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SOME PROPERTIES OF THE p–SPECTRAL RADIUS ON TENSORS

FOR GENERAL HYPERGRAPHS AND THEIR APPLICATIONS

JUNHAO ZHANG AND ZHONGXUN ZHU ∗

(Communicated by S. Fallat)

Abstract. Let H = (V,E) be a general hypergraph with rank m and co-rank mc and AH be its
adjacency tensor, the p -spectral radius ρ(p)(H) of H is defined as ρ(p)(H) = maxx∈Sn−1

p
xT AHx ,

where Sn−1
p = {x ∈ Rn| ‖ x ‖p= 1} . For m = mc and p � m , we know that there is a unique pos-

itive eigenvector x ∈ Sn−1
p belonging to ρ(p)(H) and ρ(p)(H) can be computed by α -normal

labeling method. In this paper, we generalize these properties to the case for m �= mc and some
other properties are obtained. At the same time, some applications are also given on the proper-
ties attained in this paper.

1. Introduction

Let H = (V (H),E(H)) be a general hypergraph with vertex set V (H) and edge
set E(H) ⊆ 2V (H) , where 2V (H) is the power set of V (H) = [n] = {1,2, . . . ,n} . De-
note r(H) = maxe∈E(H) |e| = m (respectively cr(H) = mine∈E(H) |e| = mc ) be the rank
(respectively the co-rank) of H . If r(H) = cr(H) = m , H is called an m-uniform
hypergraph.

For an edge e = {l1, l2, . . . , ls} ∈ E(H) , where mc � s � m, an ordered sequence
η = (i1, i2, . . . , im) is called an m-expanded edge from e if its set of the distinct entries
is the same as e , denote this by e ≺ η . Let

E(H)l1 = {e|l1 ∈ e ∈ E(H)};
S(e) = {η |e ≺ η}; S(H) = ∪e∈E(H)S(e);

S(e)l1 = {η ∈ S(e)|η = (l1, i2, . . . , im)}, S(H)l1 = ∪e∈E(H)l1
S(e)l1 .

Then we have

|S(e)| = |e||S(e)l1 | =
k1,k2,...,ks�1

∑
k1+k2+···+ks=m

m!
k1!k2! · · ·ks!

,
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and the adjacency tensor AH = (ai1i2...im) of H can be defined as in [1]:

ai1i2...im =

{ |e|
|S(e)| = ae, e ≺ (i1, i2, . . . , im) and e ∈ E(H),

0 otherwise.

That is, ∀η ∈ S(e) , ae = aη . Further,

d(i1) = |E(H)i1 | =
n

∑
i2,...,im=1

ai1i2...im ,

where d(i1) is degree of i1 in H . For x = (x1,x2, . . . ,xn)T ∈ Rn and an m-expanded
edge η = (i1, i2, . . . , im) , denote xη = xi1xi2 · · ·xim . According to the definition of prod-
ucts of tensors given by Shao [9],

(AHx)i1 =
n

∑
i2,...,im=1

ai1i2...imxi2 · · ·xim = ∑
e∈E(H)i1

ae ∑
η=(i1,i2,...,im)∈S(e)i1

xi2 · · ·xim ;

PH(x) = xT AHx =
n

∑
i1,i2,...,im=1

ai1i2...imxi1xi2 · · ·xim = ∑
e∈E(H)

ae ∑
η∈S(e)

xη

= ∑
e∈E(H)

ae

k1,k2,...,ks�1

∑
k1+k2+···+ks=m

m!
k1!k2! · · ·ks!

xk1
l1

xk2
l2
· · ·xks

ls

=
n

∑
i1=1

∑
e∈E(H)i1

ae ∑
η=(i1,i2,...,im)∈S(e)i1

xi1xi2 · · ·xim .

For any real number p � 1 and x = (x1,x2, . . . ,xn)T ∈ Rn , let ‖ x ‖p= (|x1|p +

|x2|p + · · ·+ |xn|p)
1
p , Sn−1

p = {x ∈ Rn| ‖ x ‖p= 1} , Sn−1
p,+ = {x ∈ Rn

+| ‖ x ‖p= 1} and

Sn−1
p,++ = {x ∈ Rn

++| ‖ x ‖p= 1} , where Rn
+ = {x ∈ Rn|xi � 0, i ∈ [n]} and Rn

++ = {x ∈
Rn|xi > 0, i ∈ [n]} , respectively. The p -spectral radius ρ (p)(H) of H is defined as [4]

ρ (p)(H) = max
x∈Sn−1

p

PH(x) (1.1)

if x ∈ Sn−1
p is a vector satisfing PH(x) = ρ (p)(H) , x is called an eigenvector belonging

to ρ (p)(H) . Obviously, if H is an m-uniform hypergraph, we have

PH(x) = xT AHx = m ∑
e={u1,u2,...,um}∈E(H)

xu1xu2 · · ·xum ,

and ρ (p)(H) is the same as λ (p)(H) introduced in [8] by V. Nikiforov.
By Lagrange’s method, let

L(x,λ ) = PH(x)−λ (|x1|p + |x2|p + · · ·+ |xn|p−1).
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Let x be the optimal solution of (1.1), then⎧⎨
⎩

∂ (L(x,λ ))
∂xi

= ∂ (PH (x))
∂xi

−λ pxi|xi|p−2 = 0, i ∈ [n];

∂ (L(x,λ ))
∂λ = |x1|p + |x2|p + · · ·+ |xn|p−1 = 0.

Further, we have

λ p = λ p
n

∑
i=1

|xi|p =
n

∑
i=1

xiλ pxi|xi|p−2 =
n

∑
i=1

xi
∂ (PH(x))

∂xi
= mPH(x) = mρ (p)(H),

∂ (PH(x))
∂xi

= mρ (p)(H)xi|xi|p−2.

If x ∈ Rn
+ and i ∈ [n] , we have

1
m

∂ (PH(x))
∂xi

= ρ (p)(H)xp−1
i = (AHx)i. (1.2)

The following is a list of inequalities which will be used to prove our main results.

LEMMA 1.1. (Generalized Cauchy-Schwarz Inequality [3, 8]) Let x( j) = (x( j)
1 ,

x( j)
2 , . . . ,x( j)

d )T ∈ Rd
+ for j ∈ [k] , then ∑d

i=1 ∏k
j=1 x( j)

i �‖ x(1) ‖k · · · ‖ x(k) ‖k , equality
holds if and only if all vectors are collinear to one of them.

LEMMA 1.2. (Power Mean Inequality [3, 8]) Let x j be a nonnegative real num-

ber for j ∈ [k] , if 0 < p < q, then ( xp
1+xp

2+···+xp
k

k )
1
p � ( xq

1+xq
2+···+xq

k
k )

1
q , equality holds if

and only if x1 = x2 = · · · = xk .

LEMMA 1.3. (Hölder Inequality [3, 8]) Let 1
p + 1

q = 1 for p,q > 1 , and x =

(x1,x2, . . . ,xn)T ,y = (y1,y2, . . . ,yn)T ∈ Rn
+ , then ∑n

k=1 xkyk � (∑n
k=1 xp

k )
1
p (∑n

k=1 yq
k)

1
q ,

equality holds if and only if one of x and y is 0 , or there exist c1 and c2 such that
c1x

p
k = c2y

q
k for k ∈ [n].

In the following sections, we will focus to study on properties of p -spectral ra-
dius and its eigenvector for general hypergraphs. We find that the uniform property of
hypergraphs is not essential for the applications of tensors related to hypergraphs. For
general hypergraphs, some classical results in hypergraph theory can also hold.

2. Some properties from the p -spectral radius and its eigenvector
of general hypergraphs

It is easy to see that if x = (x1,x2, . . . ,xn)T ∈ Sn−1
p , then |x| ∈ Sn−1

p,+ , where |x| =
(|x1|, |x2|, . . . , |xn|)T . Further if x ∈ Sn−1

p satisfing PH(x) = ρ (p)(H) , we also have

PH(|x|) = ρ (p)(H) , that is, there is always a nonnegative vector x satisfing ‖ x ‖p= 1
and ρ (p)(H) = PH(x) .
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LEMMA 2.1. Let p � 1 , if H is a general hypergraph with rank m and x ∈ Rn ,
then

PH(x) � ρ (p)(H) ‖ x ‖m
p .

Proof. By (1.1), we have

ρ (p)(H) = max
x∈Rn

PH

(
x

‖ x ‖p

)
� PH

(
x

‖ x ‖p

)
=

1
‖ x ‖m

p
PH(x). �

In the study of the largest eigenvalue of m-uniform connected hypergraphs, a
Perron-Frobenius-type theory of nonnegative tensors is very useful tool. For the ad-
jacency tensor of an m-uniform connected hypergraph H , the authors in [2] obtained
that there is unique positive eigenvector x ∈ Sn−1

m,+ belonging to ρ (m)(H) and Nikiforov

[8] showed that there is unique positive eigenvector x ∈ Sn−1
p,+ belonging to ρ (p)(H) for

p � m . It is natural that we can ask the following problem:

PROBLEM 2.2. Can we generalize the Perron-Frobenius-type theory on uniform
hypergraphs to general hypergraphs?

Using the idea of Lemma 3.3 in [2] and Theorem 5.2 in [8] with more detailed
techniques, we can also obtain the following result.

THEOREM 2.3. Let H be a general connected hypergraph with rank m and p �
m. If x = (x1,x2, . . . ,xn)T ∈ Sn−1

p,+ satisfies the equations

1
m

∂ (PH(x))
∂xi

= ρ (p)(H)xp−1
i , i = 1, . . . ,n. (2.1)

Then x is the unique positive vector satisfying equations (2.1).

Proof. By (2.1), we have

ρ (p)(H) = ρ (p)(H)
n

∑
i=1

xp
i =

1
m

n

∑
i=1

xi
∂ (PH(x))

∂xi
= PH(x),

then x is an eigenvector belonging to ρ (p)(H) .

Claim 1. x is a positive vector.
Otherwise, assume that H0 is the hypergraph induced by the verices with zero

entries in x , it is easy to see that H0 �= /0 . There must exist an edge e satisfying
S = e∩V (H0) �= /0 and T = e\V(H0) �= /0 since H is connected. Let t ∈ T and ε
be a sufficiently small positive real number such that

δ (ε) = xt − p
√

xp
t −|S|ε p.
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Now we can define a new vector y ∈ Sn−1
p,+ as follows.

yi =

⎧⎪⎨
⎪⎩

ε, if i ∈ S,

xi − δ (ε), if i = t,

xi, if i /∈ S∪{t}.

Let |S| 1
p f (ε) = [ |S|

1−(1−ε p)
p
k
]

1
p ε , where k is a positive integer. Note that

d f p(ε)
dε

=
pε p−1[1− (1− ε p)

p
k −1(1− ε p + p

k ε p−1)]

[1− (1− ε p)
p
k ]2

> 0,

that is, f (ε) is an increasing function on ε . Further from the sufficiently small property
of ε , we can set

min
v∈T

{xv} > |S| 1
p f (ε), δ (ε) <

1
2

min
v∈T

{xv}. (2.2)

From xt � minv∈T{xv} , we can obtain

1−
(

1− δ (ε)
xt

)k

< ε p. (2.3)

Let

D = ∑
{t,u2,...,uh}= f∈E(H), f �=e, f∩S= /0

a f

k,k2,...,kh�1

∑
k+k2+···+kh=m

m!
k!k2! · · ·kh!

xk
t x

k2
u2
· · ·xkh

uh

By (2.2), we have xt −δ (ε) > xt
2 and xv > ε for v ∈ T . Further by a direct calculation,

we have

PH(y)−PH(x)
= ∑

f∈E(H), f⊂V (H)\(S∪{t})
a f ∑

η∈S( f )
(yη − xη)+ ∑

f∈E(H), f �=e, f∩S �= /0

a f ∑
η∈S( f )

(yη − xη)+

∑
f∈E(H),t∈ f , f �=e, f∩S= /0

a f ∑
η∈S( f )

(yη − xη)+ae ∑
η∈S(e)

(yη − xη)

= ∑
f∈E(H), f �=e, f∩S �= /0

a f ∑
η∈S( f )

yη + ∑
f∈E(H),t∈ f , f �=e, f∩S= /0

a f ∑
η∈S( f )

(yη − xη)+ae ∑
η∈S(e)

yη

� ∑
{t,u2,...,uh}= f∈E(H), f �=e, f∩S= /0

a f ∑
η∈S( f )

(yη − xη)+ae ∑
η∈S(e)

yη

= ∑
{t,u2,...,uh}= f∈E(H), f �=e, f∩S= /0

a f

k,k2,...,kh�1

∑
k+k2+···+kh=m

m!
k!k2! · · ·kh!

[(xt − δ (ε))k − xk
t ]x

k2
u2
· · ·xkh

uh

+ae ∑
η∈S(e)

yη
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= ∑
{t,u2,...,uh}= f∈E(H), f �=e, f∩S= /0

a f

k,k2,...,kh�1

∑
k+k2+···+kh=m

m!
k!k2! · · ·kh!

[(
1− δ (ε)

xt

)k

−1

]

×xk
t x

k2
u2
· · ·xkh

uh
+ae ∑

η∈S(e)
yη

� ae ∑
η∈S(e)

yη −Dε p (by (2.3))

� |S|xt

2
εm−1 −Dε p �

( |S|xt

2
−Dε p−m+1

)
εm−1.

From p−m+1 > 0 and by taking ε sufficiently small, we have PH(y)−PH(x) > 0, a
contradiction.

Claim 2 . x is a unique positive eigenvector.
Let w = (w1,w2, . . . ,wn)T ∈ Sn−1

p,++ be another positive eigenvector belonging to

ρ (p)(H) . Then

ρ (p)(H)xp
i1

= ∑
e∈E(H)i1

ae ∑
η=(i1,i2,...,im)∈S(e)i1

xi1xi2 · · ·xim ,

ρ (p)(H)wp
i1

= ∑
e∈E(H)i1

ae ∑
η=(i1,i2,...,im)∈S(e)i1

wi1wi2 · · ·wim ,

for i1 ∈ [n]. Denote q = (q1,q2, . . . ,qn)T ∈ Sn−1
p,++ , where qi = ( xp

i +wp
i

2 )
1
p for i ∈ [n] .

Now we have

ρ (p)(H)qp
i1

= ρ (p)(H)
xp
i1

+wp
i1

2

= ∑
e∈E(H)i1

ae ∑
η=(i1,i2,...,im)∈S(e)i1

xi1xi2 · · ·xim +wi1wi2 · · ·wim

2
.

For vectors (xi1 ,wi1)
T , · · · ,(xim ,wim)T , by Lemmas 1.1 and 1.2, we have

xi1xi2 · · ·xim +wi1wi2 · · ·wim

2
�

m

∏
j=1

(
xm
i j

+wm
ij

2

) 1
m

�
m

∏
j=1

(
xp
i j

+wp
i j

2

) 1
p

=
m

∏
j=1

qi j . (2.4)

Then

ρ (p)(H)qp
i1

� ∑
e∈E(H)i1

ae ∑
η=(i1,i2,...,im)∈S(e)i1

qi1qi2 · · ·qim .
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Further we have

ρ (p)(H) =
n

∑
l1=1

ρ (p)(H)qp
l1

�
n

∑
i1=1

∑
e∈E(H)i1

ae ∑
η=(i1,i2,...,im)∈S(e)i1

qi1qi2 · · ·qim

= PH(q) � ρ (p)(H).

Hence the equalities hold in (2.4). By the condition for equality in Lemma 1.1 and the
connectivity of H , we have xi

wi
= c for i ∈ [n]. Further from x,w ∈ Sn−1

p,++ , we have
c = 1, that is, x = w. �

3. The α -normal labeling method for general hypergraphs

To compute the spectral radius ρ (m)(H) of m-uniform hypergraph H = (V,E) , Lu
and Man [7] introduced a very useful weighted incidence matrix M|V |×|E| = (M(v,e)) ,
where M(v,e) > 0 if v ∈ e , M(v,e) = 0 otherwise, and proposed a highly skilled
method, named α -normal labeling method. In [5], Liu and Lu extended this method to
the p -spectral radii of uniform hypergraphs for p �= m . For general hypergraphs, W.
Zhang et al in [10] gave the definition of weighted incidence matrix and corresponding
α -normal labeling method for p = m as follows.

DEFINITION 1. [10] The matrix M = (M(v,e))|V (H)|×|S(H)| is called a weighted
incidence matrix of a general hypergraph H , if the element M(v,e) > 0 if v ∈ e and
e ∈ S(H) , and M(v,e) = 0 otherwise.

DEFINITION 2. [10] A general hypergraph H with rank(H) = m is called α -
normal if there exists a weighted incidence matrix M satisfying

(1). ∑e′∈S(H)v ae′M(v,e′) = 1, for any v ∈V (H) .
(2). ∏m

i=1 M(vpi ,e
′) = α , for any e′ = {vp1 ,vp2 , . . . ,vpm} ∈ S(H) .

(3). M(v,e′1) = M(v,e′2) when e′1 equals to e′2 except the order.

Moreover, the incidence matrix M is called consistent if for any cycle v0e1v1e2 · · ·vl

(vl = v0) and any e′i extending from ei ,

l

∏
i=1

M(vi,e′i)
M(vi−1,e′i)

= 1. (3.1)

In this case, we call H consistently α -normal.

LEMMA 3.1. [10] Let H be a general connected hypergraph with rank(H) = m.
Then the spectral radius is ρ if and only if H is consistently α -normal with α = ρ−m .

Naturally, we have the following problem.
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PROBLEM 3.2. Can we generalize the α -normal labeling method to general hy-
pergraphs for p �= m?

Now we consider this problem.

DEFINITION 3. For a general hypergraph H with rank m , if there exists a weighted
incidence matrix M and weights {ω(e)} satisfying the following conditions.

(i) ∑e∈S(H)
aeω(e)

m = 1;
(ii) ∑e∈S(H)v aeM(v,e) = 1 for any v ∈V (H) ;
(iii) ω(e)p−mΠv∈eM(v,e) = α for any e ∈ S(H) ;
(iv) M(v,e1) = M(v,e2) and ω(e1) = ω(e2) for e1 equals to e2 up to rewriting,

then H is called α -weighted normal. Furthermore, if ω(ẽi)
M(v,ẽi)

= ω(ẽ j)
M(v,ẽ j)

for any v ∈
V (H),ei,e j ∈ E(H)v and ẽi ∈ S(ei), ẽ j ∈ S(e j) , then M and {ω(e)} are called consis-
tent.

According to the process of the proof of Lemma 4.4 in [10], the following result
holds.

LEMMA 3.3. Let M be a weighted incidence matrix of a general hypergraph
H with rank m, which satisfies conditions (ii) and (iv) in Definition 3, for any x =
(x1,x2, . . . ,xn)T ∈ Sn−1

p,+ , it has

∑
e∈S(H)

∑
v∈e

aeM(v,e)xp
v = m ∑

v∈V (H)
xp
v .

Proof. It is easy to see that

∑
e∈S(H)

∑
v∈e

aeM(v,e)xp
v = m ∑

v∈V (H)
∑

e∈S(H)v

aeM(v,e)xp
v = m ∑

v∈V (H)
[ ∑
e∈S(H)v

aeM(v,e)]xp
v

= m ∑
v∈V (H)

xp
v . �

Note that the proof given here is only for the sake of completeness, in fact, it is
included in the process of proof for Lemma 4.4 in [10] (On page 113, line -5).

THEOREM 3.4. Let H be a general hypergraph with rank m and p � m. Then
the p-spectral radius of H is ρ (p)(H) if and only if H is consistently α -weighted
normal with α = mp−m

(ρ(p)(H))p .

Proof. Assume that H is consistently α -normal with weighted incidence matrix
M and weights {ω(e)} . For any x = (x1,x2, . . . ,xn)T ∈ Sn−1

p,+ ,

PH(x) = ∑
f∈E(H)

a f ∑
η∈S( f )

xη = ∑
e∈S(H)

aeΠv∈exv

=
m

p−m
p

α
1
p

∑
e∈S(H)

(
aeω(e)

m

) p−m
p

a
m
p
e Πv∈e (M(v,e))

1
p xv.
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By the Hölder Inequality, we have

PH(x) � m
p−m

p

α
1
p

(
∑

e∈S(H)

aeω(e)
m

) p−m
p (

∑
e∈S(H)

aeΠv∈e(M(v,e))
1
m x

p
m
v
)m

p = L1 (3.2)

By the condition (i) in Definition 3, we have

L1 =
m

p−m
p

α
1
p

(
∑

e∈S(H)
aeΠv∈e(M(v,e))

1
m x

p
m
v

)m
p

Further by the AM-GM inequality,

L1 � m
p−m

p

α
1
p

(
∑

e∈S(H)
ae ∑

v∈e

M(v,e)xp
v

m

)m
p

= L2. (3.3)

From Lemma 3.3, we have

L2 =
m

p−m
p

α
1
p

(
∑

v∈V (H)
xp
v

)m
p

=
m

p−m
p

α
1
p

‖ x ‖m
p =

m
p−m

p

α
1
p

.

By the Hölder Inequality, the equality holds in (3.2) if for any e ∈ S(H) , there is a
constant c such that

aeω(e)
m

aeΠv∈e(M(v,e))
1
m x

p
m
v

=
ω(e)

mΠv∈e(M(v,e)xp
v )

1
m

= c (3.4)

Equality holds in (3.3) if for any e = {i1, i2, . . . , im} ∈ S(H) ,

M(i1,e)x
p
i1

= M(i2,e)x
p
i2

= · · · = M(im,e)xp
im . (3.5)

Select x∗v = ( ω(e)
mM(v,e) )

1
p , for any v ∈ e , from the consistent condition, we know that x∗v

is independent of the choice of e ∈ S(H)v. We can see that (3.4) and (3.5) hold. By
Lemma 3.3, we have

m ∑
v∈V (H)

(x∗v)
p = ∑

e∈S(H)
∑
v∈e

aeM(v,e)(x∗v)
p = ∑

e∈S(H)
∑
v∈e

ae
ω(e)
m

= ∑
e∈S(H)

aeω(e).

Further by the condition (i) in Definition 3, we have

∑
v∈V (H)

(x∗v)
p = ∑

e∈S(H)
ae

ω(e)
m

= 1.

Then we have ρ (p)(H) = m
p−m

p

α
1
p

.
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By Theorem 2.3, we can set x = (x1,x2, . . . ,xn)T ∈ Sn−1
p,++ be an eigenvector to

ρ (p)(H) . Define a weighted incidence matrix M and weights {ω(e)} as following:

M(v,e) =

{ Πu∈exu

ρ(p)(H)xp
v
, if v ∈ e;

0, otherwise.

ω(e) =
mΠu∈exu

ρ (p)(H)
.

Obviously, (iv) and the condition of consistent (that is, ω(e)
M(v,e) = mxp

v for e ∈ E(H)v ) in
Definition 3 hold. Note that by (1.2), we have

ρ (p)(H) = ∑
e∈S(H)

aeΠu∈exu,

ρ (p)(H)xp
v = ∑

e∈S(H)v

aeΠu∈exu.

Then by direct calculation, we have the following results.

∑
e∈S(H)

aeω(e)
m

= ∑
e∈S(H)

(
ae

m
· mΠu∈exu

ρ (p)(H)

)
=

∑e∈S(H) aeΠu∈exu

ρ (p)(H)
= 1;

∑
e∈S(H)v

aeM(v,e) = ∑
e∈S(H)v

ae
Πu∈exu

ρ (p)(H)xp
v

= ∑
e∈S(H)v

ae
Πu∈exu

ρ (p)(H)xp
v

= 1;

ω(e)p−mΠv∈eM(v,e) =
(

mΠu∈exu

ρ (p)(H)

)p−m

·Πv∈e
Πu∈exu

ρ (p)(H)xp
v

=
mp−m

(ρ (p)(H))p
= α.

That is, all of the conditions in Definition 3 hold. �

DEFINITION 4. For a general hypergraph H with rank m , if there exists a weighted
incidence matrix M and weights {ω(e)} satisfying the following conditions.

(i) ∑e∈S(H)
aeω(e)

m � 1;
(ii) ∑e∈S(H)v aeM(v,e) � 1 for any v ∈V (H) ;
(iii) ω(e)p−mΠv∈eM(v,e) � α for any e ∈ S(H) ;
(iv) M(v,e1) = M(v,e2) and ω(e1) = ω(e2) for e1 equals to e2 up to rewriting,

then H is called α -weighted subnormal. H is called strictly α -weighted subnormal if
it is α -weighted subnormal but not α -weighted normal.

THEOREM 3.5. Let H be a general hypergraph with rank m. If H is α -weighted

subnormal, then the p-spectral radius ρ (p)(H) of H satisfies ρ (p)(H) � m
1−m

p

α
1
p

.

Proof. For any x = (x1,x2, . . . ,xn)T ∈ Sn−1
p,+ ,

PH(x) = ∑
e∈S(H)

aeΠv∈exv � m
p−m

p

α
1
p

∑
e∈S(H)

(
aew(e)

m

) p−m
p

a
m
p
e Πv∈eM

1
p (v,e)xv = L1.
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By the AM-GM inequality,

L1 � m
p−m

p

α
1
p

(
∑

e∈S(H)
ae ∑

v∈e

M(v,e)xp
v

m

)m
p

= L2.

From Lemma 3.3 and (ii) in Definition 4, we have

L2 =
m

p−m
p

α
1
p

(
∑

v∈V (H)
[ ∑
e∈S(H)v

aeM(v,e)]xp
v

)m
p

� m
p−m

p

α
1
p

‖ x ‖m
p =

m
p−m

p

α
1
p

.

This completes the proof. �

DEFINITION 5. For a general hypergraph H with rank m , if there exists a weighted
incidence matrix M and weights {ω(e)} satisfying the following conditions.

(i) ∑e∈S(H)
aeω(e)

m � 1;

(ii) ∑e∈S(H)v aeM(v,e) � 1;

(iii) ω(e)p−mΠv∈eM(v,e) � α , for any e ∈ S(H) ;

(iv) M(v,e1) = M(v,e2) and ω(e1) = ω(e2) for e1 equals to e2 up to rewriting,

then H is called α -weighted supernormal. H is called strictly α -weighted supernor-
mal if it is α -weighted supernormal but not α -weighted normal.

THEOREM 3.6. Let H be a general hypergraph with rank m. If H is consistently
α -weighted supernormal, then the p-spectral radius ρ (p)(H) of H satisfies ρ (p)(H) �
m

1−m
p

α
1
p

.

Proof. By the condition (iii) in definition 5, we have α
ω(e)p−mΠv∈eM(v,e) � 1. Define

a vector x = (x1,x2, . . . ,xn)T ∈ Sn−1
p,+ , where xp

v = ω(e)
mM(v,e) , v∈ e∈ S(H)v . The consistent

condition guarantees that xv is independent of choice of e . Then

PH(x) = ∑
e∈S(H)

aeΠv∈exv

=
(

α
ω(e)p−mΠv∈eM(v,e)

) 1
p

·
(

α
ω(e)p−mΠv∈eM(v,e)

)− 1
p

· ∑
e∈S(H)

aeΠv∈exv

� m
p−m

p

α
1
p

∑
e∈S(H)

(
aew(e)

m

) p−m
p

Πv∈e(aeM(v,e))
1
p xv = L3.
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Let Ae =
(

aew(e)
m

) p−m
p

, Be = Πv∈e (aeM(v,e))
1
p xv , it has A

p
p−m
e

B
p
m
e

= 1. By the condition

of equality holding for the Hölder Inequality, it has

L3 =
m

p−m
p

α
1
p

(
∑

e∈S(H)

aew(e)
m

) p−m
p
(

∑
e∈S(H)

aeΠv∈e(M(v,e))
1
m x

p
m
v

)m
p

� m
p−m

p

α
1
p

(
∑

e∈S(H)
aeΠv∈e(M(v,e))

1
m x

p
m
v

)m
p

=
m

p−m
p

α
1
p

(
∑

e∈S(H)
∑
v∈e

aeM(v,e)xp
v

m

)m
p

� m
p−m

p

α
1
p

‖ x ‖m
p =

m
p−m

p

α
1
p

.

This completes the proof. �
REMARK. Let H be an m-uniform hypergraph and Ck = v0e1v1e2v2 · · ·vk−1ekvk

(= v0) be a cycle in H . If there is a weighted incidence matrix M and weights {ω(e)}
such that H is consistently α -weighted normal, we have

∑
e∈S(H)

aeω(e)
m

= m! ∑
e∈E(H)

1
(m−1)!ω(e)

m
= ∑

e∈E(H)
ω(e);

∑
e∈S(H)v

aeM(v,e) = (m−1)! ∑
e∈E(H)v

1
(m−1)!

M(v,e) = ∑
e∈E(H)v

M(v,e).

Note that v0 ∈ e1 ∩ ek and vi ∈ ei ∩ ei+1 for i ∈ [k−1] , by the condition of consistent
of H , we have

ω(e1)
mM(v0,e1)

=
ω(ek)

mM(v0,ek)
;

ω(e2)
mM(v1,e2)

=
ω(e1)

mM(v1,e1)
;

ω(e3)
mM(v2,e3)

=
ω(e2)

mM(v2,e2)
; · · · ; ω(ek)

mM(vk−1,ek)
=

ω(ek−1)
mM(vk−1,ek−1)

,

then

M(v0,ek)
M(v0,e1)

=
ω(ek)
ω(e1)

;
M(v1,e1)
M(v1,e2)

=
ω(e1)
ω(e2)

;

M(v2,e2)
M(v2,e3)

=
ω(e2)
ω(e3)

; · · · ; M(vk−1,ek−1)
M(vk−1,ek)

=
ω(ek−1)
ω(ek)

,

Hence we have

k

∏
i=1

M(vi,ei)
M(vi−1,ei)

= 1.
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From these we can see that the definitions of consistent and α -normal labeling
method in [5, 10] (that is Definition 2) are a special case of Definition 3 as given in this
paper.

4. Some applications of the α -labeling method for the p -spectral radius

In this section we will give some applications of the α -labeling method for the
p -spectral radius.

THEOREM 4.1. Let H1,H2, . . . ,Hk be the components of a general hypergraph H
with rank m and order n. If H has no isolated vertex, then

(i) If 1 � p � m, ρ (p)(H) = max1�i�k ρ (p)(Hi) .

(ii) If p > m, ρ (p)(H) = (∑k
i=1

(
ρ (p)(Hi)

) p
p−m

)
p−m

p .

Proof. (i) Let ρ (p)(Hi) = PHi(y
(i)) with y(i) ∈ R|V (Hi)|

+ , and x ∈ Rn
+ which satisfies

xv =

{
y(i)
v , if v ∈V (Hi);

0, otherwise.

It is easy to see that ρ (p)(H)� PH(x)= PHi(y) = ρ (p)(Hi). This implies ρ (p)(H)�
max1�i�k ρ (p)(Hi) .

Let ρ (p)(H) = PH(u) with u ∈ Sn−1
p,+ . By Lemma 2.1 and 1 � p � m , we have

ρ (p)(H) = PH(u) =
k

∑
i=1

PHi(u|V (Hi))

�
k

∑
i=1

ρ (p)(Hi) ‖ u|V (Hi) ‖m
p

� max
1�i�k

ρ (p)(Hi)
k

∑
i=1

‖ u|V (Hi) ‖m
p

� max
1�i�k

ρ (p)(Hi)
k

∑
i=1

‖ u|V (Hi) ‖p
p= max

1�i�k
ρ (p)(Hi).

(ii) Let Hi be consistently αi -normal with weighted incidence matrix Mi =
(Mi(v,e))|V (Hi)|×|S(Hi)| and {ωi(e)} (that is, the weight of e ∈ E(Hi)), where αi =

mp−m

(ρ(p)(Hi))p for i ∈ [k] , that is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑e∈S(Hi)
aeωi(e)

m = 1,

∑e∈S(Hi)v aeMi(v,e) = 1 for any v ∈V (Hi),
ωi(e)p−mΠv∈eMi(v,e) = αi for any e ∈ S(Hi),
Mi(v,e1) = Mi(v,e2) for e1 equals to e2 up to rewriting.
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Let C = ∑k
i=1

1

α
1

p−m
i

= 1
m

(
∑k

i=1(ρ (p)(Hi))
p

p−m

)
. Now we construct a weighted

incidence matrix M = (M(v,e))|V (H)|×|S(H)| and {ω(e)} for H as follows:

M(v,e) =

{
Mi(v,e) for if v ∈V (Hi), e ∈ S(Hi),
0 otherwise,

ω(e) =
ωi(e)

Cα
1

p−m
i

, if e ∈ S(Hi).

For any v ∈V (H) , assume that v ∈V (Hi) , then

∑
e∈S(H)v

aeM(v,e) = ∑
e∈S(Hi)v

aeMi(v,e) = 1.

For any e ∈ S(H) , assume that e ∈ S(Hi) , then

ω(e)p−mΠv∈eM(v,e) =

⎛
⎝ ωi(e)

Cα
1

p−m
i

⎞
⎠

p−m

Πv∈eMi(v,e) =
1

Cp−m ,

∑
e∈S(H)

aeω(e)
m

=
k

∑
i=1

∑
e∈S(Hi)

aeωi(e)

Cmα
1

p−m
i

=
1
C

k

∑
i=1

1

α
1

p−m
i

= 1,

ω(e)
M(v,e)

=
ωi(e)

Mi(v,e)Cα
1

p−m
i

for v ∈ e ∈ S(Hi)v.

Therefore H is consistently α -weighted normal with α = C−(p−m) , by Theorem 3.4,
we obtain our desired result. �

THEOREM 4.2. Let H be a general hypergraph H with rank m and du be the

degree of vertex u. If p > m, then ρ (p)(H) �
(
m∑e∈S(H) Πu∈ed(u)

1
p−m

) p−m
p

.

Proof. Let C = ∑e∈S(H) Πu∈ed(u)
1

p−m . Define a weighted incidence matrix M =
(M(u,e))|V (H)|×|S(H)| and {ω(e)} for H as follows.

M(u,e) =

{
1

d(u) for if u ∈ e ∈ S(H),

0 otherwise,

ω(e) =
1
C

Πu∈ed(u)
1

p−m .

For any u ∈V (H) ,

∑
e∈S(H)u

aeM(u,e) = ∑
e∈S(H)u

ae
1

d(u)
= 1
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For any e ∈ S(H) ,

ω(e)p−mΠu∈eM(u,e) =
1

Cp−m Πu∈ed(u)Πu∈e
1

d(u)

=
1

Cp−m ,

∑
e∈S(H)

aeω(e)
m

= ∑
e∈S(H)

aeΠu∈ed(u)
1

p−m

Cm

= ∑
e∈S(H)

aeΠu∈ed(u)
1

p−m(
∑e∈S(H) Πu∈ed(u)

1
p−m

)
m

�
maxe∈S(H) ae

m ∑
e∈S(H)

Πu∈ed(u)
1

p−m(
∑e∈S(H) Πu∈ed(u)

1
p−m

)
=

maxe∈S(H) ae

m
< 1.

Hence H is 1
Cp−m -weighted subnormal, by Theorem 3.5, we obtain our desired re-

sult. �
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