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Abstract. Toeplitz matrices are ubiquitous and play important roles across many areas of math-
ematics. In this paper, we present some algebraic results concerning block Toeplitz matrices
with block entries belonging to a commutative algebra A . The characterization of normal block
Toeplitz matrices with entries from a commutative algebra A of normal matrices is also ob-
tained.

1. Introduction

Toeplitz matrices are important due to their typical property that the entries in the
matrices depend only on the differences of the indices, and as a result, the entries on
their main diagonal as well as those lying parallel to main diagonal are constant. These
matrices arise naturally in several fields of mathematics, as well as applied areas as
signal processing or time series analysis. The monographs dedicated to the subject are
[18, 10] and [3].

The corresponding general theory of block Toeplitz matrices is less developed
mostly due to intrinsic algebraic difficulties that appear with respect to the scalar case.
Block Toeplitz matrices appear very briefly [17] and then in [19, 16, 15, 13].

In [4], the authors have proved a variety of algebraic results concerning scalar
Toeplitz matrices. Among other things, they have obtained the necessary and sufficient
condition for the product AB−CD to be a Toeplitz matrix, and for AB−CD = 0,
provided that A,B,C , and D are Toeplitz matrices. They have also completely char-
acterized normal Toeplitz matrices. We refer the reader to [6, 1, 7, 8, 9, 2, 11] where
characterization of normal Toeplitz matrices have been discussed.

In [14], some generalization of the results of [4] concerning the product AB−CD
of block Toeplitz matrices has been made. Apart from this [14] has also classified
normal block Toeplitz matrices where the entries are taken from the algebra of scalar
diagonal matrices. We pursue here this investigation, obtaining a natural generalization
of the results of [4] by taking entries of the block Toeplitz matrices from a fixed com-
mutative algebra of scalar matrices. We will give new proofs, and refinements of some
of the results of [14] and [4] in a more natural way than what we obtained in [14]. Most
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importantly, we obtain the criteria for characterizing normal block Toeplitz matrices
with commuting normal entries.

The remaining paper is organized as follows: Section 1 serves to recall the basic
notations and facts we will be using in the forthcoming sections. In section 3, we will
provide the generalization and refinements of the results of [4] and [14] concerning
the product of block Toeplitz matrices with commuting entries. Section 4 is concerned
with the commutation of certain block Toeplitz matrices. The object of section 5 is to
present the most important result of this paper; the characterization of normal block
Toeplitz matrices with entries from a commutative algebra A of normal matrices. The
last section of the paper, obtains the concrete description of normality of block Toeplitz
matrices with entries from the algebra of diagonal matrices.

2. Preliminaries

In this section, we give a summary of the basic notations and facts that we shall
encounter throughout this paper. As customary C stands for the set of complex num-
bers. We symbolize by Mn the algebra of n×n matrices with entries from C and by
Dd the algebra of d × d complex diagonal matrices. We will prefer to label the rows
and columns of n×n matrices from 1 to n ; so A ∈ Mn is written A = (ai, j)n

i, j=1 with
ai, j ∈ C . Then, we designate by Tn ⊂ Mn the space of scalar Toeplitz matrices.

We will mostly be interested in block matrices, that is, matrices whose elements
are matrices of dimension d , instead of complex numbers. Thus a block Toeplitz matrix
is actually an nd×nd matrix, consisting of n2 blocks of dimension d , and these blocks
are constant along the diagonals.

Throughout, we will denote n× n block matrices by bold capital letters. As we
know that the entries of scalar Toeplitz matrices are complex numbers, in order to obtain
related results concerning block Toeplitz matrices, we will assume that their entries
belong to a fixed commutative algebra of Md , that we will denote by A .

If A =

⎛⎜⎜⎜⎜⎜⎝
0
A1

A2
...

An−1

⎞⎟⎟⎟⎟⎟⎠ and Ω =

⎛⎜⎜⎜⎜⎜⎝
0

Ω1

Ω2
...

Ωn−1

⎞⎟⎟⎟⎟⎟⎠ are column vectors with entries from A ,

then let T(A,Ω) denote the n×n block Toeplitz matrix of the form:

T(A,Ω) =

⎛⎜⎜⎜⎜⎜⎝
0 Ω∗

1 Ω∗
2 . . . Ω∗

n−1
A1 0 Ω∗

1 . . . Ω∗
n−2

A2 A1 0 . . . Ω∗
n−3

...
...

...
. . .

An−1 An−2 An−3 . . . 0

⎞⎟⎟⎟⎟⎟⎠ . (2.1)

Then T(A,Ω)+A0 represents the general block Toeplitz matrix with entries from A ,
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where

A0 =

⎛⎜⎜⎜⎜⎜⎝
A0 0 0 . . . 0
0 A0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
0 0 0 . . . A0

⎞⎟⎟⎟⎟⎟⎠
is a diagonal block Toeplitz matrix with entries from A . If A is a commutative sub-
algebra of Md , then in the sequel we will use the following notations:

• Mn ⊗A is the collection of n× n block matrices whose entries all belong to
A ;

• Tn ⊗A is the collection of n× n block Toeplitz matrices whose entries all be-
long to A ;

• Dn⊗A is the collection of n×n diagonal block Toeplitz matrices whose entries
all belong to A ;

• C ⊗A is the collection of all n× 1 block matrices whose entries all belong to
A ;

• R ⊗A is the collection of all 1× n block matrices whose entries all belong to
A .

It is obvious that Dn⊗A ⊂ Tn⊗A ⊂ Mn⊗A . For block diagonal matrices we will
use the notation

diag
(
A1 A2 · · · An

)
=

⎛⎜⎜⎜⎝
A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . An

⎞⎟⎟⎟⎠ .

If A ∈ C ⊗A (or R⊗A ) and X ∈ A , then we will use the notation X �A to indicate
that X is multiplied in a usual way with every entry of A .

Throughout whenever we will use the notation T(A,Ω) , A and Ω will be in C ⊗
A with the first entry 0. Following this notation it is immediate that T(A,Ω)∗ =
T(Ω,A) . For fixed 1 � k � n , let Pk−1 be the vectors in R⊗A whose entry at k−1
position is I and all other entries are zero; thus

P0 =
(
I,0,0, · · · ,0)

P1 =
(
0, I,0, · · · ,0)

P2 =
(
0,0, I, · · · ,0)

etc. Let I ∈A be the identity matrix and S denote the matrix consisting of I along the
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subdiagonal and zero elsewhere, i.e.,

S =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 . . . 0 0
I 0 0 . . . 0 0
0 I 0 . . . 0 0
...

...
...

. . .
...

0 0 0 . . . I 0

⎞⎟⎟⎟⎟⎟⎠ .

Note that, Sn = S∗n = 0. If X ∈ A , then we denote the matrix S + X �P∗
0 Pn−1 by

SX . For A =

⎛⎜⎜⎜⎝
0
A1
...

An−1

⎞⎟⎟⎟⎠ ∈ C ⊗A , we define Ã :=

⎛⎜⎜⎜⎝
0

A∗
n−1
...

A∗
1

⎞⎟⎟⎟⎠ . A block Toeplitz matrix

A = T(A,Ω)+A0 is said to be a block circulant matrix if, A = Ω̃ . The displacement
matrix of any square block matrix A is defined as

�(A) := A−SAS∗.

We refer the reader to [5, 12] for other kinds of displacement matrices. Note, in partic-
ular that if I ∈ Mn⊗A , then �(I) = I−SS∗ = P∗

0 P0 .
The results below from [4, 14] are also valid for block matrices with entries from

A . We are adding their proofs just for completeness.

LEMMA 2.1. If A ∈ Mn⊗A , then A =
n−1

∑
k=0

Sk � (A)S∗k .

Proof.

n−1

∑
k=0

Sk(�(A))Sk∗ =
n−1

∑
k=0

Sk(A−SAS∗)Sk∗

=
n−1

∑
k=0

(SkASk∗ −Sk+1ASk+1∗)

= A−SnASn∗ = A. �

Thus in order to show that A = 0, it will be enough to show that �(A) = 0. We
have the following analog of the Lemma 2.2 of [4] for block Toeplitz matrices with
entries from A .

LEMMA 2.2. A ∈ Mn⊗A is in Tn⊗A if and only if there exist vectors A,Ω ∈
C ⊗A such that �(A) = AP0 +P∗

0 Ω∗.
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Proof. Suppose that A = T(A,Ω)+A0 ∈Tn⊗A . Since the displacement matrix
for A is defined as �(A) = A−SAS∗. Then simple computation yields that

� (A) =

⎛⎜⎜⎜⎜⎜⎝
A0 Ω∗

1 Ω∗
2 . . . Ω∗

n−1
A1 0 0 . . . 0
A2 0 0 . . . 0
...

...
...

. . .
An−1 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎠ . (2.2)

If we take A =

⎛⎜⎜⎜⎝
A0

A−1
...

A1−n

⎞⎟⎟⎟⎠ and Ω =

⎛⎜⎜⎜⎝
0

Ω1
...

Ωn−1

⎞⎟⎟⎟⎠ , then one can easily verify that

�(A) = AP0 +P∗
0 Ω∗.

For the converse, let A = (Ai j)n
i, j=1 ∈ Mn ⊗A . Suppose then that A =

⎛⎜⎜⎜⎝
A0

A1
...

An−1

⎞⎟⎟⎟⎠

and Ω =

⎛⎜⎜⎜⎝
Ω0

Ω1
...

Ωn−1

⎞⎟⎟⎟⎠ are vectors in C ⊗A , such that

�(A) = AP0 +P∗
0 Ω∗.

This means that �(A) is given by (2.2). Computing A by the formula given in
Lemma 2.1 yields that A is in Tn⊗A . �

REMARK 2.3. Note that the condition in the statement of Lemma 2.2 is equivalent
to the fact that �(A) may have nonzero entries only on the first row and the first
column.

3. Product of block Toeplitz matrices with commuting entries

The goal of this section is to obtain the basic algebraic results concerning the
product AB−CD , where A,B,C , and D are block Toeplitz matrices with entries from
A . One can see that the generalization obtained here is more natural than what we
obtained in [14]. We start with the following Lemma, which describes the structure
of the displacement matrix for the product of two block Toeplitz matrices with entries
from A .
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LEMMA 3.1. Let C =

⎛⎜⎜⎜⎜⎜⎝
0
C1

C2
...

Cn−1

⎞⎟⎟⎟⎟⎟⎠ , Γ =

⎛⎜⎜⎜⎜⎜⎝
0

Γ1

Γ2
...

Γn−1

⎞⎟⎟⎟⎟⎟⎠ , D =

⎛⎜⎜⎜⎜⎜⎝
0
D1

D2
...

Dn−1

⎞⎟⎟⎟⎟⎟⎠ , and

Θ =

⎛⎜⎜⎜⎜⎜⎝
0

Θ1

Θ2
...

Θn−1

⎞⎟⎟⎟⎟⎟⎠ , be vectors in C ⊗A . If C = T(C,Γ)+C0 and D = T(D,Θ)+D0 ,

then

� (CD) = CΘ∗ − Γ̃D̃∗ +[CD+D0C+C0D0P
∗
0 ]P0 +P∗

0 [Γ∗SDS∗ + Θ∗C0] . (3.1)

Proof. Let Ĉ = T(C,Γ) and D̂ = T(D,Θ) . Then we have

�(CD) = �[(Ĉ+C0)][(D̂+D0)]

= �[ĈD̂+C0D̂+D0Ĉ+C0D0]

= �(ĈD̂)+�(C0D̂)+�(D0Ĉ)+�(C0D0).

Since C0,D0 ∈ Dn ⊗A , then S commute with C0 and D0 respectively, therefore last
equation above can be written as

� (CD) = �(ĈD̂)+C0� (D̂)+D0� (Ĉ)+C0D0 � (I). (3.2)

By Lemma 2.2, there exist vectors D,Θ ∈ C ⊗A such that, �(D̂) = DP0 + P∗
0 Θ∗ .

Similarly �(Ĉ) =CP0 +P∗
0 Γ∗ , with C,Γ ∈ C ⊗A . Also we have �(I) = P∗

0 P0 . Then
(3.2) becomes

�(CD) = �(ĈD̂)+C0[DP0 +P∗
0 Θ∗]+D0[CP0 +P∗

0 Γ∗]+C0D0P
∗
0 P0

= �(ĈD̂)+ [C0D+D0C+C0D0P
∗
0 ]P0 +P∗

0 [Θ∗C0 + Γ∗D0]. (∗)
By using the definition of � , we have

�(ĈD̂) = ĈD̂−SĈD̂S∗

= ĈD̂− ĈSD̂S∗ + ĈSD̂S∗ −SĈ[S∗S+P∗
n−1Pn−1]D̂S∗

= Ĉ� D̂+�Ĉ(SD̂S∗)−SĈP∗
n−1Pn−1D̂S∗

= Ĉ[DP0 +P∗
0 Θ∗]+ [CP0 +P∗

0 Γ∗]SD̂S∗ − Γ̃D̃∗. (∗∗)

Since P0S = 0, so the term CP0SD̂S∗ = 0. Also ĈP∗
0 Θ∗ = CΘ∗ , then (∗∗ ) can be

written as

�(ĈD̂) = ĈDP0 +P∗
0 Γ∗SD̂S∗ +CΘ∗− Γ̃D̃∗. (3.3)
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Combining (∗) and (3.3) we obtained

�(CD)=CΘ∗−Γ̃D̃∗+[ĈD+C0D+D0C+C0D0P
∗
0 ]P0+P∗

0 [Γ∗SD̂S∗+Θ∗C0+Γ∗D0].
(3.4)

Note that ĈD+C0D = CD and Γ∗SD̂S∗+Γ∗D0 = Γ∗(SD̂S∗+D0) = Γ∗SDS∗ . There-
fore (3.4) becomes

�(CD) = CΘ∗ − Γ̃D̃∗ +[CD+D0C+C0D0P
∗
0 ]P0 +P∗

0 [Γ∗SDS∗ + Θ∗C0].

The proof is finished. �
The following result is the most important result of this section. It gives answers

to the questions that when the product AB−CD of block Toeplitz matrices A,B,C,
and D is 0 and is in Tn⊗A .

THEOREM 3.2. If A = T(A,Ω)+A0 , B = T(B,Λ)+B0 , C = T(C,Γ)+C0 , and
D = T(D,Θ)+D0 , then:

(i) AB−CD (or, equivalently T(A,Ω)T(B,Λ)−T(C,Γ)T(D,Θ)) ∈Tn⊗A if and
only if

AΛ∗ − Ω̃B̃∗ = CΘ∗ − Γ̃D̃∗.

(ii) If AB−CD ∈ Tn⊗A , then AB−CD = 0 if and only if

AB+B0A+A0B0P
∗
0 = CD+D0C+C0D0P

∗
0 , (3.5)

and
B∗Ω +A∗

0Λ+A∗
0B

∗
0P

∗
0 = D∗Γ+C∗

0Θ +C∗
0D

∗
0P

∗
0 . (3.6)

Proof. By Lemma 3.1,

�(AB)−�(CD) = AΛ∗ − Ω̃B̃∗ −CΘ∗+ Γ̃D̃∗

+[AB+B0A+A0B0P
∗
0 −CD−D0C−C0D0P

∗
0 ]P0

+P∗
0 [Ω∗SBS∗ + Λ∗A0 −Γ∗SDS∗ −Θ∗C0] .

The first four terms are block matrices with 0 on the first row and the first column. On
the other hand, the fifth term has nonzero entries only on the first column, and the sixth
only on the first row. Therefore, by Lemma 2.2, AB−CD ∈ Tn ⊗A if and only if
AΛ∗ − Ω̃B̃∗ −CΘ∗+ Γ̃D̃∗ = 0, which is the required relation.

(ii) If AB−CD ∈ Tn⊗A , then AB = CD if and only if �(AB−CD) = 0, i.e.,
AB = CD if and only if

AB+B0A+A0B0P
∗
0 = CD+D0C+C0D0P

∗
0

Ω∗SBS∗ + Λ∗A0 = Γ∗SDS∗ + Θ∗C0

or
SB∗S∗Ω +A∗

0Λ = SD∗S∗Γ+C∗
0Θ. (3.7)
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Let us show that (3.5) and (3.6) are equivalent to above equations. We already have (3.5).
Then, subtracting (3.7) from (3.6) yields that

�(B∗)Ω +A∗
0B

∗
0P

∗
0 = �(D∗)Γ+C∗

0D
∗
0P

∗
0 ,

Then by Lemma 2.2, the last equation above can be written as

(ΛP0 +P∗
0 B∗)Ω +A0B0P

∗
0 = (ΘP0 +P∗

0 D∗)Γ+C∗
0D

∗
0P

∗
0 (3.8)

Since ΛP0Ω = ΘP0Γ = 0, then (3.8) becomes

P∗
0 B∗Ω +A0B0P

∗
0 = P∗

0 D∗Γ+C∗
0D

∗
0P

∗
0

which after passing to the adjoint is the zeroth component relation of (3.5). �

The results below gather some consequences of Theorem 3.2.

COROLLARY 3.3. If A = T(A,Ω)+A0,B = T(B,Λ)+B0 , then AB∈Tn⊗A if
and only if AΛ∗ = Ω̃B̃∗ .

COROLLARY 3.4. If A = T(A,Ω)+A0,B = T(B,Λ)+B0 , then AB∈Tn⊗A if
and only if BA ∈ Tn⊗A .

Proof. By Theorem 3.2, AB ∈ Tn ⊗A if and only if AΛ∗ = Ω̃B̃∗ if and only
if BΩ∗ = (BiΩ j)i, j = ((An− j−1Λn−i−1)∗)i, j = (Λ∗

n−i−1A
∗
n− j−1)i, j = Λ̃Ã∗ if and only if

BA ∈ Tn⊗A . �
Note that Corollary 3.4 can also be obtained from the following stronger Theorem

already proved in [16].

THEOREM 3.5. If A = T(A,Ω)+A0 , B = T(B,Λ)+B0 , such that AB ∈ Tn ⊗
A , then AB = BA .

4. Commutants of S, S∗ , SX , and S∗
X

Throughout in this section let X ∈A be a fixed. We start with the following propo-
sition, which gives in terms of SX another criterion for characterizing block Toeplitz
matrices among all n×n block matrices.

PROPOSITION 4.1. A ∈ Mn ⊗A is in Tn ⊗A if and only if there exist A,B ∈
C ⊗A , such that A−SXAS∗

X = AP0 +P∗
0 B∗.

Proof. By Lemma 2.2, A∈Mn⊗A is in Tn⊗A if and only if there exist vectors
A′ , Ω′ ∈ C ⊗A such that

A−SAS∗ = A′P0 +P∗
0 (Ω′)∗.
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if and only if

A− (SX −X �P∗
0 Pn−1)A(S∗

X −P∗
n−1P0 �X∗) = A′P0 +P∗

0 (Ω′)∗,

if and only if

A−SXAS∗
X = −SXAP∗

n−1P0 �X∗−X �P∗
0 Pn−1AS∗

X +X �P∗
0 Pn−1AP∗

n−1P0 �X∗

+A′P0 +P∗
0 (Ω′)∗,

if and only if

A−SXAS∗
X =

[
A′ −SXAX∗ �P∗

n−1

]
P0 +P∗

0 [(Ω′)∗ −Pn−1 �XAS∗
X +X �Pn−1AP∗

n−1P�X
∗],

= AP0 +P∗
0 B∗,

where A = A′ − SXAX∗ � P∗
n−1 and B = Ω′ − SXA∗X∗ � P∗

n−1 + X � P∗
0 Pn−1A∗P∗

n−1 �
X∗. �

REMARK 4.2. Since Pn−1S∗ = 0, then

I−SXS∗
X = I− (S+X �P∗

0 Pn−1)(S∗ +P∗
n−1P0 �X∗)

= I−SS∗−SP∗
n−1P0 �X∗−X �P∗

0 Pn−1S
∗ −X �P∗

0 Pn−1P
∗
n−1P0 �X∗

= P∗
0 P0−SX∗ �P∗

n−1P0−P∗
0 Pn−1 �XS∗ −X �P∗

0 Pn−1P
∗
n−1P0 �X∗

= P∗
0 P0−P∗

0 Pn−1 �XS∗−SXP∗
n−1P0 �X∗

= P∗
0 P0−SXP∗

n−1P0 �X∗.

REMARK 4.3. S,SX ∈ Tn⊗A , with S = T(P1,0) and SX = T(P1,X∗ � P̃1) .

The following result characterized lower (upper) triangular block Toeplitz matrices
among all n×n block matrices with entries from A .

THEOREM 4.4. If A ∈ Mn ⊗A , then the following hold:

(i) AS = SA if and only if A = T(A,0)+A0 .

(ii) AS∗ = S∗A if and only if A = T(0,Ω)+A0 .

Proof. We will give the proof only for (i) and leave (ii) as an easy exercise for the
reader.

(i) Suppose that AS = SA , then �(A) = A� (I) = AP∗
0 P0 . By Lemma 2.2,

A ∈Tn⊗A , with A = T(A,0)+A0 . For the converse, let A = T(A,0)+A0 , also S ∈
Tn⊗A , then by Corollary 3.3 and Theorem 3.5, it is immediate that AS = SA . �

THEOREM 4.5. If A ∈ Mn ⊗A , then

(i) ASX = SXA if and only if A = T(A,X∗ � Ã)+A0 .

(ii) AS∗
X = S∗

XA if and only if A = T(X∗ � Ã,A)+A∗
0 .
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Proof. (i) Suppose that ASX = SXA , then we have

�(A) = A−SAS∗

= A− [SX −X �P∗
0 Pn−1]A[S∗

X −P∗
n−1P0 �X∗]

= A−SXAS∗
X +

[
SXAX∗ �P∗

n−1

]
P0 +P∗

0 [Pn−1 �XAS∗
X −X �Pn−1AP∗

n−1P0 �X∗]
= A(I−SXS∗

X )+A
[
SXX∗ �P∗

n−1

]
P0 +P∗

0 [X �Pn−1AS∗]
= AP∗

0 P0 +P∗
0 [X �Pn−1AS∗] .

By Lemma 2.2, A∈Tn⊗A , since X �Pn−1AS∗ = X � Ã∗ , then A = T(A,X∗ � Ã)+A0 .
For the converse, since A,SX ∈ Tn ⊗A , then Corollary 3.3 and Theorem 3.5 imply
that, ASX = SXA . The proof of (ii) is similar to the proof of (i). �

COROLLARY 4.6. If A = T(A,Ω)+A0 , B = T(B,Λ)+B0 , such that A and B
commutes with SX for some X ∈ A , then AB ∈ Tn ⊗A .

Proof. Suppose that A = T(A,Ω) + A0 , B = T(B,Λ) + B0 , such that for some
X ∈A , A and B commutes with SX then it follows from Theorem 4.5, that Ω = X∗ � Ã
and Λ = X∗ � B̃ , we have then

AΛ∗ = A(X∗ � B̃)∗ = X �AB̃∗ = Ω̃B̃∗.

Therefore by Corollary 3.3, AB ∈ Tn⊗A . �

5. Characterization of normal block Toeplitz matrices

In this section, we take A to be a commutative algebra of normal matrices. Then
we will characterized normal block Toeplitz matrices with entries from such A . We
start with the following Lemma.

LEMMA 5.1. If A = (Ai, j)n
i, j=1 ∈ Mn⊗A , then A is normal if and only if

n

∑
k=1,k 	=p

[A∗
k,pAk,p−Ap,kA

∗
p,k] = 0 for every p = 1,2, · · · ,n,

and
n

∑
k=1

[A∗
k,iAk, j −Ai,kA

∗
j,k] = 0 for every 1 � i < j � n.

The following result is the main result of this paper. It gives us the criteria for
classifying normal block Toeplitz matrices with block entries belonging to A .

THEOREM 5.2. If A = T(A,Ω)+A0 ∈ Tn ⊗A , then A is normal if and only if
for every s and k , with 1 � s,k � n−1,

AsA
∗
k +A∗

n−sAn−k = ΩsΩ∗
k + Ω∗

n−sΩn−k. (5.1)
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Proof. Suppose that A is normal and let N = (Ni, j)n
i, j=1 = A∗A−AA∗ . Since

A ∈ Tn⊗A , it follows from Lemma 5.1 that A is normal if and only if

Np,p =
p−1

∑
k=1

(
Ωp−kΩ∗

p−k −A∗
p−kAp−k

)
+

n

∑
k=p+1

(
A∗

k−pAk−p−Ωk−pΩ∗
k−p

)
= 0

and

Ni, j =
i−1

∑
k=1

(
Ωi−kΩ∗

j−k −Ai−kA
∗
j−k

)
+

j−1

∑
k=i+1

(
A∗

k−iΩ
∗
j−k −Ω∗

k−iA
∗
j−k

)
+

n

∑
k= j+1

(
A∗

k−iAk− j −Ω∗
k−iΩk− j

)
= 0,

if and only if

Np,p =
p−1

∑
k=1

(ΩkΩ∗
k −A∗

kAk)−
n−p

∑
k=1

(ΩkΩ∗
k −A∗

kAk) = 0 (5.2)

and

Ni, j =
i−1

∑
k=1

(
ΩkΩ∗

j−i+k −AkA
∗
j−i+k

)
+

j−i−1

∑
k=1

(
A∗

kΩ∗
j−i−k −Ω∗

kA
∗
j−i−k

)
+

n− j

∑
k=1

(
A∗

j−i+kAk −Ω∗
j−i+kΩk

)
= 0,

for every p = 1,2, · · · ,n and 1 � i < j � n, respectively. We first calculate the equation
(5.2), when n = 2m for some fixed positive integer m . If we calculate the diagonal
entries of N , then

Np,p =
p−1

∑
k=1

Bk −
2m−p

∑
k=1

Bk = −
[

(2m−p+1)−1

∑
k=1

Bk −
2m−(2m−p+1)

∑
k=1

Bk

]
= −N2m−p+1,2m−p+1.

(5.3)
for every p , where Bk = ΩkΩ∗

k −A∗
kAk. Thus, we know that Np,p = −N2m−p+1,2m−p+1

for every p . So it suffices to consider the diagonal entries (p, p) of N for p =
1,2, · · · ,m . A simple computation shows from (5.3) that

Nm,m =
m−1

∑
k=1

Bk −
m

∑
k=1

Bk = −Bm = ΩmΩ∗
m −A∗

mAm = 0.

By recurrence for every p = 1,2, · · · ,m , we have

Np,p =
p−1

∑
k=1

Bk −
2m−p

∑
k=1

Bk =
(p+1)−1

∑
k=1

Bk −
2m−(p+1)

∑
k=1

Bk − (Bp +B2m−p)

= Np+1,p+1− (Bp +B2m−p).
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Which implies that Bp +B2m−p = 0, for every p = 1,2, · · · ,m . Therefore

A∗
pAp +A∗

2m−pA2m−p = ΩpΩ∗
p + Ω2m−pΩ∗

2m−p. (5.4)

Next we consider the case i < j . we write (5.3) as

Ni, j =
i−1

∑
k=1

Cr,k +
r−1

∑
k=1

Dr,k +
2m− j

∑
k=1

Er,k,

where for every 1 � r = j− i � n−1,

Cr,k = ΩkΩ∗
r+k −AkA

∗
r+k.

Dr,k = A∗
kΩ∗

r−k −Ω∗
kA

∗
r−k.

Er,k = A∗
r+kAk −Ω∗

r+kΩk.

Since entries are commuting and normal, then

Ni,i+1 =
i−1

∑
k=1

C1,k +0+
2m−i−1

∑
k=1

E1,k

=
i

∑
k=1

C1,k +
2m−i−2

∑
k=1

E1,k −C1,i +E1,2m−i−1

= Ni+1,i+2−C1,i +E1,2m−i−1.

Then C1,i −E1,2m−i−1 = 0, therefore

ΩiΩ∗
i+1 + Ω∗

2m−iΩ2m−(i+1) = AiA
∗
1+i +A∗

2m−iA2m−(i+1), (5.5)

and

Ni,i+2 =
i−1

∑
k=1

C2,k +D2,1 +
2m−i−2

∑
k=1

E2,k

=
i

∑
k=1

C2,k +D2,1 +
2m−i−3

∑
k=1

E2,k −C2,i +E2,2m−i−2

= Ni+1,i+3−C2,i +E2,2m−i−2.

Then C2,i = E2,2m−i−2 = 0, therefore

ΩiΩ∗
i+2 + Ω∗

2m−iΩ2m−(i+2) = AiA
∗
2+i +A∗

2m−iA2m−(i+2). (5.6)

Similar computations for Ni,i+r , r = 3,4, · · · ,2m− i , yields that

ΩiΩ∗
i+r + Ω∗

2m−iΩ2m−(i+r) = AiA
∗
i+r +A∗

2m−iA2m−(i+r). (5.7)

Hence by equations (5.3)–(5.7), we conclude that if A is normal then for every 1 �
s,k � n−1,

ΩsΩ∗
k + Ω∗

n−sΩn−k = AsA
∗
k +A∗

n−sAn−k. (5.8)
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Conversely suppose that for every 1 � s,k � n−1, (5.1) is true. We show that Np,p = 0
and Ni, j = 0 for every p = 1,2, . . . ,n and 1 � i < j � n respectively. We have, by
the proof of first implication, that Np,p = Np+1,p+1 , for every p = 1,2, . . . ,m, and
Np,p = −N2m−p+1,2m−p+1 for all p , since Nm,m = −Bm = ΩmΩ∗

m −A∗
mAm = 0, then

Np,p = 0, for every p = 1,2, . . . ,2m .
On the other hand for the case i < j , we have Ni,i+1 = Ni+1,i+2 , Ni,i+2 = Ni+1,i+3, . . .,

Ni,i+r = Ni+1,i+r+1 , therefore N ∈ Tn⊗A . Since entries belong to A , then

Nm,m+1 =
m−1

∑
k=1

C1,k +
2m−m−1

∑
k=1

E1,k = 0.

Consequently Ni,i+1 = 0 for every i , also since

Nm,m+2 =
m−1

∑
k=1

C2,k +D2,1 +
2m−m−2

∑
k=1

E2,k = 0.

Consequently Ni,i+2 = 0, for every i . In general Ni,i+r = 0, for all r = 1,2, . . . ,2m− i .
A similar method works for the case n = 2m+1. Hence, we complete the proof. �

In some cases of A , one may obtain more concrete description of normality. The
case when A is taken to be the algebra of diagonal matrices is discussed in detail in
the next section.

COROLLARY 5.3. If A = T(A,Ω) + A0 ∈ Tn ⊗A , such that A commute with
SX for some unitary X ∈ A , then A is normal.

Proof. If ASX = SXA , then it follows from Theorem 4.5, that Ω = X∗ � Ã . Since
X ∈ A is unitary, then for every 1 � s,k � n−1,

ΩsΩ∗
k + Ω∗

n−sΩn−k = X∗A∗
n−sAn−kX +AsXX∗A∗

k

= AsA
∗
k +A∗

n−sAn−k.

Therefore, Theorem 5.2 implies that A is normal. �

REMARK 5.4. For X = I Corollary 5.3, implies the normality of block circulant
matrices defined in section 2.

6. Normality: the case A = Dd

Theorem 5.2 is valid for a general algebra A . We may expect that for particular
cases of A one can obtain more precise description of normal Block-Toeplitz matrices.
As an example, we study in detail the case when A = Dd . We start with the following
result, which is Lemma 5.1 of [13].
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LEMMA 6.1. Suppose A = (Ai− j)n
i, j=1 ∈Tn⊗Dd . Then there is a change of basis

that brings A into the following form

A′ = diag
(
A′

1 A′
2 · · ·A′

d

)
,

where for every k = 1,2, · · ·d , A′
k ∈ Tn is given by the formula A′

k = (ar−s,k)n
r,s=1 .

THEOREM 6.2. If A∈Tn⊗Dd , then A is normal if and only if there exist scalars

λ1,λ2, · · ·λd with |λk| = 1 , such that, if we denote, for k = 1,2, · · ·d , αk =

⎛⎜⎜⎜⎝
0

a−1,k
...

a−n,k

⎞⎟⎟⎟⎠ ,

and βk =

⎛⎜⎜⎜⎝
0

a1,k
...

an,k

⎞⎟⎟⎟⎠ , then, for each k = 1,2, · · ·d , either αk = λkβ̃k or αk = λkβ̃ k .

Proof. If A ∈ Tn⊗Dd , then by Lemma 6.1, A has the form

A′ = diag
(
A′

1 A′
2 · · ·A′

d

)
,

where for every k = 1,2, · · ·d , A′
k = (ar−s,k)n

r,s=1 is a scalar Toeplitz matrix.
Since A′ is a block diagonal matrix, then A′A∗′ = A∗′A′ if and only if A′

kA
′∗
k =

A′∗
k A′

k . Applying Theorem 3.4 of [4], which gives criteria for normality of scalar
Toeplitz matrices, each A′

k is normal if and only if there exist scalars λ1,λ2, · · · ,λd ,

with |λk| = 1, such that either αk = λkβ̃k or αk = λkβ̃ k , where αk =

⎛⎜⎜⎜⎝
0

a−1,k
...

a−n,k

⎞⎟⎟⎟⎠ , and

βk =

⎛⎜⎜⎜⎝
0

a1,k
...

an,k

⎞⎟⎟⎟⎠ . This ends the proof of the theorem. �
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