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Abstract. We study a specific family of symmetric norms on the algebra B(H ) of operators
on a separable infinite-dimensional Hilbert space. With respect to each symmetric norm in this
family the identity operator fails to attain its norm. Using this, we generalize one of the main
results from [8]; the hypothesis is relaxed, and consequently, the family of symmetric norms for
which the result holds is extended.

We introduce and study the concepts of “universally symmetric norming operators” and
“universally absolutely symmetric norming operators” on a separable Hilbert space. These refer
to the operators that are, respectively, norming and absolutely norming, with respect to every
symmetric norm on B(H ) . We establish a characterization theorem for such operators and
prove that these classes are identical, and that they coincide with the class of compact operators.
In particular, we provide an alternative characterization of compact operators on a separable
infinite-dimensional Hilbert space.

1. Introduction

Throughout this paper we shall consider Hilbert spaces over the field C of com-
plex numbers. A bounded linear transformation, henceforth called an “operator”, T :
H → K between two Hilbert spaces is said to be norming or norm attaining if there
is an element x∈H with ‖x‖= 1 such that ‖T‖= ‖Tx‖ , where ‖T‖= sup{‖Tx‖K :
x ∈ H ,‖x‖H � 1} is the usual operator norm on the Banach space B(H ,K ) of
operators from H to K . We say that T ∈ B(H ,K ) is absolutely norming if for
every nontrivial closed subspace M of H , T |M is norming. We let N (H ,K ) and
A N (H ,K ) respectively denote the sets of norming and absolutely norming opera-
tors in B(H ,K ) . Throughout this exposition, the term “ideal” will always mean a
two-sided ideal. Let us recall the following definition.

DEFINITION 1.1. Let I be an ideal of the algebra B(H ) of operators on a sep-
arable infinite-dimensional Hilbert space H . A symmetric norm on I is defined to be
a function ‖ · ‖s : I → [0,∞) which satisfies the following conditions:

1. ‖ · ‖s is a norm;

2. ‖X‖s = ‖X‖ for every rank-one operator X ∈ I (crossnorm property); and
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3. ‖AXB‖s � ‖A‖‖X‖s‖B‖ for every X ∈ I and for every pair A,B of operators in
B(H ) (uniformity);

where ‖ · ‖ is the usual operator norm.

If we consider the ideal I to be the full algebra B(H ) itself, then ‖ · ‖s is said to be
a symmetric norm on B(H ) . Moreover, the usual operator norm on any ideal I of
B(H ) is a symmetric norm, and every symmetric norm on B(H ) is topologically
equivalent to the usual operator norm.

1.1. Background and motivation

The class of norming operators on Hilbert spaces have been extensively studied
and there is a plethora of information on these operators; see, for instance, [4, 5, 1,
2, 3, 9, 11, 12, 13] and references therein. The class of absolutely norming operators,
however, was introduced recently in [6]. In [10], we established the following spectral
characterization theorem for these operators.

THEOREM 1.2. [10, Theorem 5.1] Let T ∈ B(H ,K ) and T = U |T | its polar
decomposition. Then T is absolutely norming, that is, T ∈ A N (H ,K ) if and only
if |T | is of the form |T |= αI +K+F , where α � 0 , K is a positive compact operator,
and F is a self-adjoint finite-rank operator.

The above result served to be the first hint to a more general situation. Suppose
B(H ,K ) is equipped with a symmetric norm1 equivalent to the usual operator norm.
Then what does it mean for an operator T ∈ B(H ,K ) to be norming and absolutely
norming in this setting? What about characterizing these operators?

In [8], we continued the study of absolutely norming operators in this more gen-
eral setting where B(H ,K ) was equipped with one of the following three (families
of) symmetric norms: the Ky Fan k -norm(s), the weighted Ky Fan π ,k -norm(s), and
the (p,k)-singular norm(s). We defined the notion of absolutely norming operators
in each of these cases and thereafter characterized the set of these operators with re-
spect to each of these three (families of) norms; see [8, Theorems 4.22, 5.12 and 5.13].
This detailed study of several particular symmetric norms provided us with the insight
of how to extend the concept of “norming” and “absolutely norming” from a specific
symmetric norm to an arbitrary symmetric norm that is equivalent to the usual operator
norm; earlier definitions used the intrinsic nature of each symmetric norm in question.
(See Definition 3.1; the attention has been restricted to the algebra B(H ) of operators
on a separable infinite-dimensional Hilbert space H , and the theory of symmetrically-
normed ideals and their Banach space duals play a crucial part in arriving at this defini-
tion.)

The subsequent discussion in [8] involves positive operators of the form of a non-
negative scalar multiple of the identity plus a positive compact plus a self-adjoint finite-
rank. It is not clear, a priori, if the operators of this form are absolutely norming with

1By abuse of terminology, we continue to use the term “symmetric” to refer to those norms on B(H ,K )
which are symmetric in the sense of Definition 1.1 whenever H is separable and K = H .
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respect to every symmetric norm on B(H ) . It turns out that there exists a symmetric
norm on B(�2) with respect to which the identity operator does not attain its norm; see
Theorem 3.5 [8, Proposition 1.3].

1.2. Overview of this paper

The proof of the result presented in [8] — that there exists a symmetric norm on
B(�2) such that the identity operator does not attain its norm — in fact, presents a
constructive method to produce, not merely one, but an infinite family of symmetric
norms on B(�2) with respect to each of which the identity operator does not attain its
norm.

In this manuscript, we formally introduce this family of symmetric norms and
study them in detail (see Section 3). This leads us to Theorem 3.6 which generalizes
the above mentioned result from [8]; the hypothesis is relaxed, and consequently, the
family of symmetric norms for which the result holds is extended.

We then introduce and study the notion of “universally symmetric norming op-
erators” or USN operators (see Definition 5.1) and “universally absolutely symmetric
norming operators” or UASN operators (see Definition 5.2) on a separable infinite-
dimensional Hilbert space. These refer to the operators that are, respectively, norming
and absolutely norming, with respect to every symmetric norm. It is known (see Theo-
rem 3.2) that a compact operator in B(H ) is universally absolutely symmetric norm-
ing, and hence universally symmetric norming. This renders compacts as prototypical
examples of such operators. So, we have

compact operators⊆ UASN operators⊆ USN operators.

It would be desirable to know whether a USN operator is compact. In Section 5 we
answer this question affirmatively. The following is the main result of this section
which essentially states that an operator in B(H ) is universally symmetric norming if
and only if it is compact.

THEOREM 5.6. Let T ∈ B(H ) and let Φ1 denote the maximal s.n.function.
Then the following statements are equivalent.

1. T ∈ B0(H ) .

2. T is universally absolutely symmetric norming, that is, T ∈ A N Φ∗(H ) for
every s.n.function Φ equivalent to Φ1 .

3. T is universally symmetric norming, that is, T ∈NΦ∗(H ) for every s.n.function
Φ equivalent to Φ1 .

We hence establish a characterization theorem for such operators on B(H ) . In
particular, this result provides an alternative characterization theorem for compact op-
erators on a separable Hilbert space.

Acknowledgement. This work was done while the author was a PhD student at the
Department of Pure Mathematics, University of Waterloo. The author is grateful to his
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2. Preliminaries

In this section we recall some notions and results concerning the ideal structure of
the algebra of all bounded linear operators acting on a separable Hilbert space. Also,
since this work is a continuation of [8], this section essentially builds upon, and hence
requires, the preliminary section of [8] where the concept of singular values is extended
from compact operators to any operator; we refer the reader to [8, Section 2] and [7].

NOTATION 2.1. Consider the algebra B(H ) of operators on a separable Hilbert
space H . We let B00(H ) , respectively, B0(H ) denote the set of all finite-rank
operators on H , respectively, the set of compacts. We use B1(H ) to denote the trace
class operators, with the trace norm ‖ ·‖1 . By c0 we denote the space of all convergent
sequences of real numbers with limit 0 and we let c00 ⊆ c0 be the linear subspace of
c0 consisting of all sequences with a finite number of nonzero terms. The positive cone
of c00 is denoted by c+

00 and we use c∗00 ⊆ c+
00 to denote the cone of all nonincreasing

nonnegative sequences from c00 .

DEFINITION 2.2. An ideal S of the algebra B(H ) is said to be a symmetrically-
normed ideal (abbreviated an s.n.ideal) of B(H ) if on it there is defined a symmetric
norm ‖·‖S which makes S a Banach space (that is, S is complete in the metric given
by this norm). We say that two ideals SI and SII coincide elementwise if SI and SII

consist of the same elements.

DEFINITION 2.3. [7, Chapter 3, Page 71] A function Φ : c00 → [0,∞) is said to
be symmetric norming function (or simply an s.n.function) if it satisfies the following
properties:

(i) Φ(ξ ) � 0 for every ξ := (ξ j) j∈N ∈ c00 ;

(ii) Φ(ξ ) = 0 ⇐⇒ ξ = 0;

(iii) Φ(αξ ) = |α|Φ(ξ ) for every ξ ∈ c00 and for every scalar α ∈ R ; and

(iv) Φ(ξ + ψ) � Φ(ξ )+ Φ(ψ) for every pair ξ ,ψ of sequences in c00.

(v) Φ((ξ1,ξ2, . . . ,ξn,0,0, . . .)) = Φ((|ξ j1 |, |ξ j2 |, . . . , |ξ jn |,0,0, . . .)) for every ξ ∈ c00

and for every n ∈ N , where j1, j2, . . . , jn is any permutation of the integers
1,2, . . . ,n .

(vi) Φ((1,0,0, . . .)) = 1.
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DEFINITION 2.4. [7, Chapter 3, Page 76] Let Φ and Ψ be two s.n.functions. Φ
and Ψ are said to be equivalent if

sup
ξ∈c00

Φ(ξ )
Ψ(ξ )

< ∞ and sup
ξ∈c00

Ψ(ξ )
Φ(ξ )

< ∞.

We say that Φ � Ψ if for every every ξ ∈ c00 , we have Φ(ξ ) � Ψ(ξ ) .

REMARK 2.5. A moment’s thought will convince the readers that an s.n.function
can be uniquely defined by its values on the cone c∗00 . Here the minimal s.n.function
Φ∞ : c∗00 → [0,∞) is defined by Φ∞(ξ ) = ξ1 for every ξ = (ξ j) j ∈ c∗00 and the maximal
s.n.function Φ1 : c∗00 → [0,∞) is defined by Φ1(ξ ) = ∑ j ξ j for every ξ = (ξ j) j ∈ c∗00.
For any s.n.function Φ , we have Φ∞ � Φ � Φ1 (see [7, Chapter 3, Section 3, Relation
3.12, Page 76]).

DEFINITION 2.6. Let Φ be an s.n.function defined on c∗00 . Then the function
given by the formula

Φ∗(η) = max

{
∑
j

η jξ j : ξ ∈ c∗00,Φ(ξ ) = 1

}
for every η ∈ c∗00,

is defined to be the adjoint of the function Φ .

REMARK 2.7. That Φ∗ is an s.n.function is a trivial observation. Also, the adjoint
of Φ∗ is Φ . In particular, the minimal and maximal s.n.functions are the adjoint of each
other, that is, Φ∗

1 = Φ∞ and Φ∗
∞ = Φ1. Therefore, when an s.n.function is equivalent to

the maximal (minimal) one, its adjoint is equivalent to the minimal (maximal) one.

REMARK 2.8. It is evident that every s.n.ideal gives rise to an s.n.function. Con-
versely, to every s.n.function Φ we associate an s.n.ideal SΦ , which is referred to as
the s.n.ideal generated by the s.n.function Φ . For a detailed exposition of the construc-
tion of the s.n.ideal from an s.n.function we refer the reader to Gohberg and Krein’s
text [7, Chapter 3] which elaborately discusses the theory of s.n.ideals. An abridged
outline of this construction has also been discussed in [8, Section 6, Notation 6.4].
Since we will be dealing with this theory extensively, we have attempted to duplicate
their notation wherever possible.

If Φ,Ψ are s.n.functions and SΦ,SΨ are the s.n.ideals generated by these s.n.func-
tions respectively, then SΦ and SΨ coincide elementwise if and only if Φ and Ψ
are equivalent. In particular, if Φ is an s.n.function equivalent to Φ1 , then SΦ and
B1(H ) coincide elementwise and when Φ is equivalent to Φ∞ , SΦ and B0(H )
coincide elementwise.

Two more notations are in order. The Banach space dual of a Banach space X is
denoted by X∗ in the sequel. To indicate that Banach spaces X and Y are isometrically
isomorphic, we write X ∼= Y isometrically (or, Y ∼= X isometrically).

We conclude this section by an often needed piece of folklore from [7].
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PROPOSITION 2.9. [7, Chapter 3, Theorem12.4] If Φ is an arbitrary s.n.function
equivalent to the maximal s.n.function, then the general form of a continuous linear
functional f on the separable space SΦ is given by f (X) = Tr(AX) for some A ∈
B(H ) and

‖ f‖ := sup{|Tr(AX)| : X ∈ SΦ,‖X‖Φ � 1} = ‖A‖Φ∗ .

Thus, the Banach space dual S∗
Φ is isometrically isomorphic to (B(H ),‖ ·‖Φ∗) , that

is,
S∗

Φ
∼= (B(H ),‖ · ‖Φ∗).

3. Norms that are not attained by the identity

In this section, we revisit a result from [8] and use it to formally introduce a family
of symmetric norms on B(H ) with respect to each of which the identity operator
is rendered nonnorming. Thereafter, in Subsection 3.3, we improve upon this above
mentioned result by extending it to a larger family of symmetric norms.

3.1. Symmetric norming and absolutely symmetric norming operators

Given an arbitrary s.n.function Φ that is equivalent to the maximal s.n.function,
we now recall the definition of operators in B(H ) that attain their Φ∗ -norm.

DEFINITION 3.1. [8, Definitions 6.11,6.14] Let Φ be an s.n.function equiva-
lent to the maximal s.n.function. An operator T ∈ (B(H ),‖ · ‖Φ∗) is said to be Φ∗ -
norming or symmetric norming with respect to the symmetric norm ‖·‖Φ∗ if there exists
an operator K ∈ SΦ = (B1(H ),‖ · ‖Φ) with ‖K‖Φ = 1 such that |Tr(TK)| = ‖T‖Φ∗ .
We say that T ∈ (B(H ),‖ · ‖Φ∗) is absolutely Φ∗ -norming or absolutely symmetric
norming with respect to the symmetric norm ‖ · ‖Φ∗ if for every nontrivial closed sub-
space M of H , TPM ∈B(H ) is Φ∗ -norming (here PM is the orthogonal projection
onto M ).

We let NΦ∗(H ) and A N Φ∗(H ) respectively denote the set of Φ∗ -norming and
absolutely Φ∗ -norming operators in B(H ) . Needless to mention, every absolutely
Φ∗ -norming operator is Φ∗ -norming, that is, A N Φ∗(H ) ⊆ NΦ∗(H ) .

With the above definitions established to guide the way, we prove and collect
certain fundamental results concerning symmetric norming and absolutely symmetric
norming operators in B(H ) . We begin by recalling the following result.

THEOREM 3.2. [8, Theorem 6.17] Let Φ be an arbitrary s.n.function equivalent
to the maximal s.n.function. If T is a compact operator, then T ∈ A N Φ∗(H ), that
is, B0(H ) ⊆ A N Φ∗(H ).

Following the well established precedent, we use s j(T ) to denote the j -th singular
value (or singular number or s-number) of T ∈ B(H ) . The following proposition
allows us to concentrate on the positive operators that are symmetric norming. The
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technique of the proof might be elementary but since we do not have a reference for the
exact statement, a complete proof is provided.

PROPOSITION 3.3. Let Φ be an s.n.function equivalent to the maximal s.n.function.
Then T ∈ NΦ∗(H ) if and only if |T | ∈ NΦ∗(H ).

Proof. We first assume that T ∈ NΦ∗(H ) and observe that ‖T‖Φ∗ = ‖|T |‖Φ∗
since for each j , s j(T ) = s j(|T |) . Then there exists K ∈B1(H ) with ‖K‖Φ = 1 such
that ‖T‖Φ∗ = |Tr(TK)| . If T = U |T | is the polar decomposition of T , then

‖|T |‖Φ∗ = ‖T‖Φ∗ = |Tr(TK)| = |Tr(U |T |K)| = |Tr(|T |KU)|,

where KU ∈ B1(H ) with ‖KU‖Φ = ‖IKU‖Φ � ‖I‖‖K‖Φ‖U‖ = ‖K‖Φ = 1. In fact,
‖KU‖Φ = 1; for if not, then the operator S := KU/‖KU‖Φ ∈B1(H ) satisfies ‖S‖Φ =
1 and yields

|Tr(|T |S)| =
∣∣∣∣Tr

( |T |KU
‖KU‖Φ

)∣∣∣∣= 1
‖KU‖Φ

|Tr(|T |KU)| > |Tr(|T |KU)| = ‖|T |‖Φ∗ ,

which contradicts the fact that the supremum of the set

{|Tr(|T |X)| : X ∈ B1(H ),‖X‖Φ � 1}

is attained at KU . This shows that |T | ∈ NΦ∗(H ).
Conversely, if |T | ∈ NΦ∗(H ) , then by replacing T with |T | in the above argu-

ment using |T | = U∗T , we can prove the existence of K̂ ∈ B1(H ) with ‖K̂‖Φ = 1
such that ‖T‖Φ∗ = |Tr(TK̂U∗)| where K̂U∗ ∈B1(H ) with ‖K̂U ∗‖Φ � 1. It can then
be shown that ‖K̂U∗‖Φ = 1 and the result follows. �

We need one more result concerning the computation of the symmetric norm of an
operator.

PROPOSITION 3.4. Let Φ be an s.n.function equivalent to the maximal s.n.function
and let T ∈ B(H ) . Then

‖T‖Φ∗ = sup

{
∑
j

s j(T )s j(K) : K ∈ B1(H ),K = diag{s j(K)} j,‖K‖Φ = 1

}

Proof. Since Φ is equivalent to the maximal s.n.function, we know that S∗
Φ
∼=

(B(H ),‖ · ‖Φ∗) isometrically and by Definition 3.1 the ‖ · ‖Φ∗ norm for any opera-
tor T ∈ B(H ) is given by ‖T‖Φ∗ = sup{|Tr(TK)| : K ∈ SΦ, ‖K‖Φ = 1}. But the
ideal B1(H ) and SΦ coincide elementwise and hence ‖T‖Φ∗ = sup{|Tr(TK)| : K ∈
B1(H ), ‖K‖Φ = 1}.

First we set

α := sup{|Tr(TK)| : K ∈ B1(H ), ‖K‖Φ = 1}
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and
β := sup{∑

j
s j(T )s j(K) : K ∈ B1(H ), ‖K‖Φ = 1},

and thereafter we claim that α = β . That α � β is a trivial observation since |Tr(TK)|�
∑ j s j(TK) � ∑ j s j(T )s j(K). To see β � α , let us choose an operator K ∈B1(H ) with
‖K‖Φ = 1. An easy computation yields

∑
j

s j(T )s j(K) =

〈⎡⎢⎢⎢⎢⎣
s1(T )

...
s j(T )

...

⎤⎥⎥⎥⎥⎦,

⎡⎢⎢⎢⎢⎣
s1(K)

...
s j(K)

...

⎤⎥⎥⎥⎥⎦
〉

� Φ∗

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣

s1(T )
...

s j(T )
...

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠Φ

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣

s1(K)
...

s j(K)
...

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠

= Φ∗

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣

s1(T )
...

s j(T )
...

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠= ‖T‖Φ∗

= sup{|Tr(TK)| : K ∈ B1(H ), ‖K‖Φ = 1} = α.

It then follows that β � α and this proves our first claim.
We next let γ := sup{∑ j s j(T )s j(K) : K ∈B1(H ), K = diag{s j(K)}, ‖K‖Φ = 1}

and prove that γ = β . That γ � β is obvious. To prove β � γ , we choose an operator
K ∈ B1(H ) with ‖K‖Φ = 1 and define

K̃ :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1(K)

s2(K) 0
.. .

0 s j(K)
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Notice that for every j , we have s j(K̃) = s j(K) which implies that ‖K̃‖Φ = ‖K‖Φ = 1.
Even more, K̃ ∈ B1(H ) and hence ∑ j s j(T )s j(K) = ∑ j s j(T )s j(K̃) . But since

∑
j

s j(T )s j(K̃) � sup

{
∑
j

s j(T )s j(K) : K ∈ B1(H ), K = diag{s j(K)}, ‖K‖Φ = 1

}
,

it follows that β � γ which establishes our second claim. From the above two obser-
vations we conclude that α = γ , and consequently the assertion is proved. �
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3.2. Norm(s) that are not attained by the identity

We now recall the following result which states that there exists a symmetric norm
on B(H ) with respect to which the identity operator does not attain its norm.

THEOREM 3.5. [8, Proposition 1.3] There exists a symmetric norm ‖ · ‖Φ∗
π on

B(�2) such that I /∈ NΦ∗
π (�2) .

There is more to this theorem than meets the eye; its proof is constructive and
illustrates an elegant technique of producing (a family of) symmetric norms on B(H )
with respect to each of which the identity operator does not attain its norm. More
precisely, the proof demonstrates a well-defined family of s.n.functions — henceforth
referred to as “s.n.functions affiliated to strictly decreasing weights” — which naturally
generate such symmetric norms. In what follows we formally introduce this family of
s.n.functions.

Let Π̂ denote the set of all strictly decreasing convergent sequences of positive
numbers with their first term equal to 1 and positive limit, that is,

Π̂ = {π := (πn)n∈N : π1 = 1, limπn > 0, and πk > πk+1 for every k ∈ N}.

For each π ∈ Π̂ , let Φπ denote the symmetric norming function defined by Φπ(ξ1,ξ2, . . .)
= ∑ j π jξ j and observe that Φπ is equivalent to the maximal s.n.function Φ1 . The-
orem 3.5 essentially proves that I /∈ NΦ∗

π (�2) whenever Φπ belongs to the family

{Φπ : π ∈ Π̂} of s.n.functions affiliated to strictly decreasing weights.

3.3. A few more norms that are not attained by the identity

We construct more symmetric norms on B(H ) with respect to which the identity
operator does not attain its norm. This subsection aims at extending Theorem 3.5 to a
larger family of symmetric norms, and thus generalizing it.

Observe that the proof of Theorem 3.5, in its construction of symmetric norms,
assumes that the sequence π belongs to Π̂ and is thus strictly decreasing. We claim
that the requirement for π to be a strictly decreasing sequence is not necessary for the
result to hold, as long as there exists a natural number N such that πN > πN+1 . Let
us use Π to denote the set of all nonincreasing sequences of positive numbers with
their first term equal to 1 and positive limit (so that Π̂ ⊆ Π)2. Thus, if π ∈ Π is
not the constant sequence 1 = (1,1, . . .) , then there exists a natural number N such
that πN > πN+1 , and consequently, our claim amounts to showing that the adjoint of
the s.n.function defined via π generates a symmetric norm on B(�2) with respect to
which the identity operator does not attain its norm.

We conclude this section by proving the following result which, in effect, extends
the preceding theorem to every symmetric norm Φπ in the family {Φπ : π ∈ Π} of

2For the convenience of the readers, it would perhaps be worth to recall that we have used Π , in [8], to
denote the set of all nonincreasing sequences of positive numbers with their first term equal to 1 . However,
in this manuscript, we use Π to denote the set of all nonincreasing sequences of positive numbers with their
first term equal to 1 and positive limit. This abuse of notation deemed necessary to avoid too many symbols.
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s.n.functions except when π ∈ Π is the constant sequence 1 = (1,1, . . .) ; earlier, the
result was shown to hold for the family {Φπ : π ∈ Π̂} of s.n.functions.

THEOREM 3.6. Let Π be the set of all nonincreasing convergent sequence of pos-
itive numbers with their first term equal to 1 and positive limit, that is,

Π = {π := (πn)n∈N : π1 = 1, lim
n

πn > 0, and πk � πk+1 for each k ∈ N},

and consider the subset Π \ {1} of Π consisting of all nonincreasing convergent se-
quence of positive numbers with their first term equal to 1 and positive limit except
the constant sequence 1 . For each π ∈ Π\ {1} , let Φπ denote the symmetric norming
function defined by Φπ(ξ1,ξ2, . . .) = ∑ j π jξ j. Then

1. Φπ is equivalent to the maximal s.n.function Φ1 ; and

2. for every π ∈ Π\ {1} , I /∈ NΦ∗
π (�2) .

Alternatively, I /∈NΦ∗
π (�2) for every Φπ that belongs to the family {Φπ : π ∈ Π\{1}}

of s.n.functions.

Proof. That each s.n.function from the family {Φπ : π ∈ Π\{1}} of s.n.functions
is equivalent to the maximal s.n.function Φ1 is, now, a trivial observation.

The proof of the second claim is almost along the lines of the proof of Theorem
3.5. Let π = (πn)n∈N ∈ Π \ {1} and let Φπ be the s.n.function generated by π , that
is, Φπ(ξ1,ξ2, . . .) = ∑ j π jξ j . Now, contrapositively assume that I ∈ NΦ∗

π , then the
supremum,

sup

{
∑
j

s j(K) : K ∈ B1(�2), K = diag{s1(K),s2(K), . . .}, ‖K‖Φπ = 1

}
,

is attained, that is, there exists K0 = diag{s1(K0),s2(K0), . . .}∈B1(�2) with ∑ j π js j(K0)
= 1 such that ‖I‖Φ∗

π = ∑ j s j(K0). We will prove the existence of an operator K̃ ∈
B1(�2) , ‖K̃‖Φπ = 1 of the form K̃ = diag{s1(K̃),s2(K̃), . . .} such that ∑i si(K̃) >

∑ j s j(K0) . To this end, since π ∈ Π \ {1} , there exists a natural number M such that
πM > πM+1 . Set

λ =
πM

πM+1
,

and choose ε > 0 such that

sM(K0)− ε = sM+1(K0)+ λ ε.

(Of course, there is only one such ε .) Now define K̃ to be the diagonal operator given
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by

K̃ :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1(K0)
. . .

sM−1(K0)
sM(K0)− ε

sM+1(K0)+ λ ε
sM+1(K0)

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Before proceeding further, notice that the singular numbers of the above defined opeara-
tor K̃ are precisely the diagonal elements, and that the equation preceding the definition
of K̃ guarantees that these s-numbers are arranged in a nonincreasing manner on the
diagonal. Next we observe that

−πMε + πM+1λ ε = −πMε + πM+1
πM

πM+1
ε = −πMε + πMε = 0,

and hence

πM(sM(K0)− ε)+ πM+1(sM+1(K0)+ λ ε) = πMsM(K0)+ πM+1sM+1(K0).

This yields

∑
j

π js j(K̃) = ∑
j

π js j(K0), and hence ‖K̃‖Φπ = ‖K0‖Φπ = 1.

Consequently, we have K̃ ∈ B1(�2) . Moreover, K̃ is of the form K̃ = diag{s1(K̃),
s2(K̃), . . .} .

However, since λ > 1 and ε > 0, we have

(sM(K0)−ε)+(sM+1(K0)+λ ε)= sM(K0)+sM+1(K0)+(λ −1)ε > sM(K0)+sM+1(K0),

which allows us to infer that

∑
j

s j(K̃) =
M−1

∑
j=1

s j(K0)+ (sM(K0)− ε)+ (sM+1(K0)+ λ ε)+ ∑
j>M+1

s j(K0)

>
M−1

∑
j=1

s j(K0)+ (sM(K0)+ sM+1(K0))+ ∑
j>M+1

s j(K0)

= ∑
j

s j(K0),

which contradicts the assumption that ∑ j s j(K0) (= |Tr(K0)|) is the supremum of the
set {

∑
j

s j(K) : K ∈ B1(�2), K = diag{s1(K),s2(K), . . .}, ‖K‖Φπ = 1

}
.
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Since the operator K0 with which we began our discussion is arbitrary, it follows that
for any given operator in B1(�2) with unit norm, one can find another operator in
B1(�2) with unit norm with trace of larger magnitude and hence the supremum of the
above set can never be attained. This shows that the identity operator does not attain its
norm. �

4. Symmetric norming operators affiliated to strictly decreasing weights
and their characterization

In this section we return to the study of the family of symmetric norms on B(H )
generated by the duals (or adjoints) of s.n.functions from the family {Φπ : π ∈ Π̂}
of s.n.functions affiliated to strictly decreasing weights, and establish a characterization
theorem for operators in B(H ) that are symmetric norming with respect to every such
symmetric norm. (Recall that for each π ∈ Π̂ , Φπ denotes the s.n.function defined by
Φπ(ξ1,ξ2, . . .) = ∑ j π jξ j , and that Φπ is equivalent to the maximal s.n.function Φ1 .)
This section also studies the operators in B(H ) that are absolutely symmetric norming
with respect to every symmetric norm in the family and presents a characterization
theorem for those as well. It turns out that an operator is symmetric norming with
respect to every symmetric norm in the family if and only if it is absolutely symmetric
norming with respect to every symmetric norm in the family. This “characterization
theorem” is the main theorem of this section.

Theorem 3.5 essentially proves that I /∈NΦ∗
π (H ) whenever π ∈ Π̂ . We know that

for an arbitrary s.n.function Φ equivalent to Φ1 , we have NΦ∗(H ) � B0(H ) . How-
ever, it is of interest to know whether NΦ∗

π (H ) ⊆ B0(H ) if π ∈ Π̂ ; for if the answer
to this question is affirmative, then Theorem 3.2 would yield NΦ∗

π (H ) = B0(H ) for

every π ∈ Π̂ (and would thus characterize the Φ∗
π -norming operators in B(H ) for

every π ∈ Π̂). By Proposition 3.3 it suffices to know whether NΦ∗
π (H )∩B(H )+ ⊆

B0(H ) where B(H )+ = {T ∈B(H ) : T � 0}. The following lemma and example
prove the existence of π ∈ Π̂ such that NΦ∗

π (H ) � B0(H ) .

LEMMA 4.1. ([7]) If Φπ ∈ {Φπ : π ∈ Π̂} , then its adjoint Φ∗
π is given by

Φ∗
π(ξ ) = sup

n

{
∑n

j=1 ξ j

∑n
j=1 π j

}
for every ξ = (ξi)i∈N ∈ c∗00.

Moreover, the s.n.function Φ∗
π is equivalent to the minimal s.n.function.

For the proof of the above lemma we refer the reader to [7, Chapter 3, Lemma 15.1,
Page 147]; readers can also see Pages 148-149, and the paragraph preceding Theorem
15.2 of the monograph [7].
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EXAMPLE 4.2. Consider the positive diagonal operator

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2

1+ 1
2 0

1+ 1
3

1+ 1
4

. . .

0 1+ 1
n

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ B(�2),

with respect to an orthonormal basis B = {vi : i∈N} . Let π = (πn)n∈N be a sequence of
real numbers defined by πn := 1

2 + 1−1/2
n = n+1

2n . That π ∈ Π̂ is obvious. Consequently,
Φπ is equivalent to the maximal s.n.function Φ1 and the Banach space dual S∗

Φπ
of the

s.n.ideal SΦπ is isometrically isomorphic to (B(�2),‖·‖Φ∗
π ) , that is, SΦπ

∼= (B(�2),‖·
‖Φ∗

π ) isometrically. An easy computation yields

‖P‖Φ∗
π = sup

n

{
∑n

j=1 s j(P)

∑n
j=1 π j

}
= sup

n

{
n+(1+1/2+ . . .+1/n)

1
2 (n+(1+1/2+ . . .+1/n))

}
= 2.

If we define K to be the diagonal operator given by

K =

⎛⎜⎜⎜⎜⎜⎜⎝

1
0

. . .
0

. . .

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ B1(�2) = SΦπ ,

then we have ‖K‖Φπ = ∑ j π js j(K) = 1 and |Tr(PK)| = |Tr(diag{2,0,0, . . .})| = 2 =
‖P‖Φ∗

π which implies that P ∈ NΦ∗
π (H ) . However, P /∈ B0(�2) . This proves the

existence of π ∈ Π̂ such that NΦ∗
π (H ) � B0(H ) .

The above example establishes the fact that even for a given Φπ from the family
{Φπ : π ∈ Π̂} of s.n.functions, it is too much to ask for the set NΦ∗

π (H ) to be contained
in the compacts. So let us be more modest and ask whether P ∈ B(H ) is compact
whenever P ∈ NΦ∗

π (H )∩B(H )+ for every Φπ ∈ {Φπ : π ∈ Π̂}. The answer to this
question is a resounding yes as is stated in the Theorem 4.7.

Before we prove this theorem, let us find π ∈ Π̂ such that the positive noncompact
operator P of Example 4.2 does not belong to NΦ∗

π (H ) . The example which follows
illustrates this and hence agrees with the Theorem 4.7.

EXAMPLE 4.3. Let π = (πn)n∈N be a sequence defined by

πn :=
1
3

+
1−1/3

n
=

n+2
3n

.
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Then π ∈ Π̂, Φπ ∈ {Φπ : π ∈ Π̂} and SΦπ
∼= (B(�2),‖ · ‖Φ∗

π ) isometrically. We con-
sider the operator P of Example 4.2 and prove that P /∈ NΦ∗

π (�2) . To show this, we
assume that P ∈ NΦ∗

π (�2) , that is, the supremum,

sup

{
∑
j

s j(P)s j(K) : K ∈ B1(�2),K = diag{s1(K),s2(K), . . .},‖K‖Φπ = 1

}
,

is attained, and we deduce a contradiction from this assumption. So there exists K =
diag{s1(K),s2(K), . . .} ∈ B1(�2) with ‖K‖Φπ = ∑ j π js j(K) = 1 such that ‖P‖Φ∗

π =
|Tr(PK)|= ∑ j s j(P)s j(K) . Since K ∈B1(H )⊆B0(H ) , we have lim j→∞ s j(K) = 0.
This forces the existence of a natural number M such that sM(K) > sM+1(K). All that
remains is to show the existence of an operator K̃ ∈ B1(H ), ‖K̃‖Φπ = 1 of the form
K̃ = diag{s1(K̃),s2(K̃), . . .} such that ∑ j s j(P)s j(K̃) > ∑ j s j(P)s j(K) . If we define

λ :=
∑M+1

j=M π js j(K)

∑M+1
j=M π j

=
πMsM(K)+ πM+1sM+1(K)

πM + πM+1

and let K̃ be the diagonal operator defined by

K̃ :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1(K)
. . .

sM−1(K)
λ

λ
sM+1(K)

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

then for every j , s j(K̃) = s j(K) which implies that ‖K̃‖Φπ = ‖K‖Φπ = 1 so that K̃ ∈
B1(�2) and is of the form K̃ = diag{s1(K̃),s2(K̃), . . .} . We now prove that K̃ is the
required candidate. It is not too hard to see that

πM

πM+1
>

sM(P)
sM+1(P)

,

which yields,

πMsM+1(P)(sM(K)− sM+1(K)) > πM+1sM(P)(sM(K)− sM+1(K)).

Simplification and rearrangement of terms in the above inequality gives

(sM(P)+ sM+1(P))
[

πMsM(K)+ πM+1sM+1(K)
πM + πM+1

]
> sM(P)sM(K)+ sM+1(P)sM+1(K).

But the left hand side of the above inequation is actually sM(P)sM(K̃)+sM+1(P)sM+1(K̃),
which implies

sM(P)sM(K̃)+ sM+1(P)sM+1(K̃) > sM(P)sM(K)+ sM+1(P)sM+1(K).
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It then immediately follows that ∑ j s j(P)s j(K̃) > ∑ j s j(P)s j(K) which contradicts the
assumption that ∑ j s j(P)s j(K) is the supremum of the set{

∑
j

s j(P)s j(K) : K ∈ B1(�2),K = diag{s1(K),s2(K), . . .},‖K‖Φπ = 1

}
and this is precisely the assertion of our claim.

REMARK 4.4. The working rule of the above example is illuminating. The se-
quence π = (πn)n∈N ∈ Π̂ has been cleverly chosen to construct the example. The
significance of choosing this sequence lies in the fact that it guarantees the existence of
a natural number M so that sM(K) > sM+1(K) as well as πM

πM+1
> sM(P)

sM+1(P) . We use this
example as a tool to prove the following proposition.

PROPOSITION 4.5. Let P ∈ B(H ) be a positive operator. If π ∈ Π̂ such that

πn

πn+1
>

sn(P)
sn+1(P)

for every n ∈ N,

then P /∈ NΦ∗
π (H ) .

Proof. To show that P /∈ NΦ∗
π (H ) , we assume that P ∈ NΦ∗

π (H ) , and we de-
duce a contradiction from this assumption. If P ∈ NΦ∗

π (H ) , then there exists K =
diag(s1(K),s2(K), . . .) in B1(H ) with ‖K‖Φπ = ∑ j π js j(K) = 1 such that ‖P‖Φ∗

π =
|Tr(PK)|= ∑ j s j(P)s j(K) . Since K ∈B1(H )⊆B0(H ) , we have lim j→∞ s j(K) = 0.
This forces the existence of a natural number M such that sM(K) > sM+1(K). We com-
plete the proof by establishing the existence of an operator K̃ ∈ B1(H ), ‖K̃‖Φπ = 1
of the form K̃ = diag{s1(K̃),s2(K̃), . . .} such that ∑ j s j(P)s j(K̃) > ∑ j s j(P)s j(K) . To
this end, we define

λ :=
∑M+1

j=M π js j(K)

∑M+1
j=M π j

,

and let

K̃ :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1(K)
. . .

sM−1(K)
λ

λ
sM+1(K)

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

It can be verified that ‖K̃‖Φπ = ‖K‖Φπ = 1 so that K̃ ∈ B1(�2) and is of the form
K̃ = diag{s j(K̃)} . However, since

πn

πn+1
>

sn(P)
sn+1(P)

for every n ∈ N,
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it follows that
πM

πM+1
>

sM(P)
sM+1(P)

,

and thus we have,

sM(P)sM(K̃)+ sM+1(P)sM+1(K̃) > sM(P)sM(K)+ sM+1(P)sM+1(K),

which yields

∑
j

s j(P)s j(K̃) > ∑
j

s j(P)s j(K) = ‖P‖Φ∗
π ,

which contradicts the assumption that ∑ j s j(P)s j(K) is the supremum of the set{
∑
j

s j(P)s j(K) : K ∈ B1(�2),K = diag{s1(K),s2(K), . . .},‖K‖Φπ = 1

}
.

This proves our assertion. �

THEOREM 4.6. Let P ∈ B(H ) be a positive operator and lim j→∞ s j(P) �= 0 ,
that is, P is not compact. Then there exists π ∈ Π̂ such that

πn

πn+1
>

sn(P)
sn+1(P)

for every n ∈ N.

Alternatively, if P ∈ B(H ) is positive noncompact operator then there exists
π ∈ Π̂ such that P /∈ NΦ∗

π (H ) .

Proof. Since P� 0 and lim j→∞ s j(P) �= 0, there exists s > 0 such that lim j→∞ s j(P)
= s. If we take αn := 1

e1/n2 for all n∈N and define a sequence π = (πn)n∈N recursively

by

π1 = 1 and
πn+1

πn
:= αn

sn+1(P)
sn(P)

for all n ∈ N,

we have αn < 1 for all n ∈ N . Then the fact that sn(P) is a nonincreasing sequence

implies that πn+1
πn

<
sn+1(P)
sn(P) for all n ∈ N . Therefore, πn

πn+1
> sn(P)

sn+1(P) for every n ∈ N.

All that remains is to show that π ∈ Π̂ . That π1 = 1 and (πn)n∈N is a strictly decreasing
sequence of positive real numbers are trivial observations. We complete the proof by
showing that limn→∞ πn > 0. An easy calculation shows that

πn+1 =

(
n

∏
m=1

αm

)(
sn+1(P)
s1(P)

)
for each n ∈ N.

Let xn = (∏n
m=1 αm) for every n ∈ N and observe that

πn+1 = xn

(
sn+1(P)
s1(P)

)
,
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which yields

lim
n→∞

πn+1 =
1

s1(P)
lim
n→∞

xn lim
n→∞

sn+1(P).

This observation, together with the facts that s1(P) > 0 and limn→∞ sn+1(P) = s > 0
allows us to infer that limn→∞ πn+1 > 0 if and only if limn→∞ xn > 0. But

lim
n→∞

xn = lim
n→∞

1

e∑n
m=1 1/m2 =

1

eπ/6
> 0,

and we conclude that limn→∞ πn > 0. This completes the proof. �

We are now in a position to prove a key result — a characterization theorem for
positive operators in {NΦ∗

π (H ) : π ∈ Π̂} — which answers the question we asked in
the paragraph preceding the Example 4.3. Moreover, this result is a special case of a
more general result that is presented in the next section (see Theorem 5.4).

THEOREM 4.7. Let P be a positive operator on H . Then the following state-
ments are equivalent.

1. P ∈ B0(H ) .

2. P ∈ A N Φ∗
π (H ) for every π ∈ Π̂ .

3. P ∈ NΦ∗
π (H ) for every π ∈ Π̂ .

Proof. (1) implies (2) follows from Theorem 3.2. (2) implies (3) is obvious. (3)
implies (1) is a direct consequence of the Theorem 4.6. �

We conclude this section by proving the following result that extends the above
theorem to bounded operators in B(H ) , the above theorem required the operator to
be positive. This is the main theorem of this section.

THEOREM 4.8. If T ∈ B(H ) , then the following statements are equivalent.

1. T ∈ B0(H ) .

2. T ∈ A N Φ∗
π (H ) for every π ∈ Π̂ .

3. T ∈ NΦ∗
π (H ) for every π ∈ Π̂ .

Proof. (2) implies (3) is obvious, as is (1) implies (2) from the Theorem 3.2. The
Proposition 3.3 along with the Theorem 4.6 proves (3) implies (1). �

The above result, although very important, is transitory. We will see a much more
general result than this — the characterization theorem for universally symmetric norm-
ing operators (see Theorem 5.6).
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5. Universally symmetric norming operators and their characterization

In the preceding section we considered a certain family {Φπ : π ∈ Π̂} of s.n.func-
tions and a family of symmetric norms on B(H ) generated by the dual of these, and
we studied the symmetric norming operators and absolutely symmetric norming oper-
ators with respect to each of these symmetric norms. The fact that each member of the
family {Φπ : π ∈ Π̂} is equivalent to the maximal s.n.function Φ1 suggests the pos-
sibility of extending the Theorem 4.8 to a larger family of s.n.functions. With this in
mind, our attention is drawn to the family of all s.n.functions that are equivalent to the
maximal s.n.function, that is, the family {Φ : Φ is equivalent to Φ1} of s.n.functions.
This larger family of s.n.functions provides us with the leading idea on which we de-
velop the notions of “universally symmetric norming operators” and “universally abso-
lutely symmetric norming operators” on a separable Hilbert space. The study of these
operators are taken up in this section. Our main result is Theorem 5.6 which, in effect,
states that an operator in B(H ) is universally symmetric norming if and only if it is
universally absolutely symmetric norming, which holds if and only if it is compact.

We begin by defining the relevant classes of operators.

DEFINITION 5.1. An operator T ∈ B(H ) is said to be universally symmetric
norming if T∈NΦ∗(H ) for every s.n.function Φ equivalent to the maximal s.n.function
Φ1 . Alternatively, an operator T ∈ (B(H )) is said to be universally symmetric
norming if T ∈ NΦ∗(H ) for every Φ from the family {Φ : Φ is equivalent to Φ1}
of s.n.functions.

DEFINITION 5.2. An operator T ∈ B(H ) is said to be universally absolutely
symmetric norming if T ∈ A N Φ∗(H ) for every s.n.function Φ equivalent to the
maximal s.n.function Φ1 .

REMARK 5.3. Since every symmetric norm on B(H ) is topologically equiva-
lent to the usual operator norm, it follows that T ∈ B(H ) is universally symmetric
norming (respectively universally absolutely symmetric norming) if and only if T is
symmetric norming (respectively absolutely symmetric norming) with respect to every
symmetric norm on B(H ) . Another important observation worth mentioning here is
that every universally absolutely symmetric norming operator is universally symmetric
norming.

The following theorem gives a useful characterization of positive universally sym-
metric norming operators in B(H ) .

THEOREM 5.4. Let P be a positive operator on H and let Φ1 denote the maxi-
mal s.n.function. Then the following statements are equivalent.

1. P ∈ B0(H ) .

2. P is universally absolutely symmetric norming, that is, P ∈ A N Φ∗(H ) for
every s.n.function Φ equivalent to Φ1 .
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3. P is universally symmetric norming, that is, P∈NΦ∗(H ) for every s.n.function
Φ equivalent to Φ1 .

Proof. The implication (1) =⇒ (2) is an immediate consuequence of Theorem
3.2 and (2) =⇒ (3) is straightforward. To prove (3) =⇒ (1) , assume that the pos-
itive operator P is universally symmetric norming on H . Then the statement (3) of
Theorem 4.7 holds which implies that P is compact and the proof is complete. �

We next establish the following result which allows us to extend the above theorem
to operators that are not necessarily positive.

PROPOSITION 5.5. An operator T ∈ B(H ) is universally symmetric norming if
and only if |T | is universally symmetric norming.

Proof. This follows immediately from the Proposition 3.3. �

We are now prepared to extend the Theorem 5.4 for an arbitrary operator on a
separable Hilbert space.

THEOREM 5.6. Let T ∈ B(H ) and let Φ1 denote the maximal s.n.function.
Then the following statements are equivalent.

1. T ∈ B0(H ) .

2. T is universally absolutely symmetric norming, that is, T ∈ A N Φ∗(H ) for
every s.n.function Φ equivalent to Φ1 .

3. T is universally symmetric norming, that is, T ∈NΦ∗(H ) for every s.n.function
Φ equivalent to Φ1 .

Proof. Theorem 5.4 and the preceding proposition yield this result. �

REMARK 5.7. The preceding result provides an alternative characterization of
compact operators on H .

It is worth noticing that Theorem 4.6 essentially states that given any positive
noncompact operator on (an infinite-dimensional separable) Hilbert space H , there
exists a symmetric norm on B(H ) with respect to which the operator does not attain
its norm. The following corollary extends Theorem 4.6 to any noncompact operator.

COROLLARY 5.8. If T ∈ B(H ) is a noncompact operator then there exists π ∈
Π̂ such that T /∈ NΦ∗

π (H )

Proof. Contrapositively, if for every π ∈ Π̂ the operator T ∈ NΦ∗
π (H ) , then by

the preceding theorem T must be a compact operator. �
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