3 (2)).
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Applying Proposition 3 (2) again, we obtain that

Λt(x
1
2 (x#y)y(x#y)x

1
2 ) = (Λt(x

1
2 (x#y)y

1
2 ))2

� Λt(|xy|)2

� Λt(x2y2). �

As a result of Lemma 5 and Theorem 7, we have the following corollary.

COROLLARY 8. Let 0 � x, y ∈ Llog+(M ) . If x is invertible, then

Λt(1+ |x 1
2 (x#y)y

1
2 |) � Λt(1+ |xy|)

and
Λt(1+ |y 1

2 (x#y)x
1
2 |2) � Λt(1+ |x2y2|).

In the following theorem, we consider the Fuglede-Kadison determinant-like func-
tion of the weighted geometric means.

THEOREM 9. Suppose that 0 � x, y ∈ Llog+(M ) and x is invertible. If β ∈
[ 1
2 ,1], α � 0 and t > 0 , then

Λt(x
α+1

2 (x−1#β y)x
α+1

2 ) � Λt(yβ xα+β ).

Proof. For t > 0, by a simple calculation, we get

Λt(x
α+1

2 (x−1#β y)x
α+1

2 ) = Λt(x
α
2 (x

1
2 yx

1
2 )β x

α
2 )

� Λt(x
α
2β x

1
2 yx

1
2 x

α
2β )β (by [14, Lemma 2.5])

= Λt(x
α+β
2β yx

α+β
2β )β

= Λt(|y 1
2 x

α+β
2β |)2β (2β � 1)

� Λt(yβ xα+β ) (by Proposition 3 (2)).

This completes the proof. �

COROLLARY 10. Let 0 � x, y ∈ Llog+(M ) and x be invertible.

1. For β ∈ [ 1
2 ,1] and α � 0 , we have

Λt(1+ x
α+1

2 (x−1#β y)x
α+1

2 ) � Λt(1+ |yβxα+β |).

2. For α
β ∈ [ 1

2 ,1] and γ � 0 � α � β , we have

Λt(1+ x
β−γ

2 (x−β # α
β
yβ )x

β−γ
2 ) � Λt(1+ |yαxα−γ |).
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Proof. Based on Lemma 5 and Theorem 9, we obtain the first desired result (1).
Replacing α , β , x and y by − γ

β , α
β , xβ and yβ respectively in Corollary 10 (1), we get

(2). �

An analogous result to Corollary 10 (2) is as below in Lemma 11.

LEMMA 11. Let 0 � x, y ∈ Llog+(M ) and let x be invertible. If 0 � α � β �
γ , α

β ∈ [ 1
2 ,1] and t > 0 then

Λt(1+ x
β−γ

2 (x−β # α
β
yβ )x

β−γ
2 ) � Λt(1+ |yαxα−γ |).

Proof. According to Lemma 5, we only need to prove

Λt(x
β−γ

2 (x−β # α
β
yβ )x

β−γ
2 ) = Λt(x−

γ
2 (x

β
2 yβ x

β
2 )

α
β x−

γ
2 ) � Λt(yαxα−γ), t > 0.

For all t > 0, we have

Λt(x−
γ
2 (x

β
2 yβ x

β
2 )

α
β x−

γ
2 ) � Λt(x−

γβ
2α (x

β
2 yβ x

β
2 )x−

γβ
2α )

α
β (by [14, Lemma 2.5])

= Λt(x
αβ−γβ

2α yβ x
αβ−γβ

2α )
α
β

= Λt(|y
β
2 x

αβ−γβ
2α |2) α

β

= Λt(|y
β
2 x

αβ−γβ
2α |) 2α

β (by Proposition 2 (3))

� Λt(yαxα−γ) (by Proposition 3 (2) and
2α
β

� 1).

This completes the proof. �

We show some analogues of inequality (1.2) in Llog+(M ) and the first one is valid
under a completely new condition.

THEOREM 12. Let 0 � x, y ∈ Llog+(M ) . If x is invertible, then the following
inequalities hold.

1. For γ � 0 � α � β and α
β ∈ [ 1

2 ,1] , we have

Δ(xγ + |y β
2 x

β
2 | 2α

β ) � Δ(xγ + xγ |yαxα−γ |).

2. For 0 � α � β � γ , α
β ∈ [ 1

2 ,1] , we have

Δ(xγ + |y β
2 x

β
2 | 2α

β ) � Δ(xγ + xγ |yαxα−γ |).
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Proof. Notice that

xγ +(|y β
2 x

β
2 |) 2α

β = x
γ
2 (1+ x

β−γ
2 (x−β # α

β
yβ )x

β−γ
2 )x

γ
2

and
xγ + xγ |yαxα−γ | = xγ (1+ |yαxα−γ |).

Then the theorem follows from Corollary 10 (2) and Lemma 11. �
Considering the results in above theorem, we give a conjecture as follows.

CONJECTURE 13. Let A, B be two positive semi-definite matrices and γ � 0 �
α � β , α

β ∈ [ 1
2 ,1] . If A is invertible, then

det(Aγ +AαBα) � det(Aγ + |B β
2 A

β
2 | 2α

β ).

4. Some other important determinant inequalities

First we recall some basic properties of M2(M ) in [8]. Let M2(M ) be the von
Neumann algebra of all 2× 2 operator matrices equipped with the trace τ2 = tr⊗ τ .
We denote the Fuglede-Kadison determinant on M2(M ) corresponding to τ2 by Δ2 ,
i.e.,

Δ2(A) = exp(τ2(log |A|))
where A ∈ M2(M ). According to the proof of in [9, Theorem 1], we conclude that

Δ2(AB) = Δ2(A)Δ2(B).

This equation plays a crucial role in proving Δ(1+ ab) = Δ(1+ ba) in the following
remark.

Some results in the following remark are well-known. We also give brief calcula-
tions for convenience.

REMARK 14. 1. Let A, B ∈ M2(M ) . Then

τ2(AB) = τ2(BA).

2. Let a, b ∈ M and A = diag(a,b) ∈ M2(M ) . Then

Δ2(A) = Δ(a)Δ(b).

3. Let a ∈ M and

A =
[
1 a
0 1

]
∈ M2(M ).

Then Δ2(A) = 1. Similarly, when A is a lower triangular matrix, the conclusion
is also valid.
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4. Let a, b ∈ M . Then
Δ(1+ab) = Δ(1+ba).

Proof. (2) We conclude from the definition of Δ2(A) that

Δ2(A) = exp(τ2 log(diag(|a|, |b|))
= exp((tr⊗ τ)(diag(1,0)⊗ log|a|)+ (tr⊗ τ)(diag(0,1)⊗ log|b|))
= Δ(a)Δ(b).

(3) Because

Δ2

([
u 0
0 1

]
A

[
u∗ 0
0 1

])
= Δ2(A),

where u is a unitary operator, we only need to consider the case A =
[
1 |a|
0 1

]
. Let

λ 2−λ (2+ |a|2)+1 = 0. Then by functional calculus, we obtain two operators

λ1 =
2+ |a|2 + |a|√|a|2 +4

2

and

λ2 =
2+ |a|2−|a|

√
|a|2 +4

2

where λ1 + λ2 = 2+ |a|2 and λ1λ2 = 1. We may assume that |a| is invertible. By a
direct computation, we have

U =

[
(λ1 −1)−1(|λ1−1|−2 + |a|−2)−

1
2 (λ2−1)−1(|λ2 −1|−2 + |a|−2)−

1
2

|a|−1(|λ1−1|−2 + |a|−2)−
1
2 |a|−1(|λ2−1|−2 + |a|−2)−

1
2

]

which entails that U∗U = UU∗ = diag(1,1) and U∗|A|U = diag(λ
1
2
1 ,λ

1
2
2 ) . Therefore,

we have

Δ2(A) = exp(τ2(Udiag(logλ
1
2
1 , logλ

1
2
2 )U∗))

= exp(τ2(diag(logλ
1
2
1 , logλ

1
2
2 ))(by trace property in previous (1))

= exp((tr⊗ τ)(diag(1,0)⊗ logλ
1
2
1 )+ (tr⊗ τ)(diag(0,1)⊗ logλ

1
2
2 ))

= exp(τ(logλ
1
2
1 λ

1
2
2 ))

= exp(τ(log(λ1λ2)
1
2 ))

= 1.

(4) We have the following decomposition[
1 0
−b 1

][
1 0
0 1+ba

][
1 a
0 1

]
=

[
1 a
−b 1

]
=

[
1 a
0 1

][
1+ab 0

0 1

][
1 0
−b 1

]
.
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Using the multiplicativity of Δ2 and the conclusion in the previous (2) and (3), we
conclude that

Δ(1+ab) = Δ(1+ba). �

Immediately, we obtain the following remark.

REMARK 15. Let x, y ∈ M . Then for any positive integer n , we have

Δ(x2 +(yx)n) = Δ(x2 +(xy)n).

LEMMA 16. Suppose that 0 � x, y∈ Llog+(M ) . If x, y are invertible and α ∈ R ,
then

(x∗y∗yx)α = x∗y∗(yxx∗y∗)α−1yx.

Proof. Let x∗y∗ = u|x∗y∗| be the polar decomposition of the operator x∗y∗ , where
u is a unitary. Then

u = x∗y∗|x∗y∗|−1, u∗ = |x∗y∗|−1yx and yx = |x∗y∗|u∗.

Hence,
(x∗y∗yx)α = (u|x∗y∗|2u∗)α

= u|x∗y∗|2αu∗

= x∗y∗|x∗y∗|−1|x∗y∗|2α |x∗y∗|−1yx

= x∗y∗(yxx∗y∗)α−1yx. �

LEMMA 17. Let 0 � x, y ∈ Llog+(M ) and p, q � 0 .

1. If xyq is hyponormal, then

xypxyq ≺log x2yp+q.

2. If y−qx is hyponormal and y is invertible, then

Λt(xyp−qx) � Λt(xypxy−q).

Proof. (1) Let a = xypx � 0 and b = yq � 0. Since μs(ab)= μs(ba) ([4, Corollary
3.6]), we have

μs(xypxyq) = μs(yqxypx).

Let c = xyq and d = ypx . Then c∗ = yqx . Since c is hyponormal, applying [5, Propo-
sition 4.3] to μs(yqxypx) , we see that μs(c∗d) � μs(cd) , i.e.,

μs(yqxypx) � μs(xyqypx) = μs(xyp+qx).
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Hence, ∫ t

0
logμs(xypxyq)ds �

∫ t

0
logμs(xyp+qx)ds �

∫ t

0
logμs(x2yp+q)ds.

(2) By Proposition 1 (1), we get

μs(xyp−qx) = μs(xypy−qx) = μs(xy−qypx).

Since y−qx is hyponormal, applying [5, Proposition 4.3] to μs(xy−qypx) we have

μs(xy−qypx) � μs(y−qxypx) = μs(xypxy−q).

Therefore, ∫ t

0
logμs(xyp−qx)ds �

∫ t

0
logμs(xypxy−q)ds.

The proof is completed. �
Combining Lemma 5 with Lemma 17, we have the following result.

REMARK 18. Let 0 � x, y ∈ Llog+(M ) and p, q � 0.

1. If xyq is hyponormal, then

Δ(1+ |xypxyq|) � Δ(1+ |x2yp+q||).

2. If y−qx is hyponormal and y is invertible, then

Δ(1+ |xyp−qx|) � Δ(1+ |xypxy−q|).

We show some operator Fuglede-Kadison determinant inequalities which are cor-
responding to inequality (1.1) in the next two theorems.

THEOREM 19. Let 0 � x, y ∈ Llog+(M ) . If x2y is hyponormal and x, y are
invertible, then we have

Δ(x2 + |yx|p) � Δ(x2 + x2|y(yx2y)
p
2 x−2y−1|)

for all p ∈ [0,∞) .

Proof. In fact, since x2y is hyponormal, we conclude that (yx2y)−1y is hyponor-
mal. So, for every p ∈ [0,∞) and t > 0, we have

Λt(x−1(|yx|2) p
2 x−1) = Λt(x−1(xy2x)

p
2 x−1)

= Λt(y(yx2y)
p
2−1y) (by Lemma 16)

� Λt(y(yx2y)
p
2 y(yx2y)−1) (by Lemma 17 (2))

= Λt(y(yx2y)
p
2 x−2y−1).
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Next, by Lemma 5, we can assert that

Λt(1+ x−1(xy2x)
p
2 x−1) � Λt(1+ |y(yx2y)

p
2 x−2y−1|),

and
Δ(1+ x−1(xy2x)

p
2 x−1) � Δ(1+ |y(yx2y)

p
2 x−2y−1|).

Finally, multiplying both sides of the above determinant inequality by Δ(x2) > 0,
we obtain

Δ(x2 + |yx|p) � Δ(x2 + x2|y(yx2y)
p
2 x−2y−1|). �

Actually, using Theorem 12 in Section 3, we get another analogue of inequality
(1.1). In order to compare with the above theorem, we exhibit it in the following theo-
rem.

THEOREM 20. Suppose that 0 � x, y ∈ Llog+(M ) and x is invertible. Then

Δ(x2 + |yx|p) � Δ(x2 + x2|ypxp−2|), 1 � p � 2.

Proof. For 1 � p � 2, replacing α by p , β by 2 and γ by 2 in Theorem 12 (2),
respectively, we get the result. �
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